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Abstract

In this paper, we settle the conjecture from “Pricing surplus server capacity for mean waiting

time sensitive customers”, by Sudhir K. Sinha, N. Rangaraj and N. Hemachandra, European

Journal of Operational Research 205, Issue 1, (2010), 159-171. This conjecture arises from a

joint pricing and scheduling problem introduced in Sinha et al. (2010). The overall objective of

this problem is to optimally price the server’s surplus capacity by introducing a new (secondary)

class of customers that satisfies the predefined service level requirement of the existing (primary)

class of customers, and simultaneously remains sensitive to their mean waiting times.

keywords Queueing, Admission control, Pricing of services, Dynamic priority schemes

1 Introduction

The pricing model proposed in Sinha et al. (2010) solves the class of problem where resource owner

wants to optimally price the surplus server capacity of a stable M/G/1 queue for a new (secondary)

class customers without affecting the service level of its existing (primary) customers. The objective

of the model is to solve the joint pricing and scheduling problem such that resource owner’s revenue

will be maximized while maintaining the promised quality of service level for primary customers.

Inclusion of secondary customers increases the load and affects the service level of primary customers.

Hence, admission control of this new class is necessary. A non pre-emptive delay dependent priority

scheme, introduced by Kleinrock (1964), is used to schedule customers across classes in Sinha et al.

(2010). In this priority scheme, each class gains priority, dynamically, based on their delay in queue.

Sinha et al. (2010) decomposed this revenue maximization problem in two optimization problems

arising from delay dependent priority queue discipline parameter being finite or infinite. In order

to find the global optimal operating parameters, one needs to compare the optimal objectives of
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these two optimization problems. It was conjectured in Sinha et al. (2010) that optimal objective

with finite scheduling parameter is better than that with infinite parameter for a particular range of

primary class customer’s service level. Assuming that the conjecture is true, a finite step algorithm

is proposed in Sinha et al. (2010) to find the optimal revenue; the details of which are elaborated

in Section 2. A sufficient condition for conjecture being true is given in Hemachandra and Raghav

(2013) and Raghav (2011) which states that if a fifth order polynomial has no roots in a particular

interval then this conjecture is true. In this paper, we give a complete proof of the conjecture by

queueing and optimization based arguments. Hence, this completes the open question about the

validity of finite step algorithm to find global optima of non convex revenue maximization problem.

This paper is organised as follows: Section 2 briefly discusses the conjecture and model introduced

in Sinha et al. (2010). Section 3 presents proof of conjecture.

2 System Description

Figure 1: Schematic view of the model (Sinha et al., 2010)

This model addresses the question of pricing the surplus server capacity of a stable M/G/1 queue for

a new class of customers that is sensitive to its mean waiting time. A schematic view of the model is

shown in Figure 1. The primary class of customers arrive according to Poisson arrival process with

rate λp. Sp, the desired limit on the mean waiting time of the primary class of customers, indicates

the service level offered. The service time of customers is independent and identically distributed

with mean 1/µ and variance σ2, irrespective of customer class. Idea of the problem is to determine

the promised limit on the mean waiting time of a secondary class of customers, Ss and their unit

admission price θ so as to maximize the revenue generated by the system, while constrained by

primary class service levels. The secondary class of customers arrive according to an independent

Poisson arrival process with rate λs, which is dependent on θ and Ss: λs(θ, Ss) = a− bθ− cSs, where

a, b, c are positive constants driven by the market.

The mean waiting time of primary and secondary class customers depend on the queue scheduling

rule. The scheduling discipline used in Sinha et al. (2010) was the non-preemptive delay dependent

priority scheme, introduced by Kleinrock (1964). In such a scheme, the instantaneous priority at

time t of class c customer that arrived at time Tc is calculated as qc(t) := (t − Tc)bc for some

positive number bc. Let c ∈ {p, s} so that bp and bs refer to the weights associated with primary and

secondary classes, respectively. At each service completion, the server chooses the next job with the
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highest instantaneous priority qc(·), c ∈ {p, s}. The steady state mean waiting times of each class

of customers, derived by Kleinrock (1964), depends on the ratio of weights (bi) given to each class.

Let β := bs/bp. Note that β = 0 corresponds to static high priority to primary class customers,

β = 1 is the global First Come First Serve (FCFS) queuing discipline across classes and β = ∞
corresponds to static high priority to secondary class customers. Let Wp(λs, β) and Ws(λs, β) be the

mean waiting times of primary and secondary customers, when the arrival rate of secondary jobs is

λs and queue management parameter is β.

Now select a suitable pair of pricing parameters θ and Ss for the secondary class customers, a

queue disciple management parameter β and an appropriate admission rate for the secondary class

customers λs, that will maximize the expected revenue from their inclusion, while ensuring that the

mean waiting time to the primary class customers does not exceed a given quantity Sp. Thus, the

revenue maximization problem, P0, is (Sinha et al., 2010):

P0: max
λs,β,Ss,θ

θλs (1)

subject to:

Wp(λs, β) ≤ Sp (2)

Ws(λs, β) ≤ Ss (3)

λs ≤ µ− λp (4)

λs ≤ a− bθ − cSs (5)

λs, θ, Ss, β ≥ 0 (6)

Constraint (2) and (3) ensure the service level for primary and secondary class respectively. Con-

straint (4) is queue stability constraint. Constraint (5) ensures that the mean arrival rate of secondary

class customers should not exceed the demand generated by charged price θ and offered service level

Ss. This problem can be presented as a non-convex constrained optimization problem P1 (since

constraints (3) and (5) are tight at optimality (Sinha et al., 2010))

P1: max
λs,β

1

b

(
aλs − λ2s − cλsWs(λs, β)

)
(7)

subject to:

Wp(λs, β) ≤ Sp (8)

λs ≤ µ− λp (9)

λs, β ≥ 0 (10)

Once the optimal secondary class mean arrival rate λ∗s and optimal queue discipline management

parameter β∗ are calculated, the optimal admission price θ∗ and optimal assured service level to

secondary class S∗
s can be computed using S∗

s = Ws(λ
∗
s, β

∗) and λ∗s = a− bθ∗ − cS∗
s .

Note that above optimization problem P1 considers only finite values of β, though β = ∞ is also a

valid decision variable as it corresponds to a static high priority to secondary class customers. Hence,

the following one dimensional convex optimization problem, P2, wherein β is set to ∞ in problem

3



P1, is considered as:

P2: max
λs

1

b
[aλs − λ2s − cλsW̃s(λs)] (11)

subject to:

W̃p(λs) ≤ Sp, (12)

λs ≤ µ− λp, (13)

λs ≥ 0. (14)

where W̃p(λs) = Wp(λs, β = ∞) and W̃s(λs) = Ws(λs, β = ∞). These two optimization problems

(P1 and P2) are analyzed for their global optima, and their optimal values are compared in Sinha

et al. (2010) to give a solution to P0 via a finite step algorithm.

Figure 2: Illustration for range of Sp with optimal solutions coming from problem P1 and P2

Solution of these optimization problems are obtained in terms of different ranges of primary class

service levels. For service level Sp ≤ Ŝp =
λpψ

µ(µ− λp)
, the problems are infeasible, i.e., no secondary

class customers can be accommodated. If
a

c
>
λp(2µ− λp)
µ(µ− λp)2

ψ where ψ =
1 + σ2µ2

2
then both the

optimization problems P1 and P2 have (global) optimal solutions for Sp ∈ I− ∪ I (see Figure 2),

for suitably identified finite intervals I− ≡ (Ŝp, Il) and I ≡ [Il, Iu) (see Theorem 1 and 2 in Sinha

et al. (2010)). For Sp ≥ Iu, the solution is given by problem P2 only, i.e. β = ∞. Hence, one has

to compare the optimal objectives of problem P1 and P2 to obtain the global optima in service level

range I− ∪ I as both problems are feasible for given range. It was proved by Sinha et al. (2010) that

for Sp ∈ I, the optimal solution of P0 is given by P1, i.e., optimal objective of P1 is more than that

of P2 for this range. Further, based on computational results, Sinha et al. (2010) also conjectured

the following result.

Conjecture (Sinha et al., 2010). For Sp ∈ I−, the optimal solution of P0 is given by optimal

solution of P1.

A sufficient condition for above conjecture is derived in Hemachandra and Raghav (2013), which

states that the conjecture is true if a particular fifth order polynomial has no root in interval I− of

Sp.

We give proof for this conjecture in Section 3. We identified increasing concave structure of optimal

objective of problem P2 in the range (I− ∪ I) of interest. This property and previous results are

exploited to prove the conjecture.
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3 A Proof of conjecture of Sinha et al. (2010)

In this section, we present the proof of the conjecture described in previous section. We prove few

claims and a theorem from which conjecture follows. Following claim is already proved (Sinha et al.,

2008, page 23), we further write its proof and give complete details of all arguments.

Claim 1. λ
(3)
s > λ

(1)
s , where λ

(3)
s and λ

(1)
s are the unique roots of cubics G̃(λs) and G(λs) respectively

in the interval (0, µ− λp). G(λs) and G̃(λs) are given by

G(λs) = 2µλ3s − [cψ + µ(a+ 4φ0)]λ
2
s + 2φ0[cψ + µ(a+ φ0)]λs − aµφ2

0 + cψλp(µ+ φ0) (15)

G̃(λs) = 2µλ3s − [aµ+ cψ + 4µ2]λ2s + 2µ[aµ+ cψ + µ2]λs − µ[aµ2 − cψλp]. (16)

and φ0 = µ− λp.

Proof. λ
(1)
s is the unique root of cubic G(λs) in the interval (0, µ− λp) whenever

a

c
>
λp(2µ− λp)
µ(µ− λp)2

ψ

(Sinha et al., 2010, Theorem 1). Hence, λ
(1)
s ∈ (0, µ− λp) for a ∈ (al,∞) where al =

λp(2µ− λp)
µ(µ− λp)2

cψ.

Similarly, λ
(3)
s is the unique root of cubic G̃(λs) in the interval (0, µ − λp) whenever

µ− λp
µλp

>

aλp − cψ
2µλ2p + cψ(µ+ λp)

and
a

c
>

λp
µ2
ψ (Sinha et al., 2010, Theorem 3). Hence, λ

(3)
s ∈ (0, µ − λp) for

a ∈ (ãl, ãu) where ãl =
λp
µ2
cψ and ãu = 2(µ−λp)+

cψ

λp

[
1 +

µ2 − λ2p
µλp

]
. If

µ− λp
µλp

≤ aλp − cψ
2µλ2p + cψ(µ+ λp)

,

i.e., a ≥ ãu then G̃(µ − λp) ≤ 0 and G̃(0) < 0 hold by the definition of cubic G̃(.) and a > ãl.

Hence, it follows from Claim 3 in Sinha et al. (2008) that µ − λp ≤ λ
(3)
s < µ. It follows that

ãl =
λp
µ2
cψ <

λp(2µ− λp)
µ(µ− λp)2

cψ = al. Note that λ
(1)
s = 0 at a = al, λ

(3)
s = 0 at a = ãl and λ

(3)
s = µ− λp

at a = ãu. These arguments follow as G(0), G̃(0) and G̃(µ−λp) is 0 at a = al, ãl and ãu respectively.

a cannot be less than ãl, otherwise problem becomes infeasible. On the basis of relative values for

al, ãl and ãu and using the fact that λ
(1)
s and λ

(3)
s are increasing functions of a (Sinha et al., 2008,

claim 5, page 24), we have:

• If al < ãu, then,

1. λ
(1)
s ≤ 0 and 0 < λ

(3)
s < µ− λp for a ∈ (ãl, al]

2. 0 < λ
(1)
s < µ− λp and 0 < λ

(3)
s < µ− λp for a ∈ (al, ãu)

3. 0 < λ
(1)
s < µ− λp and µ− λp ≤ λ

(3)
s < µ for a ≥ ãu

• If al ≥ ãu, then,

1. λ
(1)
s < 0 and 0 < λ

(3)
s < µ− λp for a ∈ (ãl, ãu)

2. λ
(1)
s ≤ 0 and µ− λp ≤ λ

(3)
s < µ for a ∈ [ãu, al]

3. 0 < λ
(1)
s < µ− λp and µ− λp < λ

(3)
s < µ for a > al
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Hence, λ
(3)
s > λ

(1)
s for all cases except the case when al < ãu and a ∈ (al, ãu). Note that G(λs) and

G̃(λs) have exactly one root in interval (0, µ − λp). Root of G(λs), λ
(1)
s , is 0 at a = al and G(λs)

increases in the interval (0, µ−λp). Root of G̃(λs), λ
(3)
s , is zero at a = ãl < al and λ

(3)
s is an increasing

function of a. So λ
(3)
s > λ

(1)
s at a = al. Plots of G(λs) and G̃(λs) are shown in Figure 3 and 4. As

Figure 3: G(λs) Vs λs in range (0, µ−λp) at a = al Figure 4: G̃(λs) Vs λs in range (0, µ−λp) at a = al

∂G(λs)

∂a
= −µ(µ− λp − λs)2 and

∂G̃(λs)

∂a
= −µ(µ− λs)2, G(λs) and G̃(λs) are decreasing functions

of a. Since G̃(λs) decreases with higher rate than G(λs), λ
(3)
s will increase with higher rate than λ

(1)
s .

Hence, λ
(3)
s > λ

(1)
s holds for a ∈ (al, ãu) also and the claim follows.

Now, Sinha et al. (2010) has described, in their Theorem 1 and 2, the optimal solution of problem

P1 in terms of primary class service level range I and I−. While optimal solution of problem P2 is

given by Theorem 3 and 4 in terms of service level range J and J−. We present the following claim

that relates I and I− with the range J and J−. Claim 1 is useful in proving following Claim 2.

Claim 2. Range I− ∪ I is contained in J−, i.e., I− ∪ I ⊂ J−.

Proof. The solution of optimization problem P2 is given by Theorem 3 and 4 in Sinha et al. (2010)

and by service level range J and J−. So, the entire feasible range of service level (Ŝp,∞) is divided

in interval J− ∪ J as shown in Figure 5.

From Theorem 3 and 4, it is clear that if
µ− λp
µλp

≤ aλp − cψ
2µλ2p + cψ(µ+ λp)

then J− = (Ŝp,∞) and J = φ

otherwise J− = (Ŝp, Jl] and J = (Jl,∞) where Jl =
ψλ3

(µ− λ(3)s )(µ− λ3)
and Ŝp =

ψλp
µ(µ− λp)

. Now,

consider the following two cases to prove the claim:

Case 1: When
µ− λp
µλp

≤ aλp − cψ
2µλ2p + cψ(µ+ λp)

Interval J− becomes (Ŝp,∞) under the condition of this case as discussed above. Since lower and
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0 Ŝp Il Iu Jl ∞

I− I

J− J

J− If
µ− λp
µλp

≤ aλp − cψ
2µλ2p + cψ(µ+ λp)

If
µ− λp
µλp

>
aλp − cψ

2µλ2p + cψ(µ+ λp)

Figure 5: Relation among intervals of Sp

upper limit of I− ∪ I are Ŝp and Iu respectively. These limits are finite (see Sinha et al. (2010)).

Hence, I− ∪ I ⊂ J− holds.

Case 2: When
µ− λp
µλp

>
aλp − cψ

2µλ2p + cψ(µ+ λp)

In this case, J− = (Ŝp, Jl] where Jl =
ψλ3

(µ− λ(3)s )(µ− λ3)
and I−∪I = (Ŝp, Iu) where Iu = ψλ1

(µ−λ(1)s )(µ−λ1)

and by definition λ1 = λp + λ
(1)
s , λ3 = λp + λ

(3)
s . Note that, Iu = ξ(λ

(1)
s ) and Jl = ξ(λ

(3)
s ) where

ξ(λs) =
ψλ

(µ− λs)(µ− λ)
and λ = λp + λs. On computing partial derivative of ξ(λs) with respect

to λs, we get
∂ξ(λs)

∂λs
=
ψ(µ(µ− λs) + λ(µ− λ))

(µ− λs)2(µ− λ)2
> 0, i.e., ξ(λs) is an increasing function of λs. So,

ξ(λ
(3)
s ) > ξ(λ

(1)
s ) iff λ

(3)
s > λ

(1)
s , But λ

(3)
s > λ

(1)
s follows from claim 1. Thus, ξ(λ

(3)
s ) > ξ(λ

(1)
s ) follows

and equivalently Jl > Iu holds. Hence I− ∪ I ⊂ J− holds in this case too, and the claim follows.

It follows from Claim 2 that the structure of optimal objective of problem P2 in service level range

I ∪ I− can be identified by finding the same in service level range J−. Such a structure is identified

in following theorem and will be useful in proving the conjecture.

Theorem 1. The optimal objective function for problem P2, i.e., O∗
2 is increasing concave in service

level range I− ∪ I, while the optimal objective function for problem P1, O∗
1, is increasing concave in

I− and linearly increasing in I.

Proof. It is shown in Sinha et al. (2008) that O∗
1 is increasing concave in I− and linearly increasing in

I, we give details here for its completeness. The optimal objective of problem P1 and P2 are given by

O∗
1 and O∗

2, and the corresponding optimal solutions are given by (λfs , β
f ) and (λis,∞), respectively.

In case of finite β, solution is given by Theorem 1 and 2 in Sinha et al. (2010), for Sp ∈ I−∪I. Hence,

the waiting time constraint is binding (Wp(λs, β) ≤ Sp) from these theorems. In case of infinite β,

the solution is given by Theorem 4 in Sinha et al. (2010), for Sp ∈ I− ∪ I as I− ∪ I ⊂ J− (Claim

2). It follows from Theorem 4 that the primary class customer’s waiting time constraint is binding.

Therefore, waiting time constraint Wp(λs, β) ≤ Sp is always binding for Sp ∈ I− ∪ I. By using the

interpretation of Lagrange multiplier (Proposition 3.3.3 in (Bertsekas, 1999, page 315) and (Sinha
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et al., 2008, page 25)), we have

∂O∗
1

∂Sp
= −uf1 and

∂O∗
2

∂Sp
= −vi1 (17)

where uf1 and vi1 are the corresponding values of the Lagrangian multipliers associated with the

constraint Wp(λs, β) = Sp of the optimization problems P1 and P2 respectively. As defined in (Sinha

et al., 2008, page 25):

uf1 =
(µ− λp)G(λfs )

bψ(µ− λp − λfs )2
− cλp

b
and (18)

vi1 =
(µ− λp − λis)2G̃(λis)

bψµ[µ(µ+ λp)− (λp + λis)
2]

(19)

The optimal objective of optimization problem P2, i.e., O∗
2 is given by Theorem 4 of Sinha et al.

(2010) for service level range Sp ∈ I− ∪ I as I− ∪ I ⊂ J−. λ
(4)
s is the optimal admission rate for

secondary class customers in Theorem 4. Hence, λis = λ
(4)
s . Sign of vi1 is decided by G̃(λis). λ

(3)
s is

the root of cubic G̃(λs) as discussed in Claim 1. It follows that λ
(4)
s < λ

(3)
s (see proof of Theorem

4 in Sinha et al. (2008)). We note that G̃(λs) is negative and increasing in interval [0, λ
(3)
s ]. So

G̃(λ
(4)
s ) = G̃(λis) ≤ 0 and hence vi1 ≤ 0 for Sp ∈ I− ∪ I. Now, it follows from Equation (17) that

∂O∗
2

∂Sp
≥ 0.

The solution of optimization problem P1 is given by Theorem 1 of Sinha et al. (2010) for Sp ∈ I

with λ
(1)
s as the optimal admission rate for secondary class customers. Hence, λfs = λ

(1)
s . λ

(1)
s is the

root of cubic G(λs). From Equation (18), uf1 =
−cλp
b
≤ 0 for Sp ∈ I.

Solution of problem P1 is given by Theorem 2 of Sinha et al. (2010) for Sp ∈ I− with λ
(2)
s =

µ(µ− λp)Sp
ψ

− λp as the optimal admission rate for secondary class customers. Hence, λfs = λ
(2)
s .

Note that λ
(2)
s linearly increases with Sp and λ

(2)
s = λ

(1)
s at Sp =

ψ(λp + λ
(1)
s )

µ(µ− λp)
= Il, the upper limit

of interval I−. Thus, λ
(2)
s < λ

(1)
s for Sp ∈ I−. G(λs) is an increasing function of λs ∈ (0, λ

(1)
s ) (see

proof of claim 1 in Sinha et al. (2008)). This implies that G(λ
(2)
s ) ≤ G(λ

(1)
s ) = 0. From equation

(18), uf1 ≤ 0 for Sp ∈ I−. Thus uf1 ≤ 0 for Sp ∈ I− ∪ I and we get the following from Equation (17)

∂O∗
1

∂Sp
≥ 0 and

∂O∗
2

∂Sp
≥ 0 (20)

O∗
1 and O∗

2 are increasing functions of Sp, in the interval I− ∪ I. Partial derivatives of Lagrangian

multipliers with respect to λfs and λis are shown to be positive (Sinha et al., 2008, page 25):

∂uf1

∂λfs
≥ 0 and

∂vi1
∂λis
≥ 0 (21)

From Equation (17):

∂2O∗
1

∂S2
p

= −∂u
f
1

∂Sp
= −∂u

f
1

∂λfs

∂λfs
∂Sp

(22)

Recall Corollary 1 in Sinha et al. (2010) which states that the mean arrival rate of secondary class

customers λ
(1)
s is independent of Sp in interval I, so,

∂λ
(1)
s

∂Sp
= 0. But for Sp ∈ I, λfs = λ

(1)
s and hence
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we have
∂2O∗

1

∂S2
p

= 0 (23)

Consider Corollary 2 in Sinha et al. (2010) which states that the mean arrival rate of secondary class

customers λ
(2)
s is linearly increasing function of Sp in interval I−, i.e.,

∂λ
(2)
s

∂Sp
> 0. But for Sp ∈ I−,

λfs = λ
(2)
s and we get the following from Equation (22),

∂2O∗
1

∂S2
p

≤ 0 (24)

By using equations (20), (23) and (24), we can say that O∗
1 is a linearly increasing function of Sp, in

the interval I, while it is an increasing concave function of Sp in the interval I−. For Sp ∈ I− ∪ I
with β as infinity, solution of problem P2 is given by Theorem 4 of Sinha et al. (2010) with λ

(4)
s as

the optimal admission rate for secondary class customers. Hence, λis = λ
(4)
s . From Equation (17), we

have
∂2O∗

2

∂S2
p

= − ∂v
i
1

∂Sp
= −∂v

i
1

∂λis

∂λis
∂Sp

(25)

Consider Corollary 3 in Sinha et al. (2010) which states that λ
(4)
s is an increasing function of Sp in

the interval J−. Since I− ∪ I ⊂ J−,
∂λis
∂Sp
≥ 0 for Sp ∈ I− ∪ I. So from equation (21) and (25), we

have
∂2O∗

2

∂S2
p

≤ 0 for Sp ∈ I− ∪ I (26)

O∗
2 is, thus, an increasing function of Sp as

∂O∗
2

∂Sp
≥ 0 and concave as

∂2O∗
2

∂S2
p

≤ 0 for Sp ∈ I− ∪ I.

Hence, the theorem follows.

Conjecture is proved via following theorem using the increasing concave nature of optimal objective

function of problem P2 as identified in above theorem.

Theorem 2. The optimal solution of P0 is given by optimal solution of P1 for Sp ∈ I− ∪ I.

Proof. The optimal objective of problem P1 is more than that of P2 for Sp ∈ I, i.e., O∗
1(λ

f
s , β

f ) >

O∗
2(λ

i
s, β

i) follows for service level range I (see (Sinha et al., 2008, page 26)). Thus, the optimal

solution of P0 is given by that of P1 for Sp ∈ I.

In service level range I−, four possible scenarios can arise as shown in Figures 6, 7, 8, and 9. Figure

7 is not possible as it contradicts above Theorem 1, which states that O∗
2 is concave. Figure 8 is

not possible as it contradicts feasibility requirements (i.e. Sp ≥ Ŝp), and the fact that O∗
2(λ

i
s,∞) <

O∗
1(λ

f
s , β

f ) at Ŝp + ε, where ε is a small positive number (Sinha et al., 2008, page 26). Figure 9 is

also not possible as it contradicts the statement that O∗
1(λ

f
s , β

f ) > O∗
2(λ

i
s, β

i) in interval I (Sinha

et al., 2010). Thus, the only possible scenario is Figure 6, where O∗
2(λ

i
s,∞) < O∗

1(λ
f
s , β

f ) for Sp ∈ I−.

Hence the theorem follows.
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Ŝp Il Iu
Sp

O∗
1 or O∗

2

O∗
1(λ

(1)
s , β(1))

O∗
1(λ

(2)
s , 0)

I− I

O∗
2(λ

(4)
s , β =∞)

Figure 6: No contradiction

Ŝp Il Iu
Sp

O1∗ or O2∗

O∗
1(λ

(1)
s , β(1))

O∗
1(λ

(2)
s , 0)

I− I

O∗
2(λ

(4)
s , β =∞)

Figure 7: Contradiction from concavity of
O∗

2

Ŝp Il Iu
Sp

O∗
1 or O∗

2

O∗
1(λ

(1)
s , β(1))

O∗
1(λ
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Figure 8: Contradiction by infeasibility and
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Figure 9: Contradiction by the fact that
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The conjecture follows from above theorem.
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