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Abstract

We view queue as a service facility and consider the situation when users offer arrival rate at
stationarity that depends on the Quality of Service (QoS) they experience. We study the equilib-
rium points and the equilibrium sets associated with this interaction and their interpretations in
terms of business cycles. The queue implements the optimal admission control (either discounted
or ergodic) policy in the presence of holding cost and admission charge for admitted customers;
threshold policies are known to be optimal for such queues. We consider two QoS measures:
the long run fraction of customers lost, L, and the long run rate of customers lost, L1. Our first
result is that both the QoS measures for GI/M/1 queues are locally continuous with respect to
the arrival rate. ForM/M/1 queues we show that control limit is finite and that (Assumption A1)
the QoS measures increase with arrival rate. We also show that multiple optimal policies lead to
equilibrium sets. We observe that various combinations of cost criteria and QoS measures lead
to differing equilibrium behaviour. Under A1, similar results hold for D/M/1 queue. We study
a GI/M/1 queue with discrete arrival rate supports whose arrival rate is locally continuous. We
illustrate that A1 need not hold, but a relaxed assumption may hold. Nonetheless, change of sup-
port is another cause for emergence of equilibrium sets and equilibrium behaviour is interesting
as there may be multiple equilibrium points/sets, etc. Generalized equilibrium sets may also ex-
ist; these are usually due to the non-contraction nature of the QoS measure, the rate of customers
lost, L1. We present details of some computational examples that were are not presented in (8).

keywords: admission control of queues; quality of service; multiple optimal policies; change of support;

invariant sets; generalized equilibrium sets; non-contraction maps; fixed points; parametrized MDPs

1 Introduction

We view a queue as a service facility (service-provider) and consider the situation when customer
base (user-set) offers an arrival rate at stationarity that depends on the Quality of Service (QoS) they
experience. In our model, the queue uses a revenue optimal policy and the QoS experienced by the
user-set is induced by this revenue optimal policy. We are primarily interested in the equilibrium
points and the equilibrium sets associated with this interaction between the queue and user-set. Many
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present day technological systems like communication networks, transportation systems, etc., that
offer various services have congestion which can be captured by queueing models; apart from the
price of the service, users are also concerned with the service levels they obtain while using these
service systems.

To analyse the equilibrium behaviour, we consider the relation between the QoS offered by the
queue and the user-set offered arrival rate λ in the form of firm-market interaction function f(·) as
defined in (9). The arrival rate λ offered by the user-set when it experiences a QoS at stationarity is
given by f(QoS). In fact, we assume f(·) to be as below (9),

f(L(π∗λ, P (λ))) = m− eL(π∗λ, P (λ)) (1)

where m and e are given constants so that the arrival rate, λ ∈ (0,m), L(π∗λ, P (λ)) is the stationary
QoS measure felt by the user-set due to the use of the revenue optimal policy π∗λ(=: π∗(λ)) deployed
by the service-provider (queue) and P (λ) is the price charged by the service facility queue; both π∗λ
and P (λ) can depend on the user-set offered arrival rate λ. In m− eL(π∗λ, P (λ)), known as the affine
(linear) demand model, m is the maximal arrival the user-set can offer (market capacity) and e is
the arrival rate elasticity to the QoS L(·, ·). Figure 1 gives an overview of the problem we address;
(9) considers a discrete time model where λ is the mean demand in each period, but, in below we
stick to the queueing convention where λ is called the arrival rate. The basic result is that under mild
conditions, either an equilibrium point or an equilibrium set (an invariant set, not a set of equilibrium
points, details are in Section 2) exists. Existence of an equilibrium set offers one possible explanation
for the business cycles between high arrival rate regime and low arrival rate regime that we observe
in the operation of many service systems; after a large enough time, there is a regime switch in the
user-set offered arrival rate f(·, ·).

Figure 1: A schematic for service-provider (queue) user-set (customer base) interaction (9). In rest
of the paper, we denote the optimal policy (π∗λ) by R∗λ.

In (9) it was observed that the difference between the service-provider user-set interaction in dis-
counted and average reward Markov decision process (MDP) model for vehicle relocation systems,
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a service facility prevalent on some educational campuses or small towns, is negligible and the equi-
librium points and sets are nearly the same. It was pointed out that queuing systems with holding
costs (in addition to admission revenue) should provide an example of the service-provider user-set
interaction MDP model where this difference in equilibrium is non-trivial. In addition to the long
run fraction of customers lost L(λ, π∗λ), we also consider another user-set time average QoS measure
L1(λ, π∗λ), the rate of customers lost. We identify various aspects like cost criteria, etc., that effect this
interaction. We note that in stylized models of M/M/1 and D/M/1 queues, the QoS measures (and
hence f(λ) from (1)) are monotone wrt arrival rate λ (assumption A1) and show that the presence of
multiple revenue optimal policies is the cause for the emergence of equilibrium sets. For a certain
GI/M/1 queue a change in support of inter-arrival times is another cause. Additionally, we note that
this interaction can be quite complicated; for such queues, there can be more than one equilibrium
set or point or the iterates of f(·, ·) need not converge to an equilibrium point as they now lie in an
equilibrium set, etc. This also means that this interaction can experience multiple regimes of rate
like medium and high arrival rates with various cycle lengths; this leads us to the notion of gener-
alized equilibrium sets wherein a relaxed version of A1 holds. The choice of the QoS measures by
the user-set can also cause these equilibrium sets. There can be discontinuities in the optimal value
of the queue as a function of arrival rate, say, because of multiple optima or change in the support
of the arrival distribution. The choice of these optimal policies, particularly at these discontinuities,
means that QoS measures depend on the way they are defined at these discontinuities which in turn
influences the nature of the equilibrium points and sets.

Pinhas Noar (10) pioneered the analysis of the admission control of queues. Stidham in a series
of papers (18), (16), (15), etc., established various structural results for these models, including the
insight that individual optimal admission rate is no less than that of the social optimal one; interpret-
ing the difference to the externality that each admitted customer imposes on others in form of the
increased congestion they experience and emphasizing the role of admission fee in admission con-
trol models. We extensively rely on the results and efficient algorithms of Van Nunen and Puterman
(3) and Puterman and Thomas (6); we mention some minor typos. The book by Puterman (5) is a
comprehensive book for Markov decision models and in particular, Chapter 11 treats semi-Markov
control models including the admission control of GI/M/1 queues. The monograph by Sennott (4)
treats numerous types of control problems in queues, including admission control problems. We use
the monotonicity results of Cil, et al. (1) and Rue and Rosenshine (14).

Kim (21) proposed an optimization model for computing optimum revenue using static pricing
in a two class (premium (circuit-switched) class and best effort (packet-switched) class) queueing
model with QoS-based-demand and demand-based-QoS fixed point constraints. Convergence results
of the proposed numerical schemes for computing these fixed points are presented. We are more
interested in the existence of equilibrium sets and points. Many game theoretic aspects in queueing
are studied by Hassin and Haviv (12) and comprehensively summarised by Hassin (11).

Stidham (17) considers many models involving static optimization (open loop control) where
each customer has a utility as well as a congestion cost that depend on λ and the decision maker
chooses an arrival rate that maximizes the difference between utility and congestion cost. These
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models broadly fall into one of these three types; the decision maker can be an individual customer
(individual optimality) or considers the aggregate/collective utility of all customers (social optimality)
or queue (facility) manager who considers the net profit per unit time. Many variants like networks
of queues, etc., are also nicely analysed in the monograph (17). The optimal arrival rates can be
interpreted as arrival rates at a certain equilibrium that is different from ours. Because, in our setting,
the decision maker (queue manager) uses a dynamic control (closed loop control) for any given λ
that maximizes either the discounted or ergodic profit that trades off the admission fee collected
from the admitted customers against the holding/congestion costs incurred by it; the collective of
users (user-set), while offering the demand, is interested in the QoS it experiences induced by the
revenue optimal policy of the queue manager. Also, it turns out that utility and congestion functions
considered in (17) are usually differentiable convex/concave functions of λ; in our case, the key
function, f(λ) is discontinuous which can lead to equilibrium sets.

In Section 2, we present basic results like existence of equilibrium sets. Section 3 gives details in-
cluding causes of equilibrium sets, QoS computations, numerous examples, generalizations of above,
etc. We close with some discussion in Section 4. Most proofs are deferred to Appendices.

2 Equilibrium sets in queues: Existence and properties

In this section we define the generic equilibrium sets. We investigate their existence in the above
setting and present an interpretation.

2.1 Existence of equilibrium sets

The queue (service-provider) in our setting uses a revenue optimal policy R∗λ of admission control as
depicted in Figure 2. Inter-arrival times of jobs are i.i.d. (with a given distribution having arrival rate
λ) and a single server is available to serve the jobs at an given exponential rate µ. There is a control
on admitting the new arrival/job to the queue. It can accept the job or may reject it depending on
state of the queue, the number in the queue at that epoch, including the one being served. An entering
customer pays the queue a service charge of r for the utility of the availed service. A holding cost
h per customer per unit time is incurred to the queue. The service-provider (queue) is interested
either in the optimal discounted or ergodic revenue policy corresponding to these costs and rewards
stochastic processes over the infinite horizon.

The above continuous time semi-Markov optimal (either ergodic or discounted) control problem
can be cast as a discrete time Markov decision model by a suitable embedding, see for example
Puterman (5). Stidham (18) showed that if holding cost h is a convex function of the number of
customers in the system, control limit policies, i.e., policies of threshold type are revenue optimal
for both discounted and average cost criteria. The queue determines revenue optimal discounted
threshold R∗λ,dc or ergodic threshold R∗λ,av when the arrival rate is λ; these induce QoS measure
L(λ,R∗λ,dc) or L(λ,R∗λ,av) respectively. To ease the notation, we will just write this revenue optimal
threshold as R∗λ; the cost criteria will be clear from the context. Also, we abbreviate QoS measures as
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Figure 2: Admission control queueing system

L(λ). Performance measures like mean waiting time or customers lost, etc., are potential candidates
for measuring the quality of service being offered. We work with two QoS measures: (long run)
fraction of customers lost L(λ) and (asymptotic) rate of customers lost L1(λ) (more details are in
Section 3). The user-set (market) offers arrival rate f(QoS) based on the QoS it experiences, for
a given f(·). We are interested in the equilibrium point or equilibrium sets in this interaction. The
firm-market interaction function f(·) in (1), that captures this interaction, should satisfy the following
assumption.

Assumption 1 (A1): f(λ, L(λ,R∗λ)) is a non increasing function of λ; for simplicity we denote
f(λ, L(λ,R∗λ)) by f(λ).

Definition 1 (Equilibrium Set (9)). If there exists some l0 ∈ (0,m) and intervalsR := (f(l0), limλ↑l0 f(λ)),
E1 := (0, f(l0)] & E2 := [limλ↑l0 f(λ),m) and E := E1 ∪ E2 such that

• for λ ∈ R, f(λ) ∈ E

• for λ ∈ E, f(λ) ∈ E (λ ∈ E1 implies f(λ) ∈ E2 and λ ∈ E2 implies f(λ) ∈ E1),

then E and R are called equilibrium set and repelling set of service-provider user-set interaction
respectively.

Remark 1. The equilibrium set is a generalization of the equilibrium point and is an invariant set
under f(·). Under assumption A1 and other conditions below, (9) shows existence of an equilibrium
set when an equilibrium point doesn’t exist in the above framework.

To show the existence of equilibrium sets or points in the above queue and user-set interaction
as in (9), we need that the underlying MDP has finite state space and finite action space, piecewise
continuity of the QoS measures L and L1 and that assumption A1 holds.

Van Nunen and Puterman (3) observe that when the discount parameter α is less than h/r for
M/M/1 and D/M/1 queues, then the optimal control limit, R∗λ is finite. Throughout this paper we
assume this condition for these queues. The following theorem shows that the optimal control limit
for average reward M/M/1 is finite; we defer the proof to Appendix A.1.

Theorem 1. For an average reward stable M/M/1 queue, there always exists a finite admission
control limit R∗λ.
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For an admission controlled GI/M/1 queue with countable state space, when optimal control
limit R∗λ is finite, consider the related admission control problem in which state space is truncated
as (0, 1, 2, . . . R∗λ, R

∗
λ + k), with k ≥ 1. Optimal control limit for this problem is still R∗λ. Since

we always consider situations wherein the optimal control limit is finite, the admission controlled
queuing MDP can be taken as a finite state-action MDP with the same optimal policy R∗λ.

One QoS measure we consider is

L(λ) = long run fraction of customers lost when the arrival rate is λ. (2)

The other QoS measure which we consider is the asymptotic rate of customers lost,

L1(λ) = λL(λ). (3)

The average cost semi-Markov admission control problem of a GI/M/1 can be viewed as a discrete
time MDP which in turn can be viewed as a suitable Linear Program (LP), (5). If data of this control
problem like transition probabilities are continuous functions of rate λ, relying on the continuity of
the sets of optimizers of these LPs, Theorem 1 of (9) says that the optimal revenue value at state s,
gRλ(s) := gR(s, λ) is continuous over an interval (u, v) about λ when the optimal policy R∗λ at λ
is unique. We assume that arrival distributions are such that the optimal revenue is right continuous
at end point u of the interval (u, v). Then, it follows that time averages associated with the revenue
optimal policies are also piecewise continuous functions of λ. When the revenue optimal policy, Rλ

at a λ is not unique, say {R∗1,λ, · · · , R∗l,λ} for some l ≥ 2 are revenue optimal policies, we have that
gR∗λ(s) = lim

λn↓λ
gR∗λn (s) for some R∗λ ∈ {R∗1,λ, · · · , R∗l,λ}. Then, for a given time average, we define

it at λ as per this policy R∗λ so that the time average is also right continuous at λ; see (9) for details.
The time average values at the end points of the interval (u, v) are similarly defined.

Since the QoS measure, fraction of customers lost, L can be seen as a ratio of two time averages
(long run rate of customers lost and long run rate of arrivals), we can invoke Theorem 2 of (9),
and claim that L is piecewise continuous over (0,m). It then follows that L1 is also a piecewise
continuous function over (0,m). Such results hold in the discounted revenue model also.

In case of admission controlled M/M/1 queue with discounted reward criterion, Cil et. al. (1)
have showed that optimal policy, i.e., control limit R∗λ is decreasing in arrival rate λ and hence,
f(λ, L(λ,R∗λ)) is a non increasing function of λ. Rue and Rosenshine (14) considered an admission
controlled M/M/1 queue where customer is the decision maker, i.e., customer takes the decision
of entering or not entering the queue, to maximize the sum of individual net benefits called socially
optimal criteria. In this case, they showed that the average reward criterion based optimal policy
(threshold type) is a non-increasing function of λ. It can be easily seen that the objective which is
maximized in either customer as a decision maker or queue manager as decision maker, is identical.
Therefore, in case of admission controlled M/M/1 queue with both discounted and average reward
criterion, assumption A1 holds.

We are considering four models, depending on the revenue criteria (discounted or ergodic) of the
queue and the QoS measure (L(·) or L1(·)) of the user-set.

In view of the above three observations for each of these four models, we then have,
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Theorem 2. For an admission controlled M/M/1 queue, when queue uses ergodic revenue criteria
and user-set uses QoS L(·), either an equilibrium point or the equilibrium set will exist. Either an
equilibrium point or an equilibrium set also exist in the other 3 models.

We will see in Section 3 that one reason for emergence of equilibrium sets in M/M/1 queue is
the presence of multiple revenue optimal policies. The support of inter-arrival times for these queues
is the whole of R+. We now consider D/M/1 queues; the support of inter-arrival times for these
queues is just a singleton. We assume that for D/M/1 queue, A1 holds; examples validating this
assumption will be provided in Section 3.6. As shown above the admission control problem is a finite
state and finite action MDP and QoS measures are locally continuous. Thus, one has,

Theorem 3. For an admission controlled D/M/1 queue that uses average cost criteria and user-
set that uses QoS L(·), under the assumption A1, either an equilibrium point or an equilibrium set
will exist. Under A1, either an equilibrium point or an equilibrium set will also exist in the other 3

models.

Next, we are interested in the effect of the change in the support of the arrival distribution on the
equilibrium behaviour. To understand this, we consider queues where arrivals per unit time follow a
particular form of discrete distribution whose mean still is locally continuous. In Section 3.7, we will
show that A1 need not hold for such queues and see the implications; the other aspects of the relevant
MDP and QoS measures for these queses hold.

2.2 Properties of equilibrium sets

An equilibrium point in above will exist if there is a fixed point for the basic firm-market interaction
equation λ = f(λ, ·). If this function has discontinuity, then there is a possibility that the fixed point
may not exist and in view of above, there will be an equilibrium set.

This discontinuity in QoS can be directly attributed to multiple optimal control limits or to the
change in support of the inter-arrival times as in the case of discrete arrival distribution. Two other
indirect causes for emergence of equilibrium sets are the changes in the cost criteria of the queue
manager or the change in the QoS measure by the user-set (market). All these four causes can be
grouped into two categories as follows:

1. Queue’s (firm) role:

• Multiple control limits • Ergodic or discounted criteria

2. User-set’s (market) role:

• Support of the arrival distribution • Type of the QoS measure

The details of these causes along with the examples is given in Section 3.4, 3.5, 3.6 and 3.7.
For a M/M/1 queue with the queue manager using the discounted cost structure and user-set

using L as a QoS measure, Figure 3 gives an example of sets E1 and E2 and the equilibrium set E. In
(9) the following interpretation of equilibrium sets was proposed. Suppose market offers some high
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arrival rate, say λ0 ∈ E2 and user-set is interested in one of the QoS measures, say L(·). Then poor
service is offered (due to system capacity limitations at this high arrival rate) and after long enough
time when the system is nearly in steady state (so that QoS experienced by user-set is approximately
L(·)), the user-set responds by offering arrival rate f(λ0) =: λ1, which is a lesser arrival rate as
λ1 ∈ E1. Since arrival rate is decreased, again in long enough time the system will start working
smoothly and arrival rate offered by the user-set f(λ1) =: λ2 increases and is such that f(λ1) ∈ E2.
However, when the arrival rate increases, system is not able to handle it properly leading to discontent
among the customers and again λ3 := f(λ2) ∈ E1. And, this process continues. Thus, the queue
(firm) is switching between a high arrival rate regime and a low arrival rate regime. If an equilibrium
set is present, the resultant toggling between E1 and E2 is one of the explanations of the business
cycles in QoS based service facilities like queues experience. The toggling between E1 and E2 is
also illustrated in Figure 3.

The set R = (0,m) \ (E1 ∪ E2) is the repelling set; for all λ ∈ R, we have f(λ) ∈ E. If the
arrival rate offered by the user-set is from R, after a reasonable amount of time when the queue is
nearly in steady state, the user-set offers an arrival rate from one of the Ei’s of the equilibrium set E;
this then leads to above associated oscillations as illustrated in Figure 3.

Figure 3: For a M/M/1 queue with costs and parameters h = 1, r = 0.4, µ = 5.5, α = 0.54, m = 5

and e = 4 using discounted cost criteria and QoS measure L, we get l0 = 3.89, f(l0) = 3.7 and
lim
λ↑l0

f(λ) = 4.4. Hence, the equilibrium set is E = E1 ∪ E2 where E1 = (0, 3.7] and E2 = [4.4, 5)

and repelling set is R = (3.7, 4.4).
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Another representation of equilibrium sets can be given by iteratively computing the sequence
{λi}i≥0 as

λi+1 = f(λi), with λ0 ∈ (0,m)

If these {λi}i≥0 iterates converge to a point, then we conclude that an equilibrium point exists, other-
wise an equilibrium set exists. We illustrate the existence of equilibrium sets or equilibrium point in
most of the examples in terms of these iterates {λi}i≥0.

3 Equilibrium sets forM/M/1 queue,D/M/1 queue, and queues
with discrete arrival rate distribution

In this section, we give characterization of QoS measures L and L1, investigate various causes of
equilibrium sets, including the role of multiple revenue optimal policies and change of support of
arrival rate, and present numerous examples illustrating various types of equilibrium sets. Before
that we briefly present the relevant MDP formulation of the admission control of GI/M/1 queue
(discounted and average cost criteria cases) (5).

3.1 Discounted cost model

Let {Tn} be a sequence of iid random variables representing time between the arrival of nth and
(n−1)th customer to the queue, with distribution function F (·). Also, N(t) be the number of service
completions in a period of length t. Now, if α is the rate at which rewards and costs are discounted
continuously, then the expected discounted holding cost, c(s) can be obtained as follows (3):

c(s) = E

{∫ T1

0

e−αth((s−N(t))+)dt

}
If {xπn;n ≥ 0} is the embedded Markov chain of the semi-Markov process recording the number in
the queue under the policy π = (δ0, δ1, . . .), then the infinite horizon expected reward of this policy
is given by

vπα(s) = Eπ
s

{
∞∑
n=0

exp

(
−α

n∑
i=1

Ti

)
[rδn(xπn)− c(xπn + δn(xπn))]

}
(4)

where Eπ
s is the expected value with respect to the process determined by π and xs0 = s. Using

optimal policy of control limit type, the infinite horizon expected reward is,

vRλα (s) =


r − c(s+ 1) +

s∑
j=0

Pjv
Rλ
α (s+ 1− j) + qs+1v

Rλ
α (0), s < Rλ

−c(s) +
s−1∑
j=0

Pjv
Rλ
α (s− j) + qsv

Rλ
α (0), s ≥ Rλ.

(5)

where, Pj =

∞∫
0

e−αt
e−µt(µt)j

j!
dF (t) and qj =

∞∑
k=j

Pk.
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Admission control inGI/M/1 queues is explored in detail by Van Nunen and Puterman (3). They
exploited the special structure of such a queue to develop an efficient algorithm which calculates
optimal control limit, R∗λ and we use it. However, we observe some minor typos in expressions of
aRλ and bRλ given in (3). The correct expressions are as follows,

aRλ = P−1
0

[
1− P1 −

Rλ−1∑
k=1

Pk+1

k∏
i=1

aRλ−i

− qRλ+1

Rλ∏
i=1

ai−1

]

bRλ = P−1
0

[
r − c(Rλ + 1) +

Rλ∑
j=2

Pj
[ j∑
k=2

bRλ+1−k
j∏
i=k

aRλ+1−j

]
+ qRλ+1

[ Rλ−1∑
j=0

bj
j∏
i=0

ai

]]

3.2 Average cost model

To calculate the control limit for average case, we consider the model described in Chapter 11 of
(5). Let vRλα be the expected infinite horizon total discounted reward and vRλt (s) be the expected total
reward up to time t starting in state s, when the policy is Rλ. Then, we define expected long run
average reward gRλ for this policy as,

gRλ = lim
α→0

αvR
λ

α (s) = lim
t→∞

1

t
vRλt (s)

This gRλ can be found by solving Equation 13 in (6). However, limits of summation should be
changed and one more equation is needed in addition to system of equation as,

wRλ(s) =


r − c(s+ 1)− gRλy +

s∑
j=0

PjwRλ(s+ 1− j) + qs+1wRλ(0) 0 ≤ s ≤ Rλ−1

−c(s)− gRλy +
s−1∑
j=0

PjwRλ(s− j) + qswRλ(0) s = Rλ.
(6)

where y denotes the expected length of time until the next decision epoch i.e. inter-arrival time. This
is same as Equation 11.4.13 in (5).

In line with the model, wRλ(0) = 0 and c(s) and Pj are as defined by Van Nunen and Puterman
(3) with α = 0. Theorem 2 in (6) states that if R∗λ is the largest average optimal control limit, gRλ

is monotone non-decreasing in Rλ for Rλ < R∗λ and monotone non-increasing in Rλ for Rλ > R∗λ.
We solve Equation 6 for each Rλ and plot gRλ . The optimal control limit R∗λ is the control limit for
which gRλ achieves maximum value. This method has been used to compute the control limit for all
3 types of queues considered in this paper.

Remark 2. We showed earlier that the state space can be considered as finite and hence Blackwell
Optimality (5) holds. Thus, the optimal control limit for average reward can be obtained via Van
Nunen and Puterman algorithm by using very low discounting factor. However, finding the low
enough discounting factor for which Blackwell optimality holds can be a cumbersome process.
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3.3 QoS measures for GI/M/1 queues

In this section, we define and give details for computing the quality of service measures for GI/M/1

queues under admission control.

3.3.1 QoS measures for M/M/1 queues

In case of Poisson arrivals, the stationary probability that system has n customers when R∗λ is the
control limit is given as follows :

πR∗λ(n) =


(1−ρ)ρn

1−ρn+1 ρ 6= 1

1
n+1

ρ = 1
n = 0, 1, 2, . . . , R∗λ (7)

Since the inter-arrival time is exponential, we use Poisson Arrivals See Time Averages (PASTA) (13)
to calculate the probability that arriving customer sees the R∗λ customers in the system. Thus, the two
QoS measures can be defined as follows:

• Fraction of customers lost L(λ,R∗λ) =


(1−ρ)ρR

∗
λ

(1−ρR
∗
λ
+1

)
if ρ 6= 1

1
R∗λ+1

if ρ = 1
.

• Rate of customers lost L1(λ,R∗λ) =


λ(1−ρ)ρR

∗
λ

(1−ρR
∗
λ
+1

)
if ρ 6= 1

λ
R∗λ+1

if ρ = 1
.

3.3.2 QoS measures for queues with deterministic and discrete support of the arrival rate
distribution

The average expected reward gRλ can be used to derive a system of linear equations whose solution
is the QoS for queues with non-Poisson arrivals and exponential service times as given in the proof
in Appendix A.2.

Theorem 4. If g̃Rλ is the solution of following system of equations,

wRλ(s) =


1− gRλy +

s∑
j=0

PjwRλ(s+ 1− j) + qs+1wRλ(0) 0 ≤ s ≤ Rλ − 1

−gRλy +
s−1∑
j=0

PjwRλ(s− j) + qswRλ(0) s = Rλ.
(8)

where Rλ is control limit and y is expected inter-arrival time, then the QoS measures experienced by
the user-set are,

L(λ,Rλ) = (1− g̃Rλy) and L1(λ,Rλ) = λ× (1− g̃Rλy)
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3.4 Multiple optimal control limits in admission controlled GI/M/1 queues

When the optimal control limit changes, there is a discontinuity in QoS measures of GI/M/1 queue.
Due to the piecewise continuous nature of QoS, there could be possibly multiple optimal solutions
(control limits) at the points of discontinuity of f(·).

From the nature of the solution of the system of equations in (5), we have this result whose proof
is in Appendix B.1,

Theorem 5. Assuming that there exists a unique optimal discounted control limit at λ0 and the value
vector vRλα is continuous at λ0, there exists an open interval around λ0 and the optimal control limit
for all arrival rates in this interval is unique and is same as that of at λ0.

Now, we show the existence of multiple optimal control limits for an admission controlledGI/M/1

queue under discounted cost criteria; we defer the proof to Appendix B.2.

Theorem 6. Given two intervals (λ1, λ2) and (λ2, λ3) with unique optimal discounted control limits
R∗λ and R̃∗λ and that the value vector vRλα is continuous at λ2, multiple optimal control limits at λ2 are
R∗λ and R̃∗λ (possibly along with others).

Remark 3. The above results hold for average cost criteria as the proof of Theorem 5 and 6 can be
replicated for average cost criteria by replacing vR

∗
λ

α with gR
∗
λ; assuming gR

∗
λ is a continuous function

of λ.

Remark 4. In case of queues with discrete support of arrival rates, there could be discontinuity in
the value vector vRλα and gRλ when the support changes. Hence, Theorem 5 and 6 will not be valid for
the arrival rate (λ̃2) at end point of the intervals ( (λ̃1, λ̃2] and (λ̃2, λ̃3]) generated using two different
supports ({1, k, k+ 1} and {1, k+ 1, k+ 2}); more details in Section 3.7 and illustration in Example
8.

Remark 5. Puterman and Thomas (6) showed in Corollary 3 that for a admission controlledGI/M/1

queue using discounted cost criteria, the multiple optimal control limits necessarily occur consecu-
tively. Haviv and Puterman (7) showed that for M/M/1 queue under average cost criteria model,
at a point λ there can exist only two multiple optimal control limits and they are consecutive integers
R∗λ and R∗λ + 1; this leads to the theme of sensitive optimality criteria, (5). On the other hand, the
above relates the optimal control limits over adjacent intervals to the multiple optimal control limit
at the common point of these intervals.

An interpretation of multiple optimal control limits can also be given in terms of value vectors.
The control limit Rλ and Rλ − 1 can be optimal simultaneously if admitting one more customer is
not changing the value vector. This observation leads to the following result whose proof is given in
Appendix B.3; all components of the vectors need not be compared.

Theorem 7. For an admission controlled GI/M/1 queue under discounted cost criteria, the condi-
tion

vRλα (0) = vRλ+1
α (0)

is sufficient for checking the existence of multiple optimal control limits.
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Using closed form expression for vRλα (0) in case of M/M/1 queue, Theorem 7 can be used to
develop methods for calculating λ when R∗λ = 1, 2 with discounted reward criterion. Details of these
methods are given in Appendix B. They have also been used in Example 2.

3.5 Equilibrium Sets: M/M/1 queues

In this section, we show that for a M/M/1 queue with same costs and parameters and among QoS
measure (L and L1) and cost criteria (discounted and average), changing the cost criteria while fixing
the QoS measure (and vice versa), leads to a change in equilibrium behaviour. Also, we show that
the equilibrium set in M/M/1 queue are due to multiple optima.

Example 1 (M/M/1 queue, QoS measure L, Discounted vs Average cost criteria). For M/M/1

queue with QoS measure L, using average cost criteria can give rise to equilibrium set whereas
discounted cost criteria can give rise to equilibrium point. This difference can be seen in Figure 4 for
system costs and parameters as h = 25, r = 10, µ = 10, α = 0.5, m = 4.7 and e = 5.

Using Theorem 7, it was observed that at λ = 4.1578 there exist multiple optimal control limits 3

and 2 and l0 = 4.1578 defined in Definition 1 (see Figure 3 also).

(a) (b)

Figure 4: For a M/M/1 queue with costs and parameters as given in Example 1 and QoS measure
L : (a) Use of average cost criteria leads to equilibrium set E = E1 ∪ E2 where E1 = (0, 4.157461]

and E2 = [4.49077, 4.7) and repelling set R = (4.157461, 4.49077) when l0 = 4.1578, (b) Use of
discounted cost criteria leads to equilibrium point at λ = 4.446021.

Example 2 (M/M/1 queue, Discounted cost criteria, QoS measure L vs L1). For M/M/1 queue
with discounted cost criteria, using QoS measure L can give rise to equilibrium set whereas QoS

13



measure L1 can give rise to equilibrium point. This difference in equilibrium behaviour can be
seen in Figure 5 for system costs and parameters as h = 1, r = 0.4, µ = 5.5, α = 0.54, m = 5 and
e = 4.97.

In this example, the equilibrium set is due to multiple optimal control limits defined in Section 3.4.
The control limits Rλ = 1, 2 are both optimal at λ = 3.89 which is l0 as in Definition 1 (see Figure
3 also). That this particular λ is indeed a point of multiple optima has been verified in Appendix
Section B.4 where the methods to compute the point of multiple optima are given.

(a) (b)

Figure 5: For a M/M/1 queue with costs and parameters as given in Example 2 and discounted
cost criteria: (a) QoS measure L leads to equilibrium set E = E1 ∪ E2 where E1 = (0, 3.7] and
E2 = [4.4, 5) and repelling set is R = (3.7, 4.4), (b) QoS measure L1 leads to equilibrium point at
λ = 2.857543.

We now have the following result whose proof is deferred to Appendix C.

Theorem 8. For an admission controlled M/M/1 queue, the equilibrium sets arise due to multiple
optimal control limits irrespective of the cost criteria (discounted or average) and QoS measure (L
or L1).

Remark 6. As mentioned above, such multiple control limits are consecutive integers; however,
equilibrium sets in some GI/M/1 queues that we consider below are such that the control limits to
the left and right of discontinuity point need not be consecutive integers (see Example 8).

In the subsequent sections, we consider the arrival distribution to be deterministic and also gen-
eralize it to a specific discrete support distribution.

3.6 Equilibrium sets: D/M/1 queue

In this section we observe a queue where, customers follow deterministic arrival rate i.e., one ar-
rival every 1

λ
time units. Here, each λ real is the support (i.e., the support is singleton). In case of

14



discounted cost criteria, Van Nunen and Puterman algorithm is used for calculating the control limit
with expected holding cost c(s) as given below :

c(s) =

∫ 1
λ

0

e−αt
s−1∑
k=0

h(s− k)
e−µt(µt)k

k!
dt

In case of average cost criteria, we use the same method as given in Section 3.2 after making appro-
priate changes in c(s). Figure 6, 7, 8, 9 illustrates the monotonic nature of QoS in case of discounted
and average cost criteria.

(a) (b)

Figure 6: QoS measure L, is monotonically increasing for aD/M/1 queue with costs and parameters
as : (a) h = 25, r = 20, µ = 15.5, α = 0.7 in discounted settings, (b) h = 15, r = 5, µ = 12 in
average settings.

(a) (b)

Figure 7: QoS measure L, is monotonically increasing for aD/M/1 queue with costs and parameters
as : (a) h = 25, r = 10, µ = 7.5, α = 0.0001 in discounted settings, (b) h = 25, r = 20, µ = 15.5 in
average settings.

Following examples give an insight in the change in equilibrium behaviour due to change in cost
criteria and change in QoS measure.

Example 3 (D/M/1 queue, QoS measure L1, Discounted vs Average cost criteria). For D/M/1

queue with QoS measure L1, using average cost criteria can give rise to equilibrium point whereas
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(a) (b)

Figure 8: QoS measure L, is monotonically increasing for aD/M/1 queue with costs and parameters
as : (a) h = 15, r = 5, µ = 12, α = 0.2 in discounted settings, (b) h = 30, r = 30, µ = 21 in average
settings.

(a) (b)

Figure 9: QoS measure L, is monotonically increasing for aD/M/1 queue with costs and parameters
as : (a) h = 30, r = 30, µ = 21, α = 0.0001 in discounted settings, (b) h = 25, r = 10, µ = 7.5 in
average settings.
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discounted cost criteria can give rise to equilibrium set. This difference can be seen in Figure 10 for
system costs and parameters h = 15, r = 5, µ = 12, α = 0.68, m = 8 and e = 2.

Using Theorem 7, we conclude that at λ = 7.49299 there exists multiple optimal control limits 3

and 2 which leads to equilibrium sets and l0 = 7.49299 as defined in Definition 1 (Figure 3).

(a) (b)

Figure 10: For a D/M/1 queue with costs and parameters as given in Example 3 and QoS measure
L1: (a) Use of discounted cost criteria leads to equilibrium set E = E1 ∪ E2 where E1 = (0, 7.204]

and E2 = [7.84, 8) and repelling set R = (7.20, 7.84), (b) Use of average cost criteria leads to
equilibrium point at λ = 7.345.

Example 4 (D/M/1 queue, Discounted cost criteria, QoS measure L vs L1). For D/M/1 queue
with discounted cost criteria, using QoS measure L1 can give rise to equilibrium set whereas using
QoS measure L can give rise to equilibrium point. This difference is depicted in Figure 11 for system
costs and parameters as h = 5, r = 3, µ = 7.5, α = 0.8, m = 8.8 and e = 1.

Using Theorem 7, we conclude that at λ = 7.70146 there exists multiple optimal control limits 3

and 2 which leads to equilibrium set with l0 = 7.70146.

Using the same arguments as in the proof of Theorem 8, we have the following result:

Theorem 9. For an admission controlled D/M/1 queue, the equilibrium sets can arise due to mul-
tiple optimal control limits irrespective of the cost criteria (discounted or average) and QoS measure
(L or L1).

3.7 Equilibrium sets: Discrete arrival distribution

In this section, we consider the case when number of customers arrived per unit time follow a discrete
distribution of the form given below:

G(·) =


u1 when arrival rate is λ1

u2 when arrival rate is λ2

u3 when arrival rate is λ3
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(a) (b)

Figure 11: For a D/M/1 queue with costs and parameters as given in Example 4 and discounted
cost criteria: (a) QoS measure L1 leads to equilibrium set E = E1 ∪ E2 where E1 = (0, 7.35] and
E2 = [8.05, 8.8) and repelling set R = (7.35, 8.05), (b) QoS measure L leads to equilibrium point at
λ = 8.554.

where G(·) is the probability mass function of random variable denoting number of arrivals per unit
time. Using a specific choice of probabilities {ui}3

1 and support set {λi}3
1 we make sure that the

arrival rate λ is locally continuous over (0,m). The details to generate such arrival rates, along with
an example, are given in Appendix D. In case of discounted cost criteria, Van Nunen and Puterman
algorithm is used for calculating the control limit with c(s) as given below :

c(s) =
3∑
i=1

ui

∫ 1
λi

0

e−αt
s−1∑
k=0

h(s− k)
e−µt(µt)k

k!
dt

To compute the optimal control limit for average cost criteria, we use the method as given in Section
3.2 after making appropriate changes in c(s).

Optimal control limit was seen to be non-monotonic with respect to λ as can be seen in Table 1.
Due to this, QoS measures L and L1 are also non-monotonic with respect to λ (Example 5 and 6).
Hence, we cannot assume that A1 holds; however, equilibrium sets given in Definition 1 can exist as
in Example 7 and 8. Also, the equilibrium behaviour for these queues can be quite complicated; see
Section 3.7.2.

Example 5 (Discrete support, QoS measure L, Discounted cost criteria, Non-monotonic nature).
For a queue with discrete arrival rate distribution, using discounted cost criteria, the optimal control
limit and the QoS measure L are not monotonic w.r.t. λ, as shown in Figure 12 for system cost and
parameters as h = 35, r = 15, µ = 10.5, α = 0.65.

Example 6 (Discrete support, QoS measure L, Average cost criteria, Non-monotonic nature).
For a queue with discrete arrival rate distribution, using average cost criteria, the optimal control
limit and the QoS measure L are not monotonic w.r.t. λ, as shown in Figure 13 for system cost and
parameters as h = 25, r = 35, µ = 9.
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(a) (b)

Figure 12: For a discrete arrival rate distribution queue with costs and parameters as given in Example
5 and discounted cost criteria (a) shows non-monotonic nature of optimal control limit and (b) shows
non-monotonic nature QoS measure L.

(a) (b)

Figure 13: For a discrete arrival rate distribution queue with costs and parameters as given in Example
6 and average cost criteria (a) shows non-monotonic nature of optimal control limit and (b) shows
non-monotonic nature QoS measure L.
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3.7.1 Numerical examples for queues with discrete arrival rate distribution

Example 7 (Discrete support, Discounted cost criteria, QoS measure L vs L1). For a queue with
discrete arrival rate distribution with discounted cost criteria, QoS measure L1 leads equilibrium set
E = E1∪E2 whereas using QoS measure L makes the λ iterates to converge to a unique equilibrium
point. This difference can be seen in Figure 14 for system costs and parameters as h = 5, r = 3,
µ = 10, α = 0.9, m = 10.71 and e = 5.

Also, from Figure 15 we identify the equilibrium set E = E1 ∪ E2 where E1 = (2.85, 10.569]

and E2 = [10.644, 10.71) and repelling set R = (10.569, 10.644). We observe that this equilibrium
set is due to multiple optimal control limit. However, there is a change of support from {1, 16, 17}
to {2, 17, 18} at this point as seen in Table 1. At l0 ∈ R, there is downward discontinuity in f(λ)

due to multiple optimal control limits 7 and 6. Also, we have observed that change in support leads
to upward discontinuity in f(λ). In this example, at l0, overall effect of multiple optimal control
limits and change in support has a downward discontinuity; leading to existence of equilibrium set
consistent with Definition 1.

(a) (b)

Figure 14: For a queue with costs and parameters as given in Example 7 and discrete arrival distri-
bution with discounted cost criteria: (a) QoS measure L1 leads to an equilibrium set E = E1 ∪ E2

where E1 = (2.85, 10.569] and E2 = [10.644, 10.71) and repelling set R = (10.569, 10.644), (b)
QoS measure L leads to an equilibrium point 10.6965.

Example 8 (Discrete support, Average cost criteria, QoS measure L vs L1). For a queue with
discrete arrival rate distribution with average cost criteria, QoS measure L1 can give rise to an
equilibrium set E = E1 ∪ E2 whereas QoS measure L can give rise to an equilibrium point. The
above difference can be seen in Figure 16 for system costs and parameters as h = 25, r = 35, µ = 9,
m = 10.65 and e = 9.

Also, from Figure 17 we identify the equilibrium set E = E1 ∪ E2 where E1 = (2.85, 10.5089],
E2 = [10.6254, 10.65), and repelling set R = (10.5089, 10.6254). There is also a change of support
from {1, 16, 17} to {2, 17, 18} at λ = 10.6 as seen in Table 1.
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(a) (b)

Figure 15: For a queue with costs and parameters as given in Example 7 and discounted cost criteria
: (a) f(λ, L1) vs λ shows that the equilibrium set is E = E1 ∪ E2 where E1 = (2.85, 10.569] and
E2 = [10.644, 10.71) and repelling set is R = (10.569, 10.644) (b) f(λ, L) vs λ shows that the
equilibrium point is 10.6965.

Another observation in this example is that the control limit for two consecutive intervals is not
consecutive (for λ ∈ (10.375, 10.6], R∗λ = 10 and for λ ∈ (10.6, 11.136], R∗λ = 8); for an average
cost criteria M/M/1 queue Haviv and Puterman (7) show that there can be at most two optimal con-
trol limits. This behaviour of optimal policies (control limit) can be attributed to change in support.

(a) (b)

Figure 16: For a queue with costs and parameters as given in Example 8 and discrete arrival distri-
bution with average cost criteria: (a) QoS measure L1 leads to equilibrium set E = E1 ∪ E2 where
E1 = (2.85, 10.5089], E2 = [10.6254, 10.65), and R = (10.5089, 10.6254) (b) QoS measure L leads
to a unique equilibrium point 10.63667.

Example 9 (Discrete support, Discounted cost criteria, QoS measure L vs L1). For a queue with
discrete arrival rate distribution with discounted cost criteria, using QoS measure L1 leads to some
notion of equilibrium set depending upon the initial λ whereas using QoS measure L makes the λ
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(a) (b)

Figure 17: For a queue with costs and parameters as given in Example 8 and average cost criteria:
(a) f(λ, L1) vs λ shows that the equilibrium set E = E1 ∪ E2 where E1 = (2.85, 10.5089], E2 =

[10.6254, 10.65), and repelling set is R = (10.5089, 10.6254), (b) f(λ, L) against λ shows that the
equilibrium point is 10.63677.

iterates to converge to a unique equilibrium point. This difference can be seen in Figure 18 for
system costs and parameters as h = 25, r = 10, µ = 7.5, α = 1.3, m = 14 and e = 9.

Even though A1 does not hold, we can still identify equilibrium set E = E1 ∪ E2 where E1 =

(2.85, 6.775] and E2 = [11.69, 14) which are consistent with Definition 1. Instead of repelling set R
in between them as in M/M/1 and D/M/1 queues, there exists an invariant/equilibrium set E0 =

(6.775, 11.69) around an equilibrium point 8.7157. Also, it was observed that initial value of λ plays
an important role in deciding which regime of λ the system is going to remain in. We also plot f(·)
(with QoS measure L1 and L), against λ in Figure 19 for this example. It can be clearly seen from
Figure 19 (a), that the non-monotonic nature of f(·) caused due to change in support of arrival rate
leads to equilibrium sets E and E0.

Example 10 (Discrete support, Average cost criteria, QoS measure L vs L1). For a queue with
discrete arrival rate distribution with average cost criteria, using QoS measure L1 leads to some
notion of equilibrium set depending upon the initial λ whereas QoS measure L can give rise to
equilibrium point. The above difference can be seen in Figure 20 for system costs and parameters as
h = 35, r = 15, µ = 10.6, m = 14 and e = 10.

From (a) of Figure 21, we see that assumption A1 does not hold. We evaluated f(λ, L1) over
(2.86, 16.5) in increments of 0.2 and it was noted that for λ ∈ (2.85, 7.21], f(λ) ∈ [11.725, 14]

and vice versa. This has been shown in Table 2. So, we can identify equilibrium set E = E1 ∪ E2

where E1 = (0, 7.21] and E2 = [11.725, 14]. Also, there exist an invariant/equilibrium set E0 =

(7.21, 11.275) around an equilibrium point 9.158178. From Table 1 we can see that for this GI/M/1

queue, the control limit is constant; so, the equilibrium sets are due to change in the support.

Example 11 (Discrete support, Discounted cost criteria, QoS measure L vs L1). For a queue with
discrete arrival rate distribution with discounted cost criteria, using QoS measure L makes the λ
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(a) (b)

(c)

Figure 18: For a queue with costs and parameters as given in Example 9 and discrete rate arrival
distribution with discounted cost criteria: (a) QoS measure L1 leads to toggling of iterates between
E1 = (2.85, 6.775] and E2 = [11.69, 14) when the initial λ0 ∈ E1 or λ0 ∈ E2 (b) QoS measure
L1 leads to non convergent iterates of λ if initial λ0 ∈ E0 := (6.775, 11.69); E0 is an equilib-
rium/invariant set (c) QoS measure L leads to a unique equilibrium point 13.2606.
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(a) (b)

Figure 19: For a queue with costs and parameters as given in Example 9 and discounted cost criteria
: (a) f(λ, L1) vs λ shows that the equilibrium sets are E = E1 ∪ E2 where E1 = (2.85, 6.775]

and E2 = [11.69, 14) and E0 = (6.775, 11.69)(b) f(λ, L) vs λ shows that the equilibrium point is
13.2606.

iterates to converge to a unique equilibrium point whereas using QoS measure L1 leads to multiple
(4) equilibrium points depending upon the initial λ. This difference can be seen in Figure 22 for
system costs and parameters as h = 35, r = 15, µ = 10.5, α = 0.68, m = 14 and e = 18.

It can be observed from Figure 23 that assumption A1 does not hold for this example. However
as seen in Table 1, increase in control limit from 3 to 4 (multiple optimal control limits) when support
changes from {1, 10, 11} to {1, 11, 12} induces a non monotonicity in f along with discontinuity.
There are non monotonicities in f later also due to change in support. This leads to more than
one equilibrium point and no equilibrium set. However, as can be seen in Figure 22, there exist set
Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ3 where Ẽ1 = [10.40991425, 10.42658945], Ẽ2 = [10.58613254, 10.62989617] and
Ẽ3 = [10.87676771, 10.90933302] such that the sequence {λi}i≥0 lies in Ẽ1, Ẽ2 and Ẽ3 infinitely
often respectively. These have been verified by starting from different initial values of λ. We also
have a set R̃ = (0,m) \ Ẽ such that if λ ∈ R̃ then fn(λ) ∈ Ẽ for some finite n. A general framework
for this behaviour has been given in Section 3.7.2.

Example 12 (Discrete support, Discounted cost criteria, QoS measure L vs L1). For a queue with
discrete arrival rate distribution with discounted cost criteria, using QoS measure L makes the λ
iterates to converge to a unique equilibrium point whereas using QoS measure L1 leads to neither an
equilibrium point nor an equilibrium set. This difference can be seen in Figure 24 for system costs
and parameters as h = 5, r = 3, µ = 6, α = 0.9, m = 14 and e = 5.

Clearly, from Figure 25 there does not exist an equilibrium point. Even though the discontinuity
in the f which decides the equilibrium behaviour is due to multiple optimal control limit, there does
not exist the equilibrium set as defined in Section 2.1.

However, there exist set Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ3 where Ẽ1 = [7.713797269, 8.037336962], Ẽ2 =

[9.828436485, 10.1945525] and Ẽ3 = [11.56635919, 11.89060517] such that the sequence {λ}i≥0
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(a) (b)

(c)

Figure 20: For a queue with costs and parameters as given in Example 10 and discrete arrival
distribution with average cost criteria:(a) QoS measure L1 leads to toggling of iterates between
E1 = (2.85, 7.21] and E2 = [11.725, 14) when the initial λ0 ∈ E1 or λ0 ∈ E2 (b) QoS measure
L1 leads to non convergent iterates of λ if initial λ0 ∈ E0 := (7.21, 11.725); E0 is an equilib-
rium/invariant set, (c) QoS measure L leads to a unique equilibrium point 13.317.
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(a) (b)

Figure 21: For a queue with costs and parameters as given in Example 10 and average cost criteria:
(a) f(λ, L1) vs λ shows that the equilibrium sets are E = E1 ∪ E2 where E1 = (2.85, 7.21] and
E2 = [11.725, 14) and E0 = (7.21, 11.725), (b) f(λ, L) against λ shows that the equilibrium point is
13.317.

(a) (b)

Figure 22: For a queue with costs and parameters as given in Example 11 and discrete arrival
rate distribution with discounted cost criteria: (a) QoS measure L1 leads to 4 equilibrium points
8.3998, 10.3489, 10.5223 and 10.7666 along with set Ẽ and R̃ as given the description of example.
(b) QoS measure L leads to a unique equilibrium point 13.4521.
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S. no
Discrete
support

Arrival rate
intervals

R∗λ,dc
(Ex 7)

R∗λ,av
(Ex 8)

R∗λ,dc
(Ex 9)

R∗λ,av
(Ex 10)

R∗λ,dc
(Ex 11)

R∗λ,dc
(Ex 12)

1 1, 3, 4 (2.85, 3.775] 7, 6 9, 8 3 3 4 4, 3
2 1, 4, 5 (3.775, 4.6] 6 8, 7 3 3 4 3
3 1, 5, 6 (4.6, 5.375] 6 8, 7 3 3 4, 3 3
4 1, 6, 7 (5.375, 6.1] 6 7 3 3 3 3
5 1, 7, 8 (6.1, 6.775] 6 8 3 3 3 3
6 1, 8, 9 (6.775, 7.4] 6 8 3 3 3 3
7 1,9, 10 (7.4, 7.975] 6 8 3 3 3 3
8 1, 10, 11 (7.975, 8.5] 6 9 3 3 3 4
9 1, 11, 12 (8.5, 8.975] 7 9 3 3 4 4

10 1, 12, 13 (8.975, 9.4] 6 9 3 3 4 4
11 1, 13, 14 (9.4, 9.775] 6 9 3 3 4 4
12 1, 14, 15 (9.775, 10.1] 6 9 3 3 4 4
13 1, 15,16 (10.1, 10.375] 6 10 3 3 4 4
14 1, 16, 17 (10.375, 10.6] 7 10 3 3 4 3
15 2, 17, 18 (10.6, 11.136] 6 8 3 3 4 3
16 2, 18, 19 (11.136, 11.69] 6 8 3 3 4 3
17 2, 19, 20 (11.69, 12.26] 6 8 3 3 4 3
18 2, 20, 21 (12.26, 12.83] 6 8 3 3 4 3
19 2, 21, 22 (12.83, 13.4] 6 8 3 3 4 3
20 2, 22, 23 (13.4, 13.97] 6 8 3 3 4 3
21 2, 23, 24 (13.97, 14.54] 6 8 3 3 4 3
22 2, 24, 25 (14.54, 15.11] 6 8 3 3 4 3
23 2, 25, 26 (15.11, 15.68] 6 8 3 3 4 3
24 2, 26, 27 (15.68, 16.25] 6 8 3 3 4 3
25 2, 27, 28 (16.25, 16.82] 6 8 3 3 4 3, 4
26 2, 28, 29 (16.82, 17.39] 6 8 3 3 4 4

Table 1: For a queue with discrete support arrival rate distribution, the change of control limit R∗λ,dc
(under discounted cost criteria) and R∗λ,av (under average cost criteria), can be seen when the support
of the arrival rate changes. The text in italics represents the support and corresponding optimal control
limit which affects the equilibrium behaviour.

lies in Ẽ1, Ẽ2 and Ẽ3 infinitely often respectively. The boundaries of these sets have been identified
by running the experiment with different initial value of λ0 = 2.86, 8.1, 12.5. This can be seen in
Table 3. We also have R̃ = (0,m) \ Ẽ such that if λ ∈ R̃ then fn(λ) ∈ Ẽ for some finite n. We give
a general definition of these sets; generalized equilibrium sets, in the next subsection.
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S. no λ1 ∈ E1 f(λ1) ∈ E2 λ2 ∈ E2 f(λ2) ∈ E1 λ3 ∈ E0 f(λ3) ∈ E0

1 2.86 13.99927 11.86 7.12060 7.66 11.27339
2 3.16 13.99738 12.01 6.90093 7.81 11.02076
3 3.46 13.99310 12.16 6.67658 7.96 10.75087
4 4.21 13.95209 12.31 6.45113 8.11 10.62847
5 4.36 13.93498 12.46 6.22849 8.41 10.08194
6 4.96 13.80563 12.61 6.00152 8.56 10.00251
7 5.56 13.54276 12.76 5.77015 8.86 9.44557
8 5.71 13.45401 12.91 5.54000 9.16 9.15480
9 6.01 13.23576 13.06 5.31065 9.46 8.92531
10 6.16 13.10622 13.21 5.07723 9.91 8.51220
11 6.31 12.97141 13.36 4.83970 10.21 8.43798
12 6.46 12.82123 13.51 4.60552 10.81 8.59103
13 6.91 12.31042 13.66 4.37022 10.96 8.38316
14 7.06 12.11367 13.81 4.13111 11.11 8.16985
15 7.21 11.89977 13.96 3.88815 11.26 7.98328

Table 2: For a queue with costs and parameters as given in Example 10 and discrete arrival distribu-
tion with average cost criteria QoS measure L1 leads to toggling of iterates betweenE1 = (2.85, 7.21]

and E2 = [11.725, 14) when the initial λ0 ∈ E1 or λ0 ∈ E2 and non convergent iterates of λ if initial
λ0 ∈ E0 := (7.21, 11.725); E0 is an equilibrium/invariant set,

(a) (b)

Figure 23: For a queue with costs and parameters as given in Example 11 and discounted cost criteria
: (a) f(λ, L1) vs λ shows that the there is no equilibrium set but 4 equilibrium points and generalized
equilibrium sets as defined in Section 3.7.2 (b) f(λ, L) vs λ shows that the unique equilibrium point
is 13.4521.
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iterate
no.

λ f(λ) λ f(λ) λ f(λ)

1 2.86000 13.99784 8.10000 11.83537 12.50000 7.09862
2 13.99784 5.55645 11.83537 7.76871 7.09862 10.89012
3 5.55645 12.67555 7.76871 10.11148 10.89012 8.68614
4 12.67555 6.91956 10.11148 11.70007 8.68614 11.56079
5 6.91956 11.14559 11.70007 7.90198 11.56079 8.04296
6 11.14559 8.45244 7.90198 9.90459 8.04296 11.88569
7 8.45244 11.50473 9.90459 11.51706 11.88569 7.71869
8 11.50473 8.09930 11.51706 8.08693 7.71869 10.18720
9 8.09930 11.83599 8.08693 11.84697 10.18720 11.65693
10 11.83599 7.76809 11.84697 7.75720 11.65693 7.94555
11 7.76809 10.11243 7.75720 10.12900 7.94555 9.83531
12 10.11243 11.69953 10.12900 11.69013 9.83531 11.56194
13 11.69953 7.90250 11.69013 7.91169 11.56194 8.04179
14 7.90250 9.90376 7.91169 9.88922 8.04179 11.88671
15 9.90376 11.51760 9.88922 11.52707 11.88671 7.71768
16 11.51760 8.08639 11.52707 8.07689 7.71768 10.18872
17 8.08639 11.84745 8.07689 11.85586 10.18872 11.65606
18 11.84745 7.75672 11.85586 7.74837 11.65606 7.94644
19 7.75672 10.12972 7.74837 10.14240 7.94644 9.83389
20 10.12972 11.68972 10.14240 11.68252 9.83389 11.56285
21 11.68972 7.91210 11.68252 7.91946 11.56285 8.04087
22 7.91210 9.88856 7.91946 9.87689 8.04087 11.88752
23 9.88856 11.52750 9.87689 11.53508 11.88752 7.71687
24 11.52750 8.07646 11.53508 8.06884 7.71687 10.18993
25 8.07646 11.85624 8.06884 11.86297 10.18993 11.65536
26 11.85624 7.74799 11.86297 7.74131 11.65536 7.94715
27 7.74799 10.14297 7.74131 10.15309 7.94715 9.83276
28 10.14297 11.68219 10.15309 11.67643 9.83276 11.56358
29 11.68219 7.91979 11.67643 7.92567 11.56358 8.04014
30 7.91979 9.87636 7.92567 9.86701 8.04014 11.88816
31 9.87636 11.53542 9.86701 11.54147 11.88816 7.71624
32 11.53542 8.06850 11.54147 8.06240 7.71624 10.19089
33 8.06850 11.86327 8.06240 11.86863 10.19089 11.65481
34 11.86327 7.74101 11.86863 7.73567 11.65481 7.94771
35 7.74101 10.15354 7.73567 10.16161 7.94771 9.83186
36 10.15354 11.67617 10.16161 11.67157 9.83186 11.56416
37 11.67617 7.92594 11.67157 7.93063 11.56416 8.03956
38 7.92594 9.86659 7.93063 9.85912 8.03956 11.88866

Table 3: For a queue with costs and parameters as given in Example 12 and discounted cost criteria
with QoS measure L1, the above table of iterations λi+1 = f(λi) shows that there are no equilibrium
points but the iterates toggle between some intervals (generalized equilibrium sets defined in Section
3.7.2)
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(a) (b)

Figure 24: For a queue with costs and parameters as given in Example 12 and discrete arrival dis-
tribution with discounted cost criteria: (a) QoS measure L1 leads to neither an equilibrium set nor
an equilibrium point but generalized equilibrium sets as defined in Section 3.7.2, (b) QoS measure L
leads to an equilibrium point 13.41553.

(a) (b)

Figure 25: For a queue with costs and parameters as given in Example 12 and discounted cost criteria :
(a) f(λ, L1) vs λ shows that there is no equilibrium point due to discontinuity; there exists generalized
equilibrium sets (Section 3.7.2) (b) f(λ, L) vs λ shows that the equilibrium point is 13.41553.
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3.7.2 Generalized equilibrium sets and assumption Ã1

We first summarize some salient features of the above examples. These lead to relaxed notions of
equilibrium sets and assumption A1 which we also discuss in detail.

In the last subsection, we saw that the definition of equilibrium set as given in Section 2.1 is not
always valid in case of queues where arrivals have a particular form of discrete distribution because
of the violation of assumption A1.

It was observed that there exist an equilibrium point when QoS measure L is used irrespective of
the cost criteria. This might be attributed to the reason that L is a contraction mapping. This has been
shown empirically in Table 4 where the contraction constant l = |L(λ2)−L(λ1)|

|λ2−λ1| is less than 1.
As seen in Example 9 and 10, even though there is an equilibrium point when L1 is used, the

iterates λn+1 = f(λn) do not converge as L1 is not a contraction mapping. We show this using the
data in Example 11. Consider λ1 = 10.6 and λ2 = 10.625 which belong to two different supports,
then L1(λ1) = 0.1983, L1(λ2) = 0.1719, f(λ1) = 10.430 and f(λ2) = 10.90. Now, we have,

L1(λ1)− L1(λ2)

λ1 − λ2

= 1.0531 > 1 and
f(λ1)− f(λ2)

λ1 − λ2

= 18.9575 > 1

Therefore, L1 and inturn f(λ, L1(λ)) is not a contraction mapping.
We saw that in Example 7, there exist equilibrium sets consistent with the definition given in

Section 2.1. These equilibrium sets are due to multiple optimal control limits which occur at change
of support. Here, we observe that the overall effect of multiple optimal control limit and change in
support makes the f locally monotone.

Apart from multiple optimal control limits, change of support can also lead to equilibrium set
E = E1 ∪ E2 but along with an invariant/equilibrium set E0. This has been observed in Example 9

and 10 where change of support causes non monotonicity in f(·) and hence equilibrium sets E and
E0.

After observing the equilibrium behaviour in Example 11 and Example 12, we give a generalized
definition of equilibrium set as follows:

Definition 2. (Generalized Equilibrium Set) For a given f(λ), if there exists a set Ẽ, R̃ and finite
integers n1 and n2 such that

• for λ ∈ Ẽ, fn1(λ) ∈ Ẽ,

• for λ ∈ R̃, fn2(λ) ∈ Ẽ

then Ẽ and R̃ are called generalized equilibrium set and generalized repelling set respectively (fn is
the nth composition of f(λ)).

In other words, a set Ẽ is a generalized equilibrium set if the λ iterates visits this set infinitely
often (when started in it, a subsequence of {λi}i≥0 iterates visit it). These equilibrium sets could be
interpreted as low, medium and high regime of arrival rates in the queue (Ẽ1, Ẽ2 and Ẽ3 in Example
11 and Example 12.)
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Remark 7. The sets E1 and E2 from Definition 1 are special cases of generalized equilibrium sets.
In fact, if λ ∈ E1, then f 2n+1 ∈ E2 and f 2n+2 ∈ E1. These E1 and E2 are singletons for M/M/1,
D/M/1 and some cases of discrete support queues also (Example 9 and Example 10).

Remark 8. The generalized repelling set R̃ can be equal to the complement of the union of gener-
alized equilibrium sets (R̃ = (0,m) \ Ẽ) as in Example 11 and Example 12. However, this might
not always be true as in Example 9 and Example 10 where there is no repelling set; instead another
equilibrium/invariant set E0 exists.

Remark 9. Equilibrium point (λeq) is a special case of generalized equilibrium set in the sense that
we can identify an ε neighbourhood around λeq such that the Definition 2 is satisfied.

Remark 10. However, we observe in Example 9 and 10 that even though the equilibrium point is
inside generalized equilibrium set E0, the iterates do not converge to it.

Remark 11. Also, there are examples where there is an equilibrium point and generalized equilib-
rium set not in the ε neighbourhood of the equilibrium point. We observe this situation in Example 11.
We also observe that in Example 11, the ε neighbourhood around the equilibrium point at λ = 8.3998

acts a repelling set and the iterates visits Ẽ1, Ẽ2 and Ẽ3 infinitely often.

A relaxation of assumption A1 to hold in the case of queues with discrete support for arrival rate
could be as follows :

Assumption 1
′

(Ã1): For a given function f(λ, L(λ,R∗λ)) : (0,m) → (0,m), there exists a
monotonically decreasing function f̃(λ, L(λ,R∗λ)) : (0,m)→ (0,m) such that,

1. f(·, ·) ≤ f(·, ·) ≤ f̄(·, ·) and f(·, ·) ≤ f̃(·, ·) ≤ f̄(·, ·) where f(·, ·) and f̄(·, ·) are point wise
bounds (envelopes) of f(·, ·) and

2. Area under f(·, ·) is same as area under f̃(·, ·), i.e.,

m∫
0

f(λ, L(λ,R∗λ))dλ =

m∫
0

f̃(λ, L(λ,R∗λ))dλ (9)

Under Ã1 we still have a non increasing function f̃(·, ·) that is sandwiched between the upper and
lower bounds of f(·, ·); we pick the one such that the area under it is same as that under the f(·, ·)
curve.

We illustrate the validity of this assumption for Example 12 in Figure 26 and observe that f̃(λ) is
indeed monotone.

4 Discussion

We demonstrated equilibrium sets in the interaction of queues with their service level sensitive cus-
tomer bases. Equilibrium sets capture the oscillations between the high and low rate arrival regimes
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Figure 26: For Example 12, we show that f̃(λ) is a monotone function and is sandwiched between
f̄(λ) and f(λ). The area under f(λ) and f̃(λ) is approximately equal to 101.5 sq. units.

that one observes in the operation of queues. Some of the factors that can be attributed to this phe-
nomena include multiple revenue optimal policies for the queue as shown for the stylized models of
queues, the M/M/1 and D/M/1 queues. For the M/M/1 queues, the support is whole of R+ and
for D/M/1 queues the support changes everywhere. So we considered a particular GI/M/1 queue
with an arrival rate that is continuous over its discrete support and change in support of their arrival
distribution leads to more interesting equilibrium behaviour. Assumption A1 may not hold for such
queues. However, oscillations between more than two arrival rate regimes can still be noted (the ar-
rival rate iterates lie in some sets infinitely often) leading to the definition of generalized equilibrium
sets. Thus, the equilibrium behaviour is more complicated in the absence of A1. So, more investi-
gation of the existence as well as the characterization of such equilibrium sets in above setting for
queues in general is promising.

Our results are likely to hold for multi-server variants of the queues we considered as well as with
more general arrival streams since the results of (3) and (6) hold for such queues. A more interesting
case would, of course, be the networks of queues.

It is known that strategic interactions usually lead to non-Pareto outcomes; for example, notions
like Price of Anarchy (20) (a more suitable name would be ‘price of free will’ as in Stidham (19))
quantify the consequences. A potential topic would then be to investigate loss in efficiency of the
above system comprising of a queue and its user-set with a suitably defined notion of efficiency.
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A different, but, related theme would be to devise provable, and perhaps scalable, schemes to
predict equilibrium sets from suitable data of a queue interacting with its user-set.

A Existence of control limits and properties of QoS

A.1 Proof of Theorem 1

Proof. Let Rλ is control limit when the arrival rate is λ of admission controlled M/M/1 queue.
Let QRλ denotes rate at which customers are admitted into the system in long run, HRλ denotes
average queue length and T (r, h, Rλ) = rQRλ−hHRλ denotes the ergodic cost. Using the stationary
distribution for M/M/1/Rλ queue,

QRλ =
λ(1− ρRλ)

1− ρRλ+1
and

HRλ =
ρ(1− ρRλ)

(1− ρ)(1− ρRλ+1)
− Rλρ

Rλ+1

(1− ρRλ+1)

when ρ = λ
µ
< 1. A finite control limit exists, if there exists Rλ such that, T (r, h, Rλ − 1) is greater

than T (r, h, Rλ). Now, consider

T (r, h, Rλ)− T (r, h, Rλ − 1) = r (QRλ −QRλ−1) − h (HRλ −HRλ−1) (10)

Putting the values of Ql and Hl in equation (10) and simplifying, we get

T (r, h, Rλ)− T (r, h, Rλ − 1) = rλρRλ−1(1− ρ)2 − hρRλ(−ρ−Rλρ+Rλ + ρRλ+1) (11)

From (11) and since ρ < 1, we conclude that one can find a sufficiently largeRλ for which T (r, h, Rλ)−
T (r, h, Rλ − 1) < 0.

A.2 Proof of Theorem 4

Proof. Let {τi}i≥1 be the sequence of inter-arrival times and y be expected inter-arrival time. Also,
let {σi}i≥0 be the sequence of times of successive decision (arrival) epochs and Wt denote the state
of the natural process (number in the system) at time t.

Let Xi, Yi be the random variables denoting state and action at ith decision epoch, k(Xi, Yi) be
the lump sum portion of the reward and c(Wt, Xi, Yi) be the rate at which continuous portion of the
reward is received between the decision epoch i and i+ 1 for i = 0, 1, 2, . . .. From Chapter 11 of (5),
the average reward can be defined as follows:

gRλ(s) = lim inf
n→∞

ERλ
s

{
n∑
i=0

[
k(Xi, Yi) +

σi+1∫
σi

c(Wt, Xi, Yi)dt

]}
ERλ
s

{
n∑
i=0

τi

}
= lim inf

n→∞

Expected total reward upto nthdecision epoch
Expected total time until the nthdecision epoch
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Substituting r = 1 and h = 0 and noting that this is a finite state Markov chain, we have,

gRλ(s) = lim
n→∞

ERλ
s

{
n∑
i=0

k(Xi, Yi)

}
ERλ
s

{
n∑
i=0

τi

}
= lim

n→∞

Expected number of customers admitted upto nth decision epoch
Expected number of arrivals upto nthdecision epoch× E(τ1)

= lim
n→∞

Expected number of customers admitted upto nthdecision epoch
n× y

Now, consider

gRλ(s)× y = lim
n→∞

Expected number of customers admitted upto nthdecision epoch
n

= Fraction of customers admitted in the long run

One can compute gRλ by substituting r = 1 and h = 0 in Equation 13 in (6) after making the changes
given in Section 3.2. This is same as the system of equation in (8) and let the solution of this system
of equation be g̃Rλ . Then, we get that the fraction of customers lost in long run, L(λ,Rλ)= (1− g̃Rλy)

and rate of customers lost, L1(λ,Rλ) = λ(1− g̃Rλy).

B Multiple optimal control limits

B.1 Proof of Theorem 5

Proof. Let R∗λ0 be the unique control limit at λ0. Then,

v
R∗λ0
α (s) > v

Rλ0
α (s) where Rλ0 6= R∗λ0 ∀ s.

For the linear system of equations considered in Equation (5), the coefficient matrix w.r.t. the vari-
ables vRλα (0), . . . , vRλα (Rλ) is same as the matrix (I−MR∗λ0

) as given in Theorem 11.3.1 in (5) where
MR∗λ0

is the transition probability matrix corresponding the Markov Deterministic (MD) policy R∗λ0 .
Since the solution of this system of equations is the value vector corresponding to the policy R∗λ0
exists and is unique, the matrix (I −MR∗λ0

) is invertible. Due to the continuity of matrix inverse, the
system of equations in (5) will have a solution φi(λ); i = 0, . . . , Rλ, which is continuous in a small
enough neighbourhood (a, b) of λ0 (can also be obtained using implicit function theorem (22), (2) on
the above linear system), given below:

vα(0) = φ0(λ)

vα(1) = φ1(λ)
...

vα(Rλ) = φRλ(λ)
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So, for a small enough interval (a, b) around λ0 we have

v
R∗λ0
α (s) > vRλα (s) ∀ s, ∀ λ ∈ (a, b).

Therefore, in the interval (a, b) the optimal control limit will be R∗λ0 .

B.2 Proof of Theorem 6

Proof. From Theorem 5, the optimal control limit at λ2 cannot be unique as it will give rise to an
open interval around λ2 overlapping with (λ1, λ2) on the left (and (λ2, λ3) on the right) leading to a
contradiction on uniqueness of R∗λ (and R̃∗λ). So, multiple optima exists at the common point λ2 of
these open intervals. From Corollary 3 in (6), the value vR

∗
λ

α (s) is unimodal with respect to R∗λ with
possible ties at multiple optimal control limit which necessarily occur consecutively. Also

v
R∗λ
α (s) ≥ v

R̃∗λ
α (s) for λ < λ2

Taking the limit λ ↑ λ2 on both sides and using the fact that continuous and unique functions have a
unique limit, we get

lim
λ↑λ2

v
R∗λ
α (s) ≥ lim

λ↑λ2
v
R̃∗λ
α (s)

v
R∗λ2
α (s) ≥ v

R̃∗λ2
α (s) (12)

Also
v
R̃∗λ
α (s) ≥ v

R∗λ
α (s) for λ > λ2

Taking λ ↓ λ2, we get

lim
λ↓λ2

v
R̃∗λ
α (s) ≥ lim

λ↓λ2
v
R∗λ
α (s)

v
R̃∗λ2
α (s) ≥ v

R∗λ2
α (s) (13)

From (12) and (13), we get

v
R̃∗λ2
α (s) = v

R∗λ2
α (s) ∀ s

Suppose R̂∗λ2 is optimal at λ2 but R∗λ2 is not optimal at λ2. Then,

v
R̂∗λ2
α (s) > v

R∗λ2
α (s) ∀ s

We also know that, v
R∗λ2
α (s) is a continuous function of λ2. Therefore, we can always find an ε, small

enough such that

v
R̂∗

(λ2−ε)
α (s) > v

R∗
(λ2−ε)

α (s) ∀ s (14)

However, (14) contradicts the definition of R∗λ as unique optimal control limit in (λ1, λ2). Hence,

v
R̂∗λ2
α (s) = v

R∗λ2
α (s) = v

R̃∗λ2
α (s) ∀ s (15)

Since, R̂∗λ is optimal control limit and (15) holds, it can be concluded that R∗λ, R̃∗λ and R̂∗λ are optimal
at λ2 and others also if they exist.
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B.3 Proof of Theorem 7

Proof. If there are multiple optima for a given λ, then,

vRλα (s) = vRλ+1
α (s) ∀ s ∈ S

The value vector can be uniquely determined by the first Rλ + 1 states, as the remaining vRλα (s)’s for
s > Rλ can be evaluated recursively using the firstRλ+1 components of the value vector. Therefore,
it is enough to check that the above equation holds for all s ≤ Rλ.

As given by Van Nunen and Puterman in (3)

vRλα (s) = as−1v
Rλ
α (s− 1)− bs

vRλ+1
α (s) = as−1v

Rλ+1
α (s− 1)− bs.

Now, vRλα (s) = vRλ+1
α (s) gives vRλα (s−1) = vRλ+1

α (s−1) and doing this recursively ultimately leads
to vRλα (0) = vRλ+1

α (0). So, this condition is a necessary one. We can see that it is also a sufficient
condition.

B.4 Methods for calculating λ when R∗λ = 1, 2 in a discounted cost criteria
M/M/1 queue

After showing the existence of multiple control limits, we want to identify the point λ where multiple
optimal control limits exist. Following three methods involve finding ∆λ, if we start from some
arbitrary λ0. We only consider the case when Rλ = 1, 2. For higher value of control limits, these
methods becomes very cumbersome.

B.4.1 Method 1

The first method involves equating vRλα (0) and vRλ+1
α (0) as a function of ∆λ. In particular, forRλ = 1

and Rλ = 2, value at state 0 is given as folllows:

v1
α(0) =

r(1− p0)− c(1)

1− q1 − p0

v2
α(0) =

r(1− p1 − p2
0)− c(1)(1− p0 − p1)− p0c(2)

(1− q1)(1− p0 − p1)− p0q2

After adding each of the roots obtained from solving v1
α(0) = v2

α(0) to λ0, one of these value is
the λ where the multiple optimal control exists. However, we need to check and find which one is
the correct root by finding the control limit at the each of them. Also, some roots might be invalid.
Following example illustrate the method for a M/M/1 queue with given set of costs and parameters
r, h, µ, α. The computations were done in Mathematica 9 on Paaspoli server (OS : Debian , AMD
OPTERON 6212, 2.6 GHz processors and 32GB RAM).
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1. h = 1, r = 0.4, µ = 5.5, α = 0.54 and λ0 = 10

The simplified version of the final equation to be solved is 1.45185∆λ4 + 61.9742∆λ3 +

955.654∆λ2 + 6309.78∆λ+ 14988.1. Roots for this equation are

(a) ∆λ1 = −10.000000

(b) ∆λ2 = −6.106282

(c) ∆λ3 = −10.540051

(d) ∆λ4 = −16.040032

Root number (b) is the point which after adding to λ0 gives the point of multiple optima i.e.
λ = 3.893718.

B.4.2 Method 2

This method involves solving an optimization problem which minimizes the square of the difference
between the value corresponding to control limits Rλ = 1, 2 at state zero. The optimization problem
is formulated as follows:

M2 min
∆λ

(v1,0
α (λ0 + ∆λ)− v2,0

α (λ0 + ∆λ))2

subject to

v1,0
α (λ0 + ∆λ) =

r(1− p0)− c(1)

(1− p0 − p1)

v2,0
α (λ0 + ∆λ) =

r(1− p2
0 − p1)− (1− p0 − p1)c(1)− p0c(2)

(1− q1)(1− p1 − p0)− p0q2

(16)

∆λ unrestricted
The above constrained optimization problem is a non convex minimization problem. It can be

solved easily using solvers like SNOPT, KNITRO etc. This approach has an edge over the earlier one
as it gives an if and only if condition for obtaining the λ where multiple optimal control limits exist.

Theorem 10. For a M/M/1 queue with given costs and parameters, multiple optimal control limits
1 and 2 will exist if and only if M2 attains its global minima.

Proof. Suppose we have multiple optimal control limits 1 and 2 for a given λm (say λ0 + ∆λm).
Then, at λ0 + ∆λm, the value vectors for control limit 1 and 2 are equal i.e.

v1,s
α (λ0 + ∆λm) = v2,s

α (λ0 + ∆λm) ∀ s

In particular, we have v1,0
α (λ0 + ∆λm) = v2,0

α (λ0 + ∆λm). Hence, we conclude that at the point of
multiple optima λm, the objective value of M2 is 0 and it attains its global minima. Let us consider
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the converse case where we are given that the global optimal solution of M2 with objective value 0

is attained at ∆λm. Then, we have that for ∆λm,

v1,0
α (λ0 + ∆λm) = v2,0

α (λ0 + ∆λm)

This is a sufficient condition for multiple optimal control limit to exist at λ0 + ∆λm as given in
Theorem 7.

Hence, the solution set of the above minimization problem characterizes the set of points at which
multiple optimal control limit exists.

Following example illustrate this constrained optimization method. The optimization problem
was modeled in AMPL and solved using SNOPT solver on OPTIMUS server (OS Linux, Intel Quad
core Xeon E5506 2.13 GHz and 64GB RAM).

1. Costs and parameters h = 1, r = 0.4, µ = 5.5, α = 0.54 and λ0 = 5 of M/M/1 queue when
used in M2 gives, objective value = 1.349202e−12 and ∆λ = −1.10629 giving λ = 3.89371.

B.4.3 Method 3

If we substitute the value of v1,0
α (λ0 + ∆λ) and v2,0

α (λ0 + ∆λ) in objective function of (16), then we
get the unconstrained version of M2 given as follows :

M3 min
∆λ

(
r(1− p0)− c(1)

(1− p0 − p1)
− r(1− p2

0 − p1)− (1− p0 − p1)c(1)− p0c(2)

(1− q1)(1− p1 − p0)− p0q2

)2

(17)

∆λ unrestricted
It can be solved by equating the gradient of the objective function in M3 to 0 as shown below.

2(v1
α(∆λ)− v2

α(∆λ))
d(v1

α(∆λ)− v2
α(∆λ))

dλ
= 0 (18)

The solution of unconstrained optimization problem can be root of either of the terms in (18). How-
ever, we are only interested in the root of the first term which gives global minima. The roots of
second term might lead to some unwanted solution with non-zero objective value.

Following example illustrate this method using AMPL as modelling language. The optimization
problem was solved using SNOPT solver on OPTIMUS server (OS Linux, Intel Quad core Xeon
E5506 2.13 GHz and 64GB RAM).

1. Costs and parameters h = 1, r = 0.4, µ = 5.5, α = 0.54 and λ0 = 10 of M/M/1 queue when
used in M3 gives, objective value = 3.722129e−10 and ∆λ = −6.10629 giving λ = 3.89371.

C Proof of Theorem 8

Proof. First consider a queue with discounted cost criteria and QoS measure L. For a M/M/1

queue, the entries of the transition probability matrix of the embedded Markov chain are continuous
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functions of rate λ. This gives us that the value obtained from maximization of Equation (4) is a
continuous function of λ and the set of optimal policies is a continuous set. Using this, we showed in
Section 2.1 that QoS measures L and L1 are piecewise continuous over (0,m) (9).

We are given that there exists an equilibrium set for a M/M/1 queue. This implies that there
exists a point λ = l0 where f(λ) is discontinuous. Because, if the optimal control limit at l0 is
unique, then from Theorem 5 there exists an open interval (l0− ε, l0 + ε) over which the control limit
is R∗λ and f(·) can not be discontinuous at l0.

Further, using the same argument as in proof of Theorem 6, we can identify optimal control limits
R∗2,λ for λ ∈ (l0 − ε, l0) and R∗1,λ for λ ∈ (l0, l0 + ε) such that at l0 both R∗2,λ and R∗1,λ are optimal.
Thus a discontinuity in f(·) at l0 due to such multiple optimal control limits leads to the existence
of equilibrium sets. The above arguments are valid for other combinations of cost criteria and QoS
measures.

D Generation of the arrival rates from a discrete distribution

Consider the following discrete distribution whose mean is required to be locally continuous:

G(.) =


u

1,k
when arrival rate is 1

u
k

when arrival rate is k

u
k+1

when arrival rate is k + 1

Mean arrival rate λ = u
1,k

+ k × u
k

+ (k + 1) × u
k+1

. We will fix u
1,k

in order to generate
mean arrival rate for a suitable interval. Let us take the support as {1, k, k + 1}; the arrival rate is
λ ∈ (mk,mk] where, mk and mk can be derived as follows,

λ = u
1,k

+ k × u
k

+ (k + 1)u
k+1

= u
1,k

+ k × u
k

+ (k + 1)(1− u
1,k
− u

k
)

= (k + 1)− k × u
1,k
− u

k

Now, u
k
∈ [0, 1− u

1,k
]. Thus, mk = (k + 1)− k × u

1,k
and mk = (k + 1)− k × u

1,k
− (1− u

1,k
).

To generate arrival rate whose mean is λ ∈ (mk+1,mk+1], we change the support of the distribution
to {1, k + 1, k + 2} and so on. While changing the support we are fixing u

1,k+1
≥ u

1,k
, where

mk+1 = (k + 2)− (k + 1)× u
1,k+1

and mk+1 = (k + 2)− (k + 1)× u
1,k+1
− (1− u

1,k+1
).

Example 13. In this example, we will illustrate the above method to generate arrival rates whose
mean lies in (3.7, 6.25].

1. We take support as {1, 4, 5} and fix u1,4 = 0.1. Then, λ = 0.1 + 4u4 + 5(0.9 − u4), i.e.,
λ = 4.6 − u4 . Thus, with support {1, 4, 5}, uk ∈ [0, 0.9) and u5 = 1 − u4 we can generate a
set of arrival rates with above mass functions such that the arrival rate λ is continuous over the
interval (3.7, 4.6].
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2. Support now is {1, 5, 6} and we fix u1,5 = 0.15. So, λ = 0.15 + 4u5 + 5(0.85 − u4), i.e.,
λ = 5.25 − u5 . Thus, with [1, 5, 6] support we can generate λ ∈ (4.4, 5.25] but we have
already generated λ till 4.6 from previous support; so, we generate a family of arrivals whose
rates continuously change over λ ∈ (4.6, 5.25].

3. We take support as {1, 6, 7} and we take u1,6 = 0.2. Then, λ = 0.2 + 6u6 + 7(0.8 − u6),
i.e., λ = 5.8 − u6 . Thus, with support {1, 6, 7} we can generate λ ∈ (5, 5.8] but we have
already generated λ till 5.25 from previous support; so, we now have arrivals whose rate is
locally continuous over λ ∈ (5.25, 5.8].

4. We take {1, 7, 8} as support and u1,7 = 0.25 so that, λ = 0.25 + 7u7 + 8(0.75 − u7), i.e.,
λ = 6.25 − u7 . Thus, with support {1, 7, 8} we can generate λ ∈ (5.5, 6.25] but we have
already generated λ till 5.25 from previous support; so, we have the arrivals with the desired
property over λ ∈ (5.8, 6.25].
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