
Optimal revenue management in two class pre-emptive delay
dependent Markovian queues

Manu K. Gupta∗, N. Hemachandra and J. Venkateswaran

Industrial Engineering and Operations Research, IIT Bombay

March 15, 2015

Abstract

In this paper, we present a comparative study on total revenue generated with pre-emptive

and non pre-emptive priority scheduler for a fairly generic problem of pricing server’s surplus

capacity in a single server Markovian queue. The specific problem is to optimally price the

server’s surplus capacity by introducing a new class of customers (secondary class) without

affecting the pre-specified service level of its current customers (primary class) when pre-emption

is allowed. Pre-emptive scheduling is used in various applications. First, a finite step algorithm

is proposed to obtain global optimal operating and pricing parameters for this problem. We

then describe the range of service level where pre-emptive scheduling gives feasible solution and

generates some revenue while non pre-emptive scheduling has infeasible solution. Further, some

complementary conditions are identified to compare revenue analytically for certain range of

service level where strict priority to secondary class is optimal. Our computational examples

show that the complementary conditions adjust in such a way that pre-emptive scheduling

always generates more revenue. Theoretical analysis is found to be intractable for the range

of service level when pure dynamic policy is optimal. Hence extensive numerical examples are

presented to describe different instances. It is noted in numerical examples that pre-emptive

scheduling generates at least as much revenue as non pre-emptive scheduling. A certain range

of service level is identified where improvement in revenue is quiet significant.

keywords: Dynamic pre-emptive priority, Pricing of services, Admission control, Queueing.

1 Introduction

Queueing systems has become popular for modelling a variety of complex dynamic systems. Con-

temporary applications include modelling of supply chains, call centers, wireless sensor networks,

processors, etc. (see Bhaskar and Lallement (2010), Bhaskar and Lavanya (2010), Kim et al. (2013),
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Lee and Yang (2013)). Multi-class queues are special class of queueing systems where different types

of customers achieve quality of service differentiation. This special class of queueing systems has

also acquired significant importance in queueing theory due to its wide range of applications in com-

munication systems, traffic and transportation systems. Extensive research is done in analysing the

different aspects of such multi-class queueing systems (see Hassin et al. (2009), Shanthikumar and

Yao (1992), Sinha et al. (2010) etc. and references therein).

Another community of researchers studied pricing in the context of queueing systems in a variety of

applications. Analysis of pricing problem in queueing started with Naor Naor (1969) who considered

a static pricing problem for controlling the arrival rate in a finite buffer queueing system. A rich

literature on pricing has evolved since then. It includes static and dynamic pricing with single

and multiple class queues (see Celik and Maglaras (2008), Gallego and van Ryzin (1994), Marbach

(2004)). A detailed discussion on pricing communication networks can be seen in Courcoubetis and

Weber (2003). Pricing surplus or extra capacity of server is also important in the context where

setting up additional servers incur high costs. Hall et al. Hall et al. (2009) studied the scenario

where a resource is shared by two different classes of customers. This study focused on dynamic

pricing and demonstrated the properties of optimal pricing policies.

A single server queueing system with two classes of customers has been considered in Sinha et al.

(2010), where the specific problem was to optimally price the server’s excess capacity for new (sec-

ondary) class of customers, while meeting the service level requirement of its existing (primary) class

of customers. In this model, the arrival rate of this new class depends linearly on offered service level

and unit admission price charged. Service level of a class is defined by the average waiting time of

that particular class. The arrival processes have been assumed to be independent Poisson processes

for both classes, and independently, the service time distribution is general and identical for both

classes. A delay dependent non pre-emptive priority scheduling is considered across classes as the

queue discipline. Under non pre-emptive settings a primary class customer, upon arrival, waits in

queue if the server is busy servicing either a primary or secondary class customer. Based on the

arrival rates and service level of the primary class customers, and the first and second moments of

service time, a finite step algorithm has been proposed to find the optimal service level, pricing, ar-

rival rate and scheduling of the secondary class customers in Sinha et al. (2010). Further refinement

and a study of the robustness of the optimal parameters with respect to system variability has been

shown in Gupta et al. (2014), Hemachandra and Raghav (2012) and Raghav (2011). A similar cost

optimization problem for service discrimination in queueing system is solved using relative priority

(see Sun et al. (2009)). Some similar optimal control problems are recently explored where it takes

non-zero time to switch the services between the two classes of customers (see Rawal et al. (2014)).

Pricing surplus server capacity with pre-emptive scheduling plays an important role in problems re-

lated to wireless communication. For example, consider a cognitive radio ad hoc networks (CRAHNs)

which are usually composed of two kind of users: cognitive radio (CR) users and primary users (see

Akyildiz et al. (2009), Chowdhury and Felice (2009) and Felice et al. (2011)). Primary users (PUs)

have a license to access the licensed spectrum and network is providing service to some (primary)
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customers. Primary customers are satisfied as long as they are provided a guaranteed quality of ser-

vice (QoS) in terms of mean waiting time. CR users access the licensed spectrum as a “visitor”, by

opportunistically transmitting on the spectrum holes. The network can utilize the surplus capacity

(spectrum, time slot, etc.) to serve secondary (CR) set of users while maintaining the QoS of primary

set of users. Other applications of pre-emptive priority based scheduling are in operating systems,

real time systems, etc. (see Audsley et al. (1995), Burns (1994) and references therein). The results

of this paper are relevant in above context where pre-emptive priority policy is applicable. First part

of the paper describes the analysis with pre-emptive scheduling while the other part discusses the

improvement in revenue by using pre-emptive scheduling over non pre-emptive scheduling.

Revenue maximization is one of the main objective of service provider in these situations. Such a

revenue maximization problem is solved in Sinha et al. (2010) with non pre-emptive delay dependent

priority scheduling across classes. In this paper, we work on the problem of revenue maximization

with pre-emptive delay dependent priority scheduling across classes which is practical for different

applications discussed above. The main contribution of this paper is two fold as discussed below.

First, we solve the revenue optimization problem to optimally price the server’s surplus capacity by

introducing a new (secondary) class of customers without affecting the service level of its existing

(primary) customers while using pre-emptive delay dependent priority scheduling across classes. Two

optimization models are formulated to maximize the profit of the resource owner, depending on the

value of the relative queue discipline priority parameter. The first optimization model, valid when

the relative parameter is finite, is a non convex constrained optimization problem. The second

optimization model, valid when the relative parameter is infinite, is a convex optimization problem.

These optimization problems are solved and results are discussed. Based on these results, a finite

step algorithm to find the optimal operating parameters (pricing, scheduling, service level and arrival

rate of the secondary class customers) is presented.

We then present an extensive study to compare revenue with pre-emptive and non pre-emptive

priority scheduling. We first identify certain range of service levels where pre-emptive scheduling

gives feasible solution while problem is infeasible with non pre-emptive scheduling. We further

identified some complementary conditions to compare the total revenue generated for certain range

of input parameters when strict priority to secondary class customers is optimal. Other way to do

this revenue comparison is via service level. If secondary class service level decreases for a fixed

admission price, admission rate will increase by market equilibrium and this will increase revenue.

Secondary class service level also needs some conditions to tract the comparison analytically. It is

noted by computational examples that these conditions adjust in such a way that pre-emptive priority

scheduling generates more revenue than that with non pre-emptive scheduling. Objective function

is highly non linear and becomes mathematically intractable when optimal scheduling parameter is

pure dynamic. Hence, we further perform computational study for such intractable range of service

levels. This study shows that the revenue generated with pre-emptive priority is more than that of

non pre-emptive priority and certain range of service level is identified where revenue increment is

quiet significant.
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This paper is organised as follows. Section 2 describes the system setting. Section 3 describes

the notations, optimization model formulation and properties of mean waiting times. Section 3.1

discusses the solution of this non convex constrained optimization problems for global maxima. In

Section 3.2, we propose a finite step algorithm to find the global optimal operating and pricing

parameters. Section 4 and 5 describe the comparison of revenue under two scheduling policies.

Section 6 presents conclusions and directions for future research.

A preliminary version of the algorithm is presented in Gupta et al. (2012). In this paper, we present

detailed arguments that lead to the algorithm. We also present an extensive comparative study on

total revenue generated with pre-emptive and non pre-emptive scheduling, partly using theoretical

results and rest via computational study.

2 System description

We consider the system setting similar to Sinha et al. (2010): a single server queueing system with

two classes of customers, primary and secondary as shown in Figure 1. The arrival processes (of

primary as well as secondary) are independent Poisson processes. Arrival rate for primary class is

known. The service time distribution is identical for both classes and it is exponentially distributed.

Also, there is a long term agreement with primary class customers which specifies the guaranteed

quality of service (QoS). QoS for a customer class is in terms of mean waiting time of that class.

Each customer of secondary class pays the admission fee. Service level offered to primary class of

customers is also known. Objective of the problem is to decide the scheduling policy, arrival rate,

service level and admission price for secondary class customers such that total revenue is maximized

while maintaining the service level for primary class of customers.

Further, a delay dependent pre-emptive queue discipline (see Kleinrock (1964)) is used across classes.

Pre-emption is in terms of continuously monitored system. That is, if the instantaneous dynamic

priority of the currently served customer is lower than that of a customer waiting in the queue, the

customer in service will be pre-empted by later (Kleinrock, 1964). Pre-empted customers join head

of line of respective queues as shown by dotted lines in Figure 1. We assume that the arrival rates

of secondary class customer linearly depends on the price and service levels offered to that class.

Detailed notational description and solution of this model is discussed in Section 3. We now briefly

explain the logic of delay dependent priority discipline.

2.1 Delay dependent priority queue discipline

Different types of priority logics are possible to schedule multiple class of customers for service at

a common resource. Suppose absolute or strict priority is given to one class of customers, then the

lower priority class may starve for resource access for a very long time. For example, in case of two

classes of customers, if strict and higher priority is given to primary class customers, secondary class

customers will be served only after the busy period of primary class.

4



Primary Customer

Secondary Customer

λp Sp bp

λs Ss bs

server
µ

Preempted
Primary
Customers

Preempted
secondary
Customers

Server uses
delay dependent
Pre-emptive priority
rule

Figure 1: Schematic view of model

This problem of excess queue delay time of lower priority class customers can be addressed by

introducing delay dependency in priorities. Such a queue discipline assigns a dynamic priority to

each customer. This dynamic priority is a function of the queue delay of the customer as well as a

parameter associated with that customer’s class. This concept of delay dependent priority queueing

discipline was first introduced in Kleinrock (1964). The logic of this discipline works as follows. Each

customer class is assigned a queue discipline parameter, bi, i ∈ {1, · · · , N} for all N customer classes.

For a customer arriving at time τ , the instantaneous dynamic priority for customer of class i at time

t, qi(t), is then given by

qi(t) = (t− τ)× bi, i = 1, 2, · · · , N. (1)

Highest instantaneous dynamic priority parameter, qi(t), customer will have highest priority of receiv-

ing service. Ties are broken using First-Come-First-Served rule. Hence according to this discipline

the higher priority parameter customers gain higher dynamic priority at higher rate.

Figure 2: Illustration of delay dependent priority (Kleinrock, 1964)

We illustrate this in Figure 2. Consider two classes of customers, class 1 and class 2 with queue

discipline parameter bp and bp′ , where bp < bp′ . Suppose class 1 customer arrives at time τ and class

2 customer arrives at time τ
′
, with τ < τ

′
. Figure 2 illustrates the change in their respective dynamic

queue priority over time. In the time interval τ to τ
′
, class 1 customer has higher instantaneous

priority. In time interval τ
′

to t0, class 2 customer starts gaining priority still class 1 customer will

be served as its instantaneous priority is higher. Instantaneous priority for both class is same at t0,

so class 1 customer will be served according to FCFS rule. After time t0, class 2 customers have
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higher instantaneous priority hence customers of that class will be served.

3 Optimal joint pricing and scheduling model analysis

Let λp and λs be independent Poisson arrival rates of primary and secondary class customers respec-

tively. Service times are independent and identically distributed exponential random variables for

both classes with mean 1/µ. Let Sp be the pre-specified primary class customer’s service level. Queue

discipline is pre-emptive delay dependent priority as proposed in Kleinrock (1964) and explained in

last section. A schematic view of the model is shown in Figure 1.

Suppose there are 1, 2, · · · , N classes, then the average waiting time for kth class W̄k is given by

following recursion for delay dependent pre-emptive scheduling across classes (see Kleinrock (1964)).

W̄k =

W0

1− ρ
+

N∑
i=k+1

ρi
µk

(
1− bk

bi

)
−

k−1∑
i=1

ρi
µi

(
1− bi

bk

)
−

k−1∑
i=1

ρiW̄i

(
1− bi

bk

)
1−

N∑
i=k+1

ρi

(
1− bk

bi

) (2)

where ρi = λi/µi, ρ =
N∑
i=1

ρi, W0 =
N∑
i=1

λi
2

(
σ2
i +

1

µ2
i

)
and 0 < ρ < 1. Also the conservation law in

M/G/1 queue for a work conserving queueing discipline states that (Kleinrock, 1965):

N∑
i=1

ρiW̄i =
ρW0

(1− ρ)
(3)

Note that average waiting time, W̄k, depends only on ratios of parameters {bi}N1 . So in case of two

(primary and secondary) classes, average waiting time will depend on ratio bs/bp, where these bp

and bs are pre-specified parameters associated with primary and secondary class. Set β := bs/bp,

which represents the relative queue discipline parameter. β can take values from 0 to ∞ (0 and ∞
included), effects of changing β in queuing discipline are as follows

• β = 0, i.e., (bs/bp = 0), Static priority rule is employed with priority given to primary class

customers,

• β < 1, i.e., (bs/bp < 1), Primary class customers are gaining instantaneous priority at a higher

rate than secondary class customers,

• β = 1, i.e., (bs/bp = 1), Both classes of customer are given equal priority, hence, it is a global

FCFS queue discipline,

• β > 1, i.e., (bs/bp > 1), Secondary class customers are gaining instantaneous priority at a

higher rate than primary class customers,

• β =∞, i.e., (bs/bp =∞), Static priority discipline is employed with priority given to secondary

class customers.
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Let Wp(λs, β) and Ws(λs, β) be expected waiting time for primary and secondary class of customers.

Following expressions for Wp(λs, β) and Ws(λs, β) are derived using Equation (2).

Wp(λs, β) =
λ(µ− λ(1− β))− (µ− λ)λs(1− β)

µ(µ− λ)(µ− λp(1− β))
1{β≤1} +

λµ+ λs(µ− λ)

(
1− 1

β

)
µ(µ− λ)

(
µ− λs

(
1− 1

β

))1{β>1} (4)

Ws(λs, β) =
λµ+ λp(µ− λ)(1− β)

µ(µ− λ)(µ− λp(1− β))
1{β≤1} +

λ

(
µ− λ

(
1− 1

β

))
− (µ− λ)λp

(
1− 1

β

)
µ(µ− λ)

(
µ− λs

(
1− 1

β

)) 1{β>1} (5)

where λ = λp+λs and 1{Γ} is 1 if statement Γ is true, else 1{Γ} is zero. Let Sp and Ss be the promised

service level offered for primary and secondary class of customers respectively. As discussed earlier,

rate of secondary class customers is a linear function of unit admission price, θ, and assured service

level, Ss.

Λs(θ, Ss) = a− bθ − cSs (6)

where a, b, c are given positive constants driven by market. a is the maximum arrival rate possible

whereas b and c are sensitivity of customers to price charged and service level respectively. With

above notation, we have following optimization model for maximizing resource owner’s profit similar

to Sinha et al. (2010):

P0: max
λs,θ,Ss,β

θλs (7)

subject to

Wp(λs, β) ≤ Sp, (8)

Ws(λs, β) ≤ Ss, (9)

λs < µ− λp, (10)

λs ≤ a− bθ − cSs, (11)

λs, θ, Ss, β ≥ 0. (12)

Constraint (8) is to maintain QoS of primary class customers while Constraint (9) is for ensuring

secondary class customer’s service level which is also a decision variable. Constraint (10) is necessary

condition for the queue stability. Constraint (11) captures the dependency of secondary class arrival

rate as shown in Equation (6).

Optimization problem P0 is a four dimensional optimization problem. It can be seen that constraint

(9) will be binding at optimality since no resource owner would provide a worse than possible QoS

level to customers. Also Constraint (11) will be binding because any slack in it can be easily removed

by increasing the price. Further, substituting the value of θ = 1
b
(a − λs − cSs) and Ws(λs, β) = Ss,

the problem P0 reduces to a two dimensional optimization problem P1 similar to Sinha et al. (2010):

P1: max
λs,β

1

b

(
aλs − λ2

s − cλsWs(λs, β)
)

(13)
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subject to

Wp(λs, β) ≤ Sp, (14)

λs ≤ µ− λp, (15)

λs, β ≥ 0. (16)

Note that constraint (15) expands the feasible region of P1 as compare to P0 but Constraint (14)

ensures that λs < µ − λp. Hence optimality of problem P1 is not affected by such expansion

of feasible region. It follows from Equation (4) and (5) that expressions Wp(λs, β) and Ws(λs, β)

depend on the value of β ( β < 1 or β > 1) and β =∞ is also a valid decision for queue discipline.

Hence optimization problem P1 differs from classical optimization problem. Consider the notation

W̃p(λs) = Wp(λs, β = ∞) and W̃s(λs) = Ws(λs, β = ∞). Now, on setting β = ∞, we have one

dimensional optimization problem P2 similar to that in Sinha et al. (2010):

P2: max
λs

1

b
[aλs − λ2

s − cλsW̃s(λs)] (17)

subject to

W̃p(λs) ≤ Sp, (18)

λs ≤ µ− λp, (19)

λs ≥ 0. (20)

Few properties of Wp(λs, β) and Ws(λs, β) are as follows; properties (3) and (4) below render P1 a

non convex constrained optimization problem.

1. Wp(λs, β) and Ws(λs, β) are increasing convex function of λs in interval [0, µ− λp).

2. Wp(λs, β) is an increasing concave function of β ≥ 0 and Ws(λs, β) is a decreasing convex

function of β ≥ 0.

3. Wp(λs, β) is neither convex nor concave function of (λs, β) when λs ∈ [0, µ − λp) and β ≥ 0.

Also, Wp(λs, β) is not a quasi convex function of (λs, β).

4. λsWs(λs, β) is neither convex nor concave function of (λs, β) when λs ∈ [0, µ− λp) and β ≥ 0.

Above properties are derived by calculating the first and second order partial derivatives of Wp(λs, β)

and Ws(λs, β) with respect to λs and β and then by calculating gradient and Hessian matrix of

Wp(λs, β) and Ws(λs, β) (see Appendix for details).

Solution of optimization problem P0 is presented in Section 3.1 and an algorithm to find the optimal

operating parameters is proposed in Section 3.2.
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3.1 Optimal admission price, service level, queue discipline and admis-

sion rate

In order to find the global optimal operating parameters (optimal admission price, service level, queue

discipline and admission rate), one needs to solve and compare the optimal objectives of problem

P1 and P2. By using above properties of mean waiting time, one can show that optimization

problem P1 is non convex while P2 is convex optimization problem. Solution of these problems is

described in Sections 3.1.1 and 3.1.2. Solution of optimization problem P0 (resource owner’s profit

maximization) is given by P1 and P2 depending on relative queue discipline parameter being finite

or infinite. Comparison of objective functions of problem P1 and P2 is presented in Section 3.1.3 to

find global optimal solution for problem P0.

3.1.1 Solution of optimization problem P1 (β <∞)

Property 4 of mean waiting time states that λsWs(λs, β) is neither a convex nor a concave function of

(λs, β). Hence the objective of problem P1 is neither convex nor concave and this makes optimization

problem P1 a non convex constrained optimization problem. We solve this problem by deriving

Karush Kuhn Tucker (KKT) necessary and sufficient conditions.

Consider the Lagrange function corresponding to NLP (P1):

L(λs, β, u1, u2, u3) =
1

b
(aλs − λ2

s − cλsWs(λs, β)) + u1(Wp(λs, β)− Sp) + u2λs + u3β (21)

where u1, u2 and u3 are Lagrangian multipliers. Lagrangian multiplier corresponding to strict in-

equality (Constraint (15)) will be 0. KKT first order necessary conditions are given as follows

(Bazaraa et al., 2004):

a− 2λs − c
[
Ws − λs

∂Ws

∂λs

]
+ bu1

∂Wp

∂λs
+ bu2 = 0 (22)

−cλs
∂Ws

∂β
+ bu1

∂Wp

∂β
+ bu3 = 0 (23)

u1[Wp − Sp] = 0 (24)

u2λs = 0 (25)

u3β = 0 (26)

Wp ≤ Sp and λs < µ− λp (27)

u1 ≤ 0;λs, β, u2, u3 ≥ 0 (28)

It follows from Equation (25) that if u2 6= 0 then λs has to be 0 which will make the objective 0.

Hence u2 = 0 holds. Consider Equations (23), (26) and (28) first. Following two cases are possible

depending on value of β:

1. β > 0 : In this case, u3 = 0 holds from Equation (26). Using Equation (23), we have u1 = −cλp
b

in both the cases when β is less or more than 1. This value of u1 is obtained using expression

of derivatives of Wp and Ws with respect to β.
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2. β = 0 : In this case, u3 can be positive or 0. With β = 0, Constraint (23) results in

u3 = −1

b

(
λsµ(cλp + bu1)

(µ− λp − λs)(µ− λp)2

)

This implies u3 ≥ 0 is satisfied iff cλp + bu1 ≤ 0. Hence KKT conditions (23), (26) and (28) are

satisfied iff we get in one of the following cases along with u2 = 0.

• Case 1: u1 =
−cλp
b

, u3 = 0, β > 0

• Case 2(a): u1 <
−cλp
b

, u3 = −1

b

(
λsµ(cλp + bu1)

(µ− λp − λs)(µ− λp)2

)
, β = 0

• Case 2(b): u1 =
−cλp
b

, u3 = 0, β = 0

Note that u1 < 0 holds in all above cases. It follows from Equation (24) that waiting time constraint

is binding. From above analysis, a KKT point has to be among one of the above cases and Wp = Sp

should hold along with Equation (22). The analysis assuming that KKT point satisfies conditions of

case 1 results in Theorem 1. The analysis assuming that KKT point satisfies conditions of case 2(a)

and 2(b) results in Theorem 2.

Theorem 1 below states that when primary class customer’s service level, Sp, is restricted to a

particular range I as defined below, the optimal arrival rate of secondary class customers, λs, is

given by the root of a cubic and optimal scheduling parameter, β, is finite and nonzero (pure dynamic

scheduling policy).

Theorem 1. Suppose
a

c
>
λp(2µ− λp)
µ(µ− λp)2

. Then, there exists λ
(1)
s which is the unique root of cubic

G(λs) in the interval (0, µ− λp), where

G(λs) ≡ 2µλ3
s − [c+ µ(a+ 4φ0)]λ2

s + 2φ0[c+ µ(a+ φ0)]λs − aµφ2
0 + cλp(µ+ φ0)

and φ0 = µ−λp. Denote λ1 = λp+λ
(1)
s and let Sp lies in interval I ≡

(
λp

µ(µ− λp)
,
λ1µ+ (µ− λ1)λ

(1)
s

µ(µ− λ1)(µ− λ(1)
s )

)
and β(1) is given by

β(1) =


(µ− λ1) (µSp(µ− λp)− λp)
λ2

1 − (µ− λ1)(µSpλp − λ(1)
s )

for
λp

µ(µ− λp)
< Sp ≤

λ1

µ(µ− λ1)

λ
(1)
s (µ− λ1)(1 + µSp)

λ1µ+ (µ− λ1)(λ
(1)
s + µSpλ

(1)
s − µ2Sp)

for
λ1

µ(µ− λ1)
< Sp <

λ1µ+ (µ− λ1)λ
(1)
s

µ(µ− λ1)(µ− λ(1)
s )


then λ

(1)
s and β(1) is a strict local maximum of NLP (P1) and constraint Wp ≤ Sp is binding at this

point.

Proof. Given
a

c
>
λp(2µ− λp)
µ(µ− λp)2

, one can establish that λ
(1)
s is the unique root of cubic G(λs) in the

interval (0, µ − λp), by considering its sign change, stationary points, nature of its derivative and

using the arguments similar to Claim 1 in Sinha et al. (2008).
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Note that u1 =
−cλp
b

, u3 = 0, β > 0 and u2 = 0 holds for Case 1. On putting these values of u1

and u2 in Equation (22), we have

a− 2λs − c
(

∂

∂λs
(λsWs + λpWp)

)
= 0 (29)

On simplifying the conservation law (Equation (3)) with exponential service time and two classes,

we get

λpWp + λsWs =
λ2

µ(µ− λ)
(30)

where λ = λp + λs. Using Equation (29) and (30), we have

a− 2λs − c
[

(λp + λs)(2µ− λp − λs)
µ(µ− λp − λs)2

]
= 0

The above equation can be simplified as following cubic in λs:

G(λs) ≡ 2µλ3
s − [c+ µ(a+ 4φ0)]λ2

s + 2φ0[c+ µ(a+ φ0)]λs − aµφ2
0 + cλp(µ+ φ0) = 0 (31)

where φ0 = µ − λp. As λ
(1)
s is the unique root of cubic G(λs) in the interval (0, µ − λp), solving

G(λs) = 0 for λs ∈ (0, µ− λp) results in λs = λ
(1)
s .

Claim 1. There exist a queue discipline management parameter β̄ > 0 which satisfies the equality

Wp(λs, β) = Sp if λp ≥ 0, λs ≥ 0, λp +λs < µ and Sp lies in interval

(
λp

µ(µ− λp)
,
λµ+ (µ− λ)λs
µ(µ− λ)(µ− λs)

)
where λ = λp + λs and is given by

β̄ =


(µ− λ) (µSp(µ− λp)− λp)
λ2 − (µ− λ)(µSpλp − λs)

for
λp

µ(µ− λp)
< Sp ≤

λ

µ(µ− λ)
λs(µ− λ)(1 + µSp)

λµ+ (µ− λ)(λs + µ Spλs − µ2Sp)
for

λ

µ(µ− λ)
< Sp <

λµ+ (µ− λ)λs
µ(µ− λ)(µ− λs)


Proof. See Appendix.

Let β(1) = β̄ for λs = λ
(1)
s . It follows from Claim 1 that Wp(λ

(1)
s , β(1)) = Sp. It follows that

λ
(1)
s , β(1), u1 = −cλp

b
, u2 = 0 and u3 = 0 satisfy all KKT necessary conditions (23)-(28). One has

to check for sufficient conditions to argue the local optimality of λ
(1)
s and β(1).

Consider restricted Lagrangian L̄(λs, β) = L(λs, β, u1 = − cλp
b
, u2 = 0, u3 = 0). On using Equation

(21) and (30), we get

L̄(λs, β) =
1

b

[
aλs − λ2

s − cλs
(

λ2

µ(µ− λ)

)
+ cλpSp

]
(32)

Note that g(λs, β) ≡ Wp(λs, β) ≤ Sp is the only binding constraint in NLP P1 and this con-

straint is strongly active as associated Lagrangian multiplier (u1) is non-zero. Define the cone

C := {d 6= 0 : ∇g(λs, β)t.d = 0} (refer Theorem 4.4.2 in Bazaraa et al. (2004)), ∇g(λs, β) := [k1, k2]t

and d := [d1, d2]. On simplifying, we have C = {d 6= 0 : k1d1 + k2d2 = 0}. On further simplifying,

C = {d : d1 = −k2d2/k1, d2 6= 0}. Let us denote the Hessian of restricted Lagrangian by HL̄(λs, β).

Using Equation (32), we get following Hessian matrix

11



HL̄(λs, β) =

−2

b

(
1 +

cµ

(µ− λ)3

)
0

0 0


Now, we calculate dHL̄(λs, β)dt for every d ∈ C, we have

dHL̄(λs, β)dt = −2

b

(
1 +

cµ

(µ− λ)3

)
d2

1 = −2

b

(
1 +

cµ

(µ− λ)3

)[
−k2d2

k1

]2

< 0 ∀ d2 6= 0

This implies that the sufficient conditions for KKT points are met. Hence λ
(1)
s , β(1) are strict local

maximum of NLP P1 and the theorem follows.

Theorem 2 below states that when primary class customer’s service level is
λp

µ(µ− λp)
, we can in-

troduce secondary customers by setting scheduling parameter 0, i.e., static priority should be given

to primary class of customers. This result matches with intuition also as service level
λp

µ(µ− λp)
is average waiting time when there are primary class of customers only. This service level can be

achieved when strict pre-emptive priority is given to primary class of customers.

Theorem 2. Suppose
a

c
>
λp(2µ− λp)
µ(µ− λp)2

and Sp = Ŝp =
λp

µ(µ− λp)
, and λ

(1)
s is the unique root of

cubic G(λs) in the interval (0, µ − λp). Then λ
(1)
s and β(2) = 0 is the strict local maximum of NLP

(P1) and constraint Wp ≤ Sp is binding.

Proof. Consider the Lagrangian multipliers according to case 2(a). A point will be KKT point in this

case if constraint Wp ≤ Sp is binding and KKT condition (22) is satisfied. Note that case 2(a) implies

u1 <
−cλp
b

, u3 = − λsµ(cλp + bu1)

b(µ− λp − λs)(µ− λp)2
, β = 0 and u2 = 0. On simplifying KKT condition

(22) with these mentioned settings, we get G(λs) = 0. On simplifying the equality constraint

Wp(λs, β = 0) = Sp, we get

Sp =
λp

µ(µ− λp)
.

Note that λ
(1)
s is the root of cubic G(λs). It follows from supposition of the theorem that λ

(1)
s , β(2) =

0, u1 < −cλp
b
, u2 = 0, u3 = − λsµ(cλp + bu1)

b(µ− λp − λs)(µ− λp)2
(say l2) is a KKT point. Constraints

g1(λs, β) ≡ Wp ≤ Sp and g2(λs, β) ≡ β ≥ 0 are binding and strongly active as corresponding

Lagrangian multipliers (u1 and u3) are non-zero.

∇g1(λs, β) =


∂Wp

∂λs
∂Wp

∂β

 =

 0
µλs

(µ− λ)(µ− λp)2

 and ∇g2(λs, β) =

[
0

1

]
.

Consider the critical cone, C = {d 6= 0,∇g1(λs, β)t.d = 0,∇g2(λs, β)t.d = 0} (refer Bazaraa et al.

(2004)). On simplification, we get C = {(d1, 0) : d1 6= 0}. Restricted Lagrangian is given by

L̄(λs, β, u1 = l1(say), u2 = 0, u3 = l2) =
1

b
(aλs − λ2

s − cλsWs(λs, β)) + α(Wp(λs, β)− Sp) + l2β

12



Let the Hessian matrix of above restricted Lagrangian be

HL̄(λs, β) =

[
a11 a12

a21 a22

]
In order to verify the KKT second order condition, we will check for the sign of

dt.HL̄(λs, β).d =
[
d1 0

] [a11 a12

a12 a22

][
d1

0

]
= a11d

2
1

where d is a vector from cone C and a11 =
∂2L̄(λs, β)

∂λ2
s

∣∣∣∣
(λs=λ

(1)
s ,β=0)

= −2

b

(
1 +

cµ

(µ− λ1)2

)
< 0.

Hence dtHL̄(λs, β)d will be negative. This implies λ
(1)
s , β(2) = 0 are strict local maximum of NLP

P1 and Wp ≤ Sp is binding.

Now consider Lagrangian multiplier according to case 2(b). Note that case 2(b) implies u1 =
−cλp
b

, u3 = 0, β = 0 and u2 = 0. Equality constraint Wp(λs, β = 0) = Sp gives Sp =
λp

µ(µ− λp)
.

On simplifying KKT condition (22) with u2 = 0 and β = 0, we get G(λs) = 0. It follows that

λ
(1)
s , β(2) = 0, u1 = −cλp

b
, u2 = 0, u3 = 0 is a KKT point. To verify the second order condition, we

calculate the Hessian matrix of restricted Lagrangian multiplier as follows

HL̄(λs, β) =

−2

b

(
1 +

cµ

(µ− λ)3

)
0

0 0


Note that constraint g1(λs, β) ≡ Wp ≤ Sp is strongly active as corresponding Lagrangian multiplier

u1 = −cλp
b

< 0 while g2(λs, β) ≡ β ≥ 0 is weakly active as u3 = 0. Both these constraints are

binding.

∇g1(λ(1)
s , β(2)) =

 0

µλ
(1)
s

(µ− λ1)(µ− λp)2

 and ∇g2(λ(1)
s , β(2)) =

[
0

1

]

Consider the critical cone C = {d 6= 0 : ∇g1(λs, β)t.d = 0,∇g2(λs, β)t.d ≤ 0} which simplifies to C =

{(d1, 0) : d1 6= 0}. In order to verify the KKT second order condition, we have

dt.HL̄(λs, β).d =
[
d1 0

]−2

b

(
1 +

cµ

(µ− λ)3

)
0

0 0

[d1

0

]
= −2

b

(
1 +

cµ

(µ− λ)3

)
d2

1 < 0.

This implies KKT sufficient conditions are satisfied. Hence, λ
(1)
s , β(2) = 0 are strict local maximum

of NLP P1 and Wp ≤ Sp is binding. Hence theorem follows.

Corollary 1. The mean arrival rate of secondary class customers, λ
(1)
s which is a local optimum

point, is independent of Sp in service level range I ∪ λp
µ(µ− λp)

.

Proof. The optimal admission rate, λ
(1)
s , is the root of cubic G(λs) which is independent of Sp. So

λ
(1)
s is independent of Sp. Hence corollary follows.
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3.1.2 Solution of optimization problem P2 (β =∞)

Following the similar arguments as in (Sinha et al., 2008, page 18), it can be argued that problem

P2 is a differentiable convex optimization problem. So, we only need to check for the first order

KKT necessary conditions to find the optimal solution.

Lagrangian function corresponding to NLP P2 is given by:

L(λs, v1, v2) =
1

b
(aλs − λ2

s − cλsW̃s(λs)) + v1(W̃p(λs)− Sp) + v2λs (33)

where v1 and v2 are Lagrangian multipliers. Lagrangian multiplier corresponding to strict inequality

(Equation (19)) will be 0. KKT first order necessary conditions are given as follows.

a− 2λs − c
[
Ws − λs

∂Ws

∂λs

]
+ bv1

∂W̃p

∂λs
+ bv2 = 0 (34)

v1[W̃p − Sp] = 0 (35)

v2λs = 0 (36)

W̃p(λs) ≤ Sp and λs < µ− λp (37)

v1 ≤ 0, λs, v2 ≥ 0 (38)

It follows form Equation (36) that λs has to be zero if v2 > 0. Objective of resource owner is to

earn strictly positive revenue. Hence we assume that v2 = 0 throughout the analysis. We look for all

possible KKT points of the revenue maximization problem P2 with v2 = 0. We also know that the

constraint (18) will be either binding or non binding at optimality. Theorem 3 identifies the range

of Sp where constraint (18) is strictly non-binding at optimality while Theorem 4 identifies the same

when constraint (18) is binding.

Theorem 3 below states that if primary class customer’s service level is in range J as defined below,

then, solution of optimization problem P2 is given by setting β =∞, i.e., secondary class customers

should be given strict priority. Optimal admission rate for secondary class customers is given by the

root of cubic G̃(λs), identified in Equation (39).

Theorem 3. Suppose (µ − λp)(2µλ2
p + c(µ + λp)) > aµλ2

p holds; then, there exist λ
(3)
s which is the

unique root of cubic G̃(λs) in the interval (0, µ− λp) where

G̃(λs) ≡ 2µλ3
s − (c+ µ(a+ 4µ))λ2

s + 2µ(c+ aµ+ µ2)λs − aµ3. (39)

Let λ3 = λp + λ
(3)
s and further assume that Sp lies in the interval J ≡

(
λ3µ+ λ

(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

,∞

)
.

Then λ
(3)
s is the global maxima of NLP (P2) and constraint W̃p ≤ Sp is non-binding at this point.

Proof. It can be established that λ
(3)
s is the unique root of cubic G̃(λs) in the interval (0, µ), by

considering its sign change, stationary points and nature of its derivative.

Note that given (µ − λp)(2µλ2
p + c(µ + λp)) > aµλ2

p, G̃(µ − λp) > 0 follows and G̃(0) = −aµ2 < 0.

Hence, λ
(3)
s indeed is strictly less than µ− λp and lies in the interval (0, µ− λp).

It follows from KKT condition (35) that v1 = 0 as constraint W̃p ≤ Sp is non binding. Note that
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v2 = 0 also holds as λs > 0 is required to generate positive revenue. Given v1 = v2 = 0, the KKT

condition (34) results in the cubic equation given as:

G̃(λs) ≡ 2µλ3
s − (c+ µ(a+ 4µ))λ2

s + 2µ(c+ aµ+ µ2)λs − aµ3.

λ
(3)
s is the root of cubic G̃(λs). Hence λ

(3)
s , v1 = 0, v2 = 0 satisfy all KKT conditions. We note that

W̃p(λ
(3)
s ) =

λ3µ+ λ
(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

< Sp for Sp ∈ J . This implies constraint W̃p ≤ Sp is non binding for

Sp ∈ J . This point is global maximum of P2 for Sp ∈ J as P2 is convex optimization problem.

It follows from Equation (4) that Wp(λs, β =∞) = W̃p(λs) is an increasing function of λs ∈ [0, µ−λp).
Using this fact, one can adapt the arguments of (Sinha et al., 2008, page 20) to show that for Sp /∈ J ,

the waiting time constraint for primary class customers will be binding at optimality. On exploiting

this fact and using KKT necessary condition, we complete the solution of problem P2 by Theorem 4.

Theorem 4 states that if primary class customer’s service level is in range J− as defined below, then,

the solution of optimization problem P2 is given by β = ∞, i.e., secondary class customers should

be given strict priority. Optimal admission rate for secondary class customers is given by the root of

a quadratic. Primary class customer’s service level constraint is binding in this setting.

Theorem 4. Let Sp lies in the interval, J− defined as

J− ≡


(

λp
µ(µ− λp)

,
λ3µ+ λ

(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

]
for (µ− λp)(2µλ2

p + c(µ+ λp)) > aµλ2
p(

λp
µ(µ− λp)

,∞
)

otherwise

where λ3 = λp + λ
(3)
s and λ

(3)
s is the unique root of cubic G̃(λs) in the interval (0, µ − λp) whenever

(µ − λp)(2µλ2
p + c(µ + λp)) > aµλ2

p. Then, λ
(4)
s is the global maximum of NLP (P2) and constraint

W̃p ≤ Sp is binding, where

λ(4)
s = µ− λp

2
− 1

2

√
λ2
p +

4µ2

µSp + 1
. (40)

Proof. We note that J− ∩ J = φ; therefore, constraint W̃p ≤ Sp is binding at optimum for Sp ∈ J−.

Claim 2. Suppose Sp >
λp

µ(µ− λp)
, then there exists a unique λ

(4)
s ∈ (0, µ − λp) that satisfies the

equality W̃p(λs) = Sp.

Proof. See Appendix.

It follows from above claim that W̃p(λ
(4)
s ) = Sp. Hence the point λs = λ

(4)
s satisfies the KKT condition

(35) irrespective of value of v1. On solving KKT condition (34) for v1 at λs = λ
(4)
s , v2 = 0, we get

v1 = −

(
a− 2λ(4)

s −
cλ

(4)
s (2µ− λ(4)

s )

µ(µ− λ(4)
s )2

)(
(µ− λ(4)

s )2(µ− λ(4)
s − λp)2

bµ(2µ− 2λ
(4)
s − λp)2

)
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Note that v1 ≤ 0 holds iff

(
a− 2λ

(4)
s −

cλ
(4)
s (2µ− λ(4)

s )

µ(µ− λ(4)
s )2

)
≥ 0. On further simplification, we get

v1 ≤ 0 iff − G̃(λ
(4)
s )

µ(µ− λ(4)
s )2

≥ 0. Hence v1 ≤ 0 iff G̃(λ
(4)
s ) ≤ 0. It follows that G̃(λs) ≤ 0 in the interval

(0, λ
(3)
s ] as λ

(3)
s is the unique root of cubic G̃(λs) in the interval (0, µ) and G̃(0) = −aµ3 < 0. This

implies that v1 ≤ 0 will hold true if λ
(4)
s ≤ λ

(3)
s . To establish λ

(4)
s ≤ λ

(3)
s , consider following two cases:

Case 1 (µ− λp)(2µλ2
p + c(µ+ λp)) ≤ aµλ2

p

Note that λ
(3)
s is the root of cubic G̃(λs). It is known that G̃(λs) has a unique root in (0, µ) and

G̃(0) = −aµ3 < 0, G̃(µ) = cµ2 > 0. G̃(µ−λp) = (µ−λp)(2µλ2
p+ c(µ+λp))−aµλ2

p ≤ 0. This implies

λ
(3)
s ∈ [µ− λp, µ). It follows from Equation (40) that λ

(4)
s < µ− λp. So λ

(4)
s < λ

(3)
s holds in this case.

Case 2 (µ− λp)(2µλ2
p + c(µ+ λp)) > aµλ2

p

In this case interval J− becomes

(
λp

µ(µ− λp)
,
λ3µ+ λ

(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

)
. Note that λ

(4)
s is the root of

quadratic obtained by equating W̃p(λs) = Sp (refer claim 2). Note that J−u = W̃p(λ
(3)
s ) where J−u

is the upper limit of interval J−. This follows from the expression of W̃p(λs). Hence at Sp = J−u ,

quadratic will result in Q(λ
(3)
s ) = 0. So λ

(3)
s = λ

(4)
s at Sp = J−u . We know that W̃p(λs) is an increasing

convex function of λs. Thus λ
(4)
s < λ

(3)
s will hold for Sp <

λ3µ+ λ
(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

.

This completes the argument that λ
(4)
s ≤ λ

(3)
s for Sp ∈ J−. Point λs = λ

(4)
s , v1, v2 = 0 satisfies KKT

conditions. This KKT point will be global maxima for optimization problem P2 as P2 is convex

optimization problem. Hence theorem follows.

Corollary 2. λ
(4)
s is an increasing function of Sp, for Sp ∈ J−.

Proof. Using Equation (40),
∂λ

(4)
s

∂Sp
=

µ3(√
λ2
p +

4µ2

µSp + 1

)
(µSp + 1)2

≥ 0. Hence corollary follows.

3.1.3 Comparison of optima of problem P1 and P2

Analysis of the case β < ∞ establishes that given
a

c
>

λp(2µ− λp)
µ(µ− λp)2

and Sp ∈
λp

µ(µ− λp)
∪ I

problem P1 will have a local optimal solution while the case β = ∞ has the optimal solution for

Sp > Ŝp =
λp

µ(µ− λp)
. So there exists optimal solution for both optimization problems P1 and P2

in service level range I (defined in Theorem 1). In order to find the global optima, one needs to

compare optimal objective function of P1 and P2 in the interval I, given that
a

c
>
λp(2µ− λp)
µ(µ− λp)2

.

These two optimal values of objective functions are compared using the interpretation of Lagrangian

multiplier (refer proposition 3.3.3 in Bertsekas (1999)). It turns out that the solution of optimization
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problem P0 is given by P1 (β <∞) for interval I, i.e., optimal objective value of P1 is more than

that of P2 in interval I. Detailed analysis of this comparison is as follows.

Let (λfs , β
f ) and (λis,∞) are optimal solution of the optimization problem P1 and P2 respectively.

Let the corresponding values of objective function are O∗1(λfs , β
f ) and O∗2(λis,∞) for Sp ∈ I. Below,

we establish that O∗1(λfs , β
f ) > O∗2(λis,∞).

Claim 3. Service level constraint of primary class customers (Wp ≤ Sp) is binding in both the local

solutions given by optimization problem P1 and P2 for Sp ∈ I.

Proof. See Appendix.

It follows from above claim that constraint Wp ≤ Sp is binding for Sp ∈ I. We now use the

interpretation of Lagrangian duality to compare optimal objectives O∗1(λs, β) and O∗2(λs, β) (refer

proposition 3.3.3 in Bertsekas (1999)):

∂O∗1
∂Sp

= −uf1 and
∂O∗2
∂Sp

= −vi1 (41)

where uf1 and vi1 are corresponding Lagrangian multipliers associated with the constraint Wp(λs, β) =

Sp of optimization problem P1 and P2 respectively. Solution for problem P1 (β < ∞) is given by

Theorem 1 and that for problem P2 (β =∞) is given by Theorem 4 for service level range Sp ∈ I.

We have corresponding Lagrangian multiplier as:

uf1 = −cλp
b

and vi1 = −

(
a− 2λ(4)

s −
cλ

(4)
s (2µ− λ(4)

s )

µ(µ− λ(4)
s )2

)
(µ− λ(4)

s )2(µ− λ(4)
s − λp)2

bµ(2µ− 2λ
(4)
s − λp)2

λis = λ
(4)
s as solution of P2 is given by Theorem 4 for Sp ∈ I. On further simplifying the expression

of vi1, we have

vi1 =
G̃(λis)(µ− λis − λp)2

bµ2(2µ− 2λis − λp)2
(42)

Note that vi1 ≤ 0 holds for Sp ∈ I as G̃(λis) ≤ 0 for 0 ≤ λs ≤ λ
(3)
s and λ

(4)
s = λis ≤ λ

(3)
s . From

Equation (41), we have
∂O∗1
∂Sp

= −uf1 ≥ 0 and
∂O∗2
∂Sp

= −vi1 ≥ 0 (43)

This implies O∗1 and O∗2 are increasing function of Sp in interval I. From Equation (42), we have

∂vi1
∂λis

=
(µ− λp − λis)

bµ2(2µ− 2λis − λp)3

[
G̃′(λis).(µ− λp − λis)(2µ− 2λis − λp)− 2λpG̃(λis)

]
G̃′(λis) is a quadratic equation and one can show that G̃′(λis) ≥ 0 in interval (0, µ). G̃(λs) ≤ 0 for

0 ≤ λs ≤ λ
(3)
s and λ

(4)
s = λis ≤ λ

(3)
s . So G̃(λis) ≤ 0 holds. This implies

∂vi1
∂λis
≥ 0 and

∂uf1

∂λfs
=

∂

∂λfs

(
−cλp

b

)
= 0 (44)

On using Equation (41) and (44), we have
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∂2O∗1
∂S2

p

=
∂

∂Sp

(
∂O∗1
∂Sp

)
= −∂u

f
1

∂Sp
= −∂u

f
1

∂λfs

∂λfs
∂Sp

= 0

It follows from Equation (43) and above expression that O∗1 is linearly increasing function of Sp in

interval I.
∂2O∗2
∂S2

p

=
∂

∂Sp

(
∂O∗2
∂Sp

)
= − ∂v

i
1

∂Sp
= −∂v

i
1

∂λis

∂λis
∂Sp
≤ 0

Above statement follows from Equation (44) and corollary of Theorem 4 which states that λ
(4)
s is an

increasing function of Sp. Hence O∗2 is an increasing concave function of Sp in interval I. Collecting

all results together, we have

• O∗1 is linearly increasing function of Sp in interval I.

• O∗2 is an increasing concave function of Sp in interval I.

• Slope of O∗2 is decreasing in interval I.

Sp
I

O∗1 or O∗2

O∗1(λ
(1)
s , 0)

O∗1(λ
(1)
s , β(1))

O∗2(λ
(4)
s ,∞)

Sp Iu

Figure 3: Optimal value of P1 and P2 in interval I

It follows from Theorem 1 that denominator of optimal scheduling policy, β(1) is λ1µ+(µ−λ1)(λ
(1)
s +

µSpλ
(1)
s − µ2Sp). Note that this term will be 0 at Sp = Iu =

λ1µ+ (µ− λ1)λ
(1)
s

µ(µ− λ1)(µ− λ(1)
s )

. Hence β → ∞

as Sp → Iu. Also recall that λ
(4)
s (= λis) is the solution of quadratic equation obtained by equating

W̃p(λs) = Wp(λs, β
(1) = ∞) = Sp in interval (0, µ − λp). Hence λfs → λis as Sp → Iu. This implies

O∗1(λfs , β
f ) → O∗2(λis,∞) as Sp → Iu. Optimization problems P1 and P2 are same at Sp = Iu. So

vi1 → uf1 i.e
∂O∗1
∂Sp

→ ∂O∗2
∂Sp

as Sp → Iu. O∗2(λis,∞) < O∗1(λfs , β
f ) follows in interval I as slope of

O∗2(λis,∞) is decreasing and that of O∗1(λfs , β
f ) remains constant (see Figure 3).

We consolidate all results in Theorem 5. Theorem 5 states that solution of resource owner profit

maximization problem depends on ratio
a

c
. If 0 <

a

c
≤ λp(2µ− λp)

µ(µ− λp)2
, then, the solution of P0 is given
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by P2, i.e., with β =∞ while for
a

c
>
λp(2µ− λp)
µ(µ− λp)2

solution of P0 is given by P1 or P2 depending

on the value of service level.

Theorem 5. 1. Suppose 0 <
a

c
≤ λp(2µ− λp)

µ(µ− λp)2
, then we can write (Ŝp,∞) as (Ŝp,∞) = J− ∪ J

with J being possibly empty. Then optimization problem P2 has a solution but P1 is infeasible.

For Sp ∈ (Ŝp,∞), the optimal solution to P0 is given by optimal solution to P2 with β∗ =∞
and λ∗s = λ

(3)
s if Sp ∈ J & λ∗s = λ

(4)
s if Sp ∈ J−.

2. Suppose
a

c
>
λp(2µ− λp)
µ(µ− λp)2

holds then

• For Sp = Ŝp, optimal solution of P0 is given by P1 with λ∗s = λ
(1)
s and β∗ = 0 as optimal

solution.

• We can write (Ŝp,∞) as (Ŝp,∞) = I ∪ I+ ∪ J , with J being possibly empty. Then opti-

mization problem P1 and P2 have optimal solution. Optimal solution to P0 is given by

P1 with λ∗s = λ
(1)
s and β∗ = β(1) in interval I and for Sp ∈ I+ ∪ J optimal solution to P0

is given by P2 with β∗ =∞ and λ∗s = λ
(4)
s if Sp ∈ I+ & λ∗s = λ

(3)
s if Sp ∈ J .

Proof. Follows from Theorem 1, 2, 3, 4 and the fact that optimal objective for problem P2 is lesser

than optimal objective for problem P1 in service level range I.

We now present a finite step algorithm in next section to find the global optimal operating parameters

using the results derived above.

3.2 Algorithm to find optimal operating parameters

Based on above analysis, a finite step algorithm is described to compute the global optimal mean

arrival rate of secondary class customers, λ∗s, and relative queue discipline management parameter,

β∗. Once λ∗s and β∗ are known, the optimal service level, S∗s , and optimal admission price, θ∗, for

secondary class customers can be obtained using S∗s = Ws(λ
∗
s, β

∗) and θ∗ = (a− cS∗ − λ∗s)/b.

Inputs: λp, µ, a, b, c and Sp

Steps:

1. if Sp < Ŝp :=
λp

µ(µ− λp)
or

a

c
≤ 0, then there does not exist any feasible solution. Assign

λ∗s = 0 and stop; else, go to step 2.

2. if
a

c
≤ λp(2µ− λp)

µ(µ− λp)2
then go to step 3; else, go to step 7.

3. if Sp = Ŝp, there does not exist any feasible solution, assign λ∗s = 0 and stop; else, go to step 4.
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4. if
µ− λp
µλp

≤ aλp
2µλ2

p + c(µ+ λp)
then Jl =∞ and go to step 6; else, define Jl =

λ3µ+ λ
(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

,

J = (Jl,∞) and find λ
(3)
s which is the unique root of cubic G̃(λs) in the interval (0, µ − λp)

where

G̃(λs) ≡ 2µλ3
s − (c+ µ(a+ 4µ))λ2

s + 2µ(c+ aµ+ µ2)λs − aµ3

5. if Sp ∈ J then λ∗s = λ
(3)
s , β∗ =∞, go to step 10; else, go to step 6.

6. define J− = (Ŝp, Jl] if Jl is finite and J− = (Ŝp,∞) if Jl = ∞, assign λ∗s = λ
(4)
s = µ − λp

2
−

1

2

√
λ2
p +

4µ2

µSp + 1
, β∗ =∞, go to step 10.

7. if Sp = Ŝp then compute λ
(1)
s , unique root of cubic G(λs) in the interval (0, µ − λp) with

φ0 = µ− λp where

G(λs) ≡ 2µλ3
s − [c+ µ(a+ 4φ0)]λ2

s + 2φ0[c+ µ(a+ φ0)]λs − aµφ2
0 + cλp(µ+ φ0)

and assign λ∗s = λ
(1)
s , β∗ = 0 go to step 10; else, go to step 8.

8. if
µ− λp
µλp

≤ aλp
2µλ2

p + c(µ+ λp)
then Jl =∞; else, define Jl =

λ3µ+ λ
(3)
s (µ− λ3)

µ(µ− λ3)(µ− λ(3)
s )

and find λ
(3)
s ,

root of cubic G̃(λs).

9. find λ
(1)
s , the root of cubicG(λs), define Iu =

λ1µ+ λ
(1)
s (µ− λ1)

µ(µ− λ1)(µ− λ(1)
s )

. Also define I = (Ŝp, Iu), I
+ =

[Iu, Jl] if Jl is finite; otherwise take I+ as I+ = [Iu,∞). Also, take J = (Jl,∞) if Jl is finite;

otherwise J = φ.

(a) if Sp ∈ I then λ∗s = λ
(1)
s and ,

β∗ =


(µ− λ1) (µSp(µ− λp)− λp)
λ2

1 − (µ− λ1)(µSpλp − λ(1)
s )

for
λp

µ(µ− λp)
< Sp ≤

λ1

µ(µ− λ1)

λ
(1)
s (µ− λ1)(1 + µSp)

λ1µ+ (µ− λ1)(λ
(1)
s + µSpλ

(1)
s − µ2Sp)

for
λ1

µ(µ− λ1)
< Sp <

λ1µ+ (µ− λ1)λ
(1)
s

µ(µ− λ1)(µ− λ(1)
s )

(b) if Sp ∈ I+ then λ∗s = λ
(4)
s , β∗ =∞,

(c) if Sp ∈ J then λ∗s = λ
(3)
s , β∗ =∞

10. The optimum assured service level to the secondary class customers is S∗s = Ws(λ
∗
s, β

∗) and

optimal unit admission price charged to secondary class customers is θ∗ = (a− cS∗s − λ∗s)/b.

We now study the advantage of using pre-emption over non pre-emptive priority scheduling on

total revenue generated by the system. Intuitively, pre-emptive priority is likely to introduce more

customers (admission rate) than that with non pre-emptive priority scheduling. We note that this

is not the case for certain range of service level and comment on such phenomenon analytically.

Section 4 and 5 compare revenue generated under two (pre-emptive and non pre-emptive) scheduling

schemes.
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4 Comparison of Scheduling Policies: Theoretical Develop-

ment

In this section and the next, we will compare two systems for revenue generated, i.e., with pre-emptive

and non pre-emptive priority scheduling discipline. We do this comparison by considering different

ranges of service levels Sp and other input parameters. This comparison is theoretically tractable

with some complementary conditions for certain range of service level when static priority is optimal

for both pre-emptive and non pre-emptive scheduling policies. Comparison of revenue becomes more

difficult when at least one of the scheduling policy gives feasible solution with finite (pure dynamic)

scheduling parameter. We perform computational experiments for such cases in Section 5.

We first identify the certain range of service levels and input parameters setting where pre-emptive

priority generates revenue and non pre-emptive priority gives infeasible solution. We further explore

the input parameter space to compare revenue where both scheduling policies are feasible and optimal

scheduling parameter, β∗, for both policies (pre-emptive and non pre-emptive) is infinite. Certain

complementary conditions are identified to analytically tract the revenue comparison for such cases.

Our computational results show that these complementary conditions adjust in such a way that

revenue in pre-emptive scheduling discipline outperforms non pre-emptive scheduling. It turns out

that revenue with pre-emptive priority is higher for certain range of primary class service level. We

also approach this comparison via secondary class customer’s service level and market equation. We

note that some conditions are needed to tract revenue for certain range while comparing via service

level.

In this paper, service time distribution is assumed to be exponential under pre-emptive scheduling

discipline and variance σ2 = 1/µ2 for exponential distribution. Hence ψ =
1 + σ2µ2

2
= 1 as in Sinha

et al. (2010). We now consider different ranges of service level Sp and input parameter space for

revenue comparison.

4.1 Range: Sp = Ŝp and
a

c
>
λp(2µ− λp)
µ(µ− λp)2

Revenue maximization problem is infeasible under non pre-emptive priority scheduling for this range

(see Theorem 5 in Sinha et al. (2010)). That is, service level Ŝp can not be achieved even if one assigns

strict priority to primary class of customers due to non pre-emptive priority nature. However, service

level Sp = Ŝp can be achieved for given range under pre-emptive priority scheduling (see Theorem 2 in

above Section 3.1.1). Optimal scheduling parameter, β∗ = 0, and optimal admission rate, λ∗s = λ
(1)
s ,

matches with queueing intuition. Note that Ŝp =
λp

µ(µ− λp)
is the mean waiting time with primary

class of customers only. The only possible way to achieve the service level Ŝp is to give strict pre-

emptive priority to primary class customers hence optimal scheduling parameter β∗ = 0 is needed.

It follows from Theorem 2 in Section 3.1.1 that optimal admission rate λ
(1)
s , root of G(λs), will lie in

interval (0, µ−λp) if
a

c
>
λp(2µ− λp)
µ(µ− λp)2

. That is why this condition is needed. Revenue maximization
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problem is infeasible with non pre-emptive scheduling while this problem has a feasible solution with

pre-emptive scheduling. Hence revenue generated will always be more with pre-emptive scheduling

for this given range.

4.2 Range: Sp > Ŝp and
a

c
≤ λp
µ2

Revenue maximization problem is infeasible under non pre-emptive priority scheduling for this range

(see Theorem 5 in Sinha et al. (2010)). However, problem is feasible for pre-emptive priority schedul-

ing with optimal scheduling parameter β∗ = ∞ and admission rate λ∗s = λ
(3)
s or λ

(4)
s depending on

service level Sp (see Theorem 3 and 4 in Section 3.1.2). We use notations NP and PR for quanti-

ties associated with non pre-emptive and pre-emptive scheduling discipline respectively; for example

λs|NP and λs|PR are secondary class customer’s arrival rates under non pre-emptive and pre-emptive

priority scheduling discipline respectively. Queueing arguments for the same in this case can be given

as follows.

It can be argued using the linear demand function that λs > 0 if and only if
a

c
> Ss = Ws(λs = ε,∞)

where ε is strictly positive and ε ≈ 0 (see page 28 in Sinha et al. (2008)). In non pre-emptive

priority scheduling, Ws(λs = ε,∞)|NP ≈
λp
µ2

; therefore λs|NP > 0 iff
a

c
>

λp
µ2

. It follows from

Equation (5) that Ws(λs = ε,∞)|PR =
λs

µ(µ− λs)
=

ε

µ(µ− ε)
in pre-emptive priority scheduling.

Ws(λs = ε,∞)|PR ≈ 0 when ε > 0 and ε ≈ 0. Hence waiting time of secondary class can be made

arbitrarily small in pre-emptive priority case. This implies λs|PR > 0 iff
a

c
> 0.

Revenue maximization problem is infeasible with non pre-emptive scheduling while this problem has

a feasible solution with pre-emptive scheduling. Hence revenue generated will always be more with

pre-emptive scheduling for this given range.

4.3 Range: Sp > Ŝp and
λp
µ2

<
a

c
≤ λp(2µ− λp)

µ(µ− λp)2

Revenue maximization problem is feasible under both pre-emptive and non pre-emptive priority

scheduling for this range (see Theorem 5 in Sinha et al. (2010) and Theorem 3 and 4 in Section

3.1.2). Note that optimal scheduling parameter β∗ = ∞ under both priority schemes. We now

calculate the total revenue generated under both scheduling policies to compute the difference in

revenue.

Total revenue generated is arrival rate, λs, multiplied by unit admission price, θ. θλs is simplified

to revenue R :=
1

b
(aλs − λ2

s − cλsWs(λs, β)) in the objective function of optimization problem P1.

Revenue term can be further simplified by the following waiting time expressions with β∗ = ∞ (as

in this case). Mean waiting time expressions are given by

Ws(λs|PR, β∗ =∞)|PR =
λs|PR

µ(µ− λs|PR)
and Ws(λs|NP , β∗ =∞)|NP =

λp + λs|NP
µ(µ− λs|NP )
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Revenue with non pre-emptive and pre-emptive priority is then given by

R|NP =
1

b

(
aλs|NP − (λs|NP )2 − cλs|2NP

µ(µ− λs|NP )

)
− 1

b

cλpλs|NP
µ(µ− λs|NP )

(45)

R|PR =
1

b

(
aλs|PR − (λs|PR)2 − c(λs|PR)2

µ(µ− λs|PR)

)
(46)

The difference in revenue can be simplified to D := R|NP −R|PR =

(
λs|NP − λs|PR

b

)
×[

a− λs|NP − λs|PR −
c

µ(µ− λs|NP )

(
µλs|PR + λs|NP (µ− λs|PR)

µ− λs|PR
+

λpλs|NP
λs|NP − λs|PR

)]
(47)

Note that the sign of above expression decides the optimal scheduling mechanism in terms of revenue

maximization. Sign of second term involves λs|NP and λs|PR in denominator. λs|NP and λs|PR
are complicated non-linear expressions. Hence the sign of second term is intractable. We identify

following two conditions under which difference in revenue can be ordered to find revenue optimal

scheduling mechanism.

Condition C: a < λs|NP + λs|PR +
c

µ(µ− λs|NP )

(
µλs|PR + λs|NP (µ− λs|PR)

µ− λs|PR
+

λpλs|NP
λs|NP − λs|PR

)
Condition C ′: a ≥ λs|NP + λs|PR +

c

µ(µ− λs|NP )

(
µλs|PR + λs|NP (µ− λs|PR)

µ− λs|PR
+

λpλs|NP
λs|NP − λs|PR

)

We identify the sign of the first term in Equation (47) for various values of input parameters. How-

ever our observation from computational examples is that the product is always negative and hence

pre-emptive priority policy generates more revenue. We also observe that the optimal service level

offered to secondary class customers for various input parameters is smaller in pre-emptive priority

scheduling. This can be seen as the effect of pre-emptive scheduling with optimal scheduling param-

eter β∗ = ∞. We list below the various cases that exhaustively cover all possible values of input

parameters of this model under the given setting.

In the view of Theorem 3 and 4 in Section 3.1.2 and in Sinha et al. (2010), service level range (Ŝp,∞)

is written as J− ∪ J in both pre-emptive and non pre-emptive priority scheduling. Denoting by Jl|∗
the left end point of service level range J as per policy ‘*’, we have the following left end points

Jl|NP =
λ3|NP

(µ− λ(3)
s |NP )(µ− λ3|NP )

and Jl|PR =
µλ3|PR + λ

(3)
s |PR(µ− λ3|PR)

µ(µ− λ(3)
s |PR)(µ− λ3|PR)

(48)

Set Cl as
µλ3|NP + λ

(3)
s |NP (µ− λ3|NP )

µ(µ− λ3|NP )(µ− λ(3)
s |NP )

. Clearly Jl|NP < Cl holds. It is clear from the statements

of Theorem 3 and 4 that optimal nature of priority and arrival rate further depend on ratio
µ− λp
µλp

.

Hence we have following sub cases that we analyse below.

(α)
µ− λp
µλp

≤ aλp − c
2µλ2

p + c(µ+ λp)

(β)
aλp − c

2µλ2
p + c(µ+ λp)

<
µ− λp
µλp

≤ aλp
2µλ2

p + c(µ+ λp)
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(γ)
µ− λp
µλp

>
aλp

2µλ2
p + c(µ+ λp)

4.3.1 Scenario (α):
µ− λp
µλp

≤ aλp − c
2µλ2

p + c(µ+ λp)

In this scenario, solution is given by Theorem 4 in both non pre-emptive (see Sinha et al. (2010)) and

pre-emptive scheduling (see Section 3.1.2). Hence service level range J is empty in both scheduling

schemes and J− becomes (Ŝp,∞). It follows from Theorem 4 that β∗|NP = β∗|PR =∞ and λ∗s|NP =

λ
(4)
s |NP , λ∗s|PR = λ

(4)
s |PR. Following claim orders optimal arrival rate in this case which will be used

in comparing revenue.

Claim 4. Optimal arrival rate for secondary class of customers is more in non pre-emptive scheduling

than that of pre-emptive scheduling when solution is given by Theorem 4, i.e., λ
(4)
s |NP > λ

(4)
s |PR.

Proof. See Appendix B.

It can be argued from Equation (47) that revenue generated with pre-emptive priority is higher

than that with non pre-emptive priority under condition C while inequality will reverse and non

pre-emptive priority will generate more revenue under condition C ′.

We consider a numerical example with parameter settings a = 100, b = 0.2, c = 400, λp = 8 and µ =

10 for illustration. Conditions for scenario (α) are satisfied under these parameter settings. Numerical

results shown in Table 1 illustrate Claim 4. It is noted that condition C is satisfied for different service

levels in Table 1. Hence pre-emptive scheduling discipline generates more revenue for the example

discussed.

Non Pre-emptive priority Pre-emptive priority
Sp Service Rate Price Revenue Service Rate Price Revenue

S∗s λ∗s θ∗ O∗NP = λ∗s × θ∗ S∗s λ∗s θ∗ O∗PR = λ∗s × θ∗
0.41 0.081 0.034 338.61 11.47 0.0003 0.033 499.17 16.357

1 0.100 1.000 295.00 295.00 0.0109 0.999 473.04 468.750
4 0.117 1.707 257.34 439.38 0.0205 1.706 450.33 768.239
8 0.120 1.849 249.09 460.56 0.0226 1.8485 445.40 823.346
13 0.1219 1.906 245.70 468.28 0.0235 1.906 443.38 844.953

Table 1: Comparison of revenue with pre-emptive and non pre-emptive scheduling for scenario (α)

4.3.2 Scenario (β):
aλp − c

2µλ2
p + c(µ+ λp)

<
µ− λp
µλp

≤ aλp
2µλ2

p + c(µ+ λp)

In this scenario, solution is given by Theorem 4 for pre-emptive priority scheduling (see Section

3.1.2) and hence β∗|PR = ∞ and λ∗s|PR = λ
(4)
s |PR. Solution is given by both Theorem 3 and 4 for

non pre-emptive priority scheduling (see Sinha et al. (2010)) and hence β∗|NP = ∞ but λ∗s|NP =

λ
(3)
s |NP or λ

(4)
s |NP depending on primary class customer’s service level Sp. Optimal admission rate,

λ∗s|NP = λ
(4)
s |NP for service level range J−|NP ≡ (Ŝp, Jl|NP ] while λ∗s|NP = λ

(3)
s |NP for Sp ∈ J |NP ≡
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(Jl|NP ,∞). Based on the nature of solution, we divide the entire service level range (Ŝp,∞) into

three parts to compare revenue (see Figure 4). Upper part of Figure 4 shows the optimal arrival

rates for different range of service levels under non pre-emptive priority while lower part describes

the same for pre-emptive priority scheduling. We analyse each service level range as follows.

Interval Aβ Interval Bβ Interval Cβ Sp

Ŝp
Jl|NP Cl

J−|NP

J |PR

J |NP

λ∗s|NP = λ
(4)
s |NP λ∗s|NP = λ

(3)
s |NP

λ∗s|PR = λ
(4)
s |PR

Figure 4: Division of service level range (Ŝp,∞) in three parts for Scenario (β)

Interval Aβ: (Ŝp, Jl|NP ] ≡ Aβ

It is clear from Figure 4 that optimal admission rate λ∗s|NP = λ
(4)
s |NP > λ

(4)
s |PR = λ∗s|PR (follows

from Claim 4) for this range of service level. Hence, from Equation (47), revenue will be more with

pre-emptive priority under condition C and that with non pre-emptive priority under condition C ′.

Interval Bβ and Cβ: (Jl|NP , Cl) ≡ Bβ and (Cl,∞) ≡ Cβ

Following claim orders the optimal arrival rate in service level range Bβ and Cβ and hence useful in

comparing revenue for these service level ranges.

Claim 5. λ
(3)
s |NP > λ

(4)
s |PR holds for service level Sp < Cl while λ

(3)
s |NP < λ

(4)
s |PR holds for Sp > Cl

and λ
(3)
s |NP = λ

(4)
s |PR at Sp = Cl.

Proof. See Appendix B.

It follows from above claim that λ∗s|NP = λ
(3)
s |NP > λ

(4)
s |PR = λ∗s|PR for service level range Bβ as

Sp < Cl while λ∗s|NP = λ
(3)
s |NP < λ

(4)
s |PR = λ∗s|PR for service level range Cβ as Sp > Cl.

For service level range Bβ, it can be argued from Equation (47) that revenue generated with pre-

emptive priority is higher than that with non pre-emptive priority if condition C is true while

inequality will reverse and non pre-emptive priority will generate more revenue if condition C ′ is

true. Similar arguments can be made for service level range Cβ using Equation (47). Also note

that λ∗s|NP = λ∗s|PR at service level Sp = Cl and hence it follows from Equation (23) and (24) that

pre-emptive priority generates more revenue. Following numerical example illustrates that difference

D in Equation (47) is negative for all service level ranges (Aβ, Bβ, Cβ) and hence pre-emptive

scheduling generates more revenue.

We consider a numerical example with parameter settings a = 1000, b = 300, c = 4700, λp =

6 and µ = 10. Service level ranges turn out to be Aβ ≡ (0.15, 1.057], Bβ ≡ (1.057, 1.0966) and
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Cβ ≡ (1.0966,∞) for given parameter settings. Numerical results shown in Table 2 illustrate the

order obtained for optimal arrival rate for different service level ranges (Aβ to Cβ). It is noted in

numerical examples that condition C is satisfied for service level range Aβ and Bβ while condition

C ′ is satisfied for service level range Cβ. Hence pre-emptive scheduling discipline generates more

revenue for the example discussed.

Non Pre-emptive priority Pre-emptive priority
Sp Service Rate Price Revenue Service Rate Price Revenue

S∗s λ∗s θ∗ λ∗s × θ∗ S∗s λ∗s θ∗ λ∗s × θ∗
0.16 0.0620 0.1242 2.3614 0.2933 0.0011 0.1108 3.3154 0.3672
0.3 0.0827 1.2430 2.0334 2.5275 0.0132 1.1690 3.1220 3.6498
0.7 0.1109 2.4151 1.5871 3.8331 0.0309 2.3632 2.8407 6.7130
1.06 0.1233 2.8338 1.3927 3.9465 0.0389 2.8023 2.7140 7.6055
1.07 0.1233 2.8338 1.3927 3.9465 0.0391 2.8111 2.7113 7.6218

1.0966 = Cl 0.1233 2.8338 1.3927 3.9465 0.0395 2.8338 2.7044 7.6637
2 0.1233 2.8338 1.3927 3.9465 0.0490 3.2903 2.5541 8.4038
5 0.1233 2.8338 1.3927 3.9465 0.0585 3.6893 2.4051 8.8733

Table 2: Comparison of revenue with pre-emptive and non pre-emptive scheduling for Scenario (β)

4.3.3 Scenario (γ):
µ− λp
µλp

>
aλp

2µλ2
p + c(µ+ λp)

In this scenario, solution is given by Theorem 3 and 4 for both pre-emptive (see Section 3.1.2) and

non pre-emptive priority (see Sinha et al. (2010)) depending on primary class service level, Sp. Hence

β∗|NP = ∞ while λ∗s|NP will be λ
(3)
s |NP or λ

(4)
s |NP . Similarly, β∗|PR = ∞ and λ∗s|PR will be λ

(3)
s |PR

or λ
(4)
s |PR. Following claim orders optimal arrival rates (λ

(3)
s |NP and λ

(3)
s |PR) which is useful in

comparing revenue for this scenario.

Claim 6. Optimal arrival rate for secondary class of customers is less in non pre-emptive scheduling

than that of pre-emptive scheduling when solution is given by Theorem 3, i.e., λ
(3)
s |NP < λ

(3)
s |PR.

Proof. See Appendix B.

In non pre-emptive priority scheme, optimal admission rate, λ∗s|NP = λ
(4)
s |NP for service level range

J−|NP ≡ (Ŝp, Jl|NP ] while λ∗s|NP = λ
(3)
s |NP for Sp ∈ J |NP ≡ (Jl|NP ,∞). In pre-emptive priority

scheme, optimal admission rate, λ∗s|PR = λ
(4)
s |PR for service level range J−|PR ≡ (Ŝp, Jl|PR] while

λ∗s|PR = λ
(3)
s |PR for Sp ∈ J |PR ≡ (Jl|PR,∞). It can be argued using above claim and the definition

of Jl|NP , Cl, and Jl|PR (see Equation (48)) that Jl|NP < Cl < Jl|PR.

Based on the nature of solution, we divide the entire service level range (Ŝp,∞) into four parts to

compare revenue (see Figure 5). Upper part of Figure 5 shows the optimal arrival rates for different

range of service levels under non pre-emptive priority while lower part describes the same for pre-

emptive priority scheduling. We analyse each service level range as follows.

Interval Aγ: (Ŝp, Jl|NP ] ≡ Aγ
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Interval Aγ Interval Bγ
Interval Cγ Sp

Ŝp
Jl|NP Cl

J−|NP

J−|PR

J |NP

λ∗s|NP = λ
(4)
s |NP

λ∗s|PR = λ
(4)
s |PR

Jl|PR

Interval Dγ

J |PR
λ∗s|PR = λ

(3)
s |PR

λ∗s|NP = λ
(3)
s |NP

Figure 5: Division of service level range (Ŝp,∞) in four parts for Scenario (γ)

It is clear from Figure 5 that optimal admission rate λ∗s|NP = λ
(4)
s |NP > λ

(4)
s |PR = λ∗s|PR (follows

from Claim 2) for this range of service level. Hence, from Equation (47), revenue will be more with

pre-emptive priority under condition C and that with non pre-emptive priority under condition C ′.

Interval Bγ and Cγ: (Jl|NP , Cl) ≡ Bγ and (Cl, Jl|PR] ≡ Cγ

Optimal scheduling parameter for service level range Bγ and Cγ is given by β∗|NP = β∗|PR = ∞.

It follows from Claim 5 that λ∗s|NP = λ
(3)
s |NP > λ

(4)
s |PR = λ∗s|PR holds for service level range Bγ as

Sp < Cl while λ∗s|NP = λ
(3)
s |NP < λ

(4)
s |PR = λ∗s|PR holds for service level range Cγ as Sp > Cl.

For service level range Bγ, it can be argued from Equation (47) that revenue generated with pre-

emptive priority is higher than that with non pre-emptive priority if condition C is true while

inequality will reverse and non pre-emptive priority will generate more revenue under condition

C ′. Similar arguments can be made for service level range Cγ using Equation (47). Also note that

λ∗s|NP = λ∗s|PR at service level Sp = Cl and hence it follows from Equation (23) and (24) that

pre-emptive priority will generate more revenue.

Interval Dγ: (Jl|PR,∞) ≡ Dγ

It is clear from Figure 4 that λ∗s|NP = λ
(3)
s |NP < λ

(3)
s |PR = λ∗s|PR (using Claim 6) for this range

of service level. Hence it can be argued from Equation (25) that revenue will be more with non

pre-emptive priority under condition C and that with pre-emptive priority under condition C ′.

Following numerical example illustrates that difference D in Equation (47) is negative for all service

level ranges (Aγ, Bγ, Cγ, Dγ) and hence pre-emptive scheduling always generates more revenue.

We consider a numerical example with parameter settings a = 800, b = 300, c = 4700, λp =

6 and µ = 10. Conditions for this scenario are satisfied under given parameter settings. Service level

ranges turn out to be Aγ ≡ (0.15, 0.6294], Bγ ≡ (0.6294, 0.6591), Cγ ≡ (0.6591, 15.94] and Dγ ≡
(15.94,∞). Numerical results shown in Table 3 illustrate the order obtained for optimal arrival

rates in different service level ranges (Aγ to Dγ). It is noted that condition C is satisfied for service

level range Aγ and Bγ while condition C ′ is satisfied for Cγ and Dγ. Hence pre-emptive scheduling

discipline always generates more revenue for all service level ranges in the example discussed.

Remark: Another way to compare revenue is via secondary class service level and market price

equation. From Equation (6), we have

λs = a− bθ − cSs
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Non Pre-emptive priority Pre-emptive priority
Sp Service Rate Price Revenue Service Rate Price Revenue

S∗s λ∗s θ∗ λ∗s × θ∗ S∗s λ∗s θ∗ λ∗s × θ∗
0.16 0.062 0.1242 1.6947 0.2105 0.0011 0.1108 2.648 0.2934
0.4 0.0925 1.6878 1.2121 2.0457 0.0193 1.6148 2.3596 3.8103
0.6 0.1060 2.2332 0.9985 2.2298 0.0278 2.1745 2.2241 4.8362
0.63 0.1076 2.2911 0.9740 2.2316 0.0288 2.2357 2.2081 4.9366
0.65 0.1076 2.2911 0.9740 2.2316 0.0294 2.2742 2.1979 4.9985

0.6591 = Cl 0.1076 2.2911 0.9740 2.2316 0.0297 2.2911 2.1934 5.0254
1 0.1076 2.2911 0.9740 2.2316 0.0379 2.7467 2.0643 5.6698
5 0.1076 2.2911 0.9740 2.2316 0.0585 3.6893 1.7385 6.4183
9 0.1076 2.2911 0.9740 2.2316 0.0619 3.8221 1.6847 6.4390
17 0.1076 2.2911 0.9740 2.2316 0.0639 3.8978 1.6529 6.4429
20 0.1076 2.2911 0.9740 2.2316 0.0639 3.8978 1.6529 6.4429

Table 3: Comparison of optimal parameters with pre-emptive and non pre-emptive scheduling for
Scenario (γ)

It follows from above equation that for a fixed admission price θ if service level Ss decreases, admission

rate λs will increase and this will increase the revenue. By definition, S∗s |NP = Ws(λ
∗
s, β

∗ =∞)|NP =
λp + λs|NP
µ(µ− λ|NP )

and S∗s |PR = Ws(λ
∗
s, β

∗ =∞)|PR =
λs|PR

µ(µ− λ|PR)
. The difference is given by

S∗s |NP − S∗s |PR =
1

µ(µ− λs|NP )

[
λp +

µ(λs|NP − λs|PR)

(µ− λs|NP )(µ− λs|PR)

]
(49)

Above difference is positive if λs|NP > λs|PR. It follows from above analysis that difference is positive

in scenario (α) and for service level range Aβ, Bβ and Aγ, Bγ. Hence pre-emptive priority has lower

S∗s for these ranges. This implies that revenue with pre-emptive priority will be higher. Sign of

Equation (49) is theoretically intractable for other service level ranges (Cβ, Cγ and Dγ) similar to the

revenue comparison Equation (47) which needs condition C or C ′ to tract the analysis. Hence revenue

comparison is theoretically intractable for some scenarios via service level also. �

It is noted in all the experiments (See Table 1, 2 and 3) that algorithm adjusts optimal parameters

λ∗s, θ
∗ and S∗s (β∗ =∞) in such a way that pre-emptive priority generates more revenue than that with

non pre-emptive priority. In this section, λ∗s, θ
∗ and S∗s were changing while scheduling parameter

β∗ was fixed at ∞ due to the choice of input parameter setting. Identifying further range of service

levels Sp when both (pre-emptive and non pre-emptive) policies give feasible solution with finite β∗ is

hard to tract mathematically due to complicated equations, non-linear nature of objective function

and change in one more decision variable β∗. We study the comparison of revenue via computational

experiments in next section for such cases.
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5 Comparison of Scheduling Policies: Computational Illus-

tration

In this section, we present computational example under different instances of input parameters where

theoretical analysis is hard to tract mathematically. Optimal scheduling parameter, β∗, is finite (pure

dynamic) in at least one of the priority discipline in these experiments. It can be seen from these

numerical examples that pre-emptive scheduling discipline always generates more revenue than that

with non pre-emptive discipline. Certain range of service level is identified where improvement in

revenue is quiet significant. Percentage increase in revenue is calculated using following expression:

Percentage increase in revenue =
O∗PR −O∗NP

O∗NP
× 100 (50)

where O∗PR and O∗NP are revenue generated with pre-emptive and non pre-emptive scheduling re-

spectively. We consider following two remaining cases of input parameter setting.

Case 1:
a

c
>
λp(2µ− λp)
µ(µ− λp)2

and
µ− λp
µλp

≤ aλp
2µλ2

p + c(µ+ λp)

We consider a numerical example with parameter settings a = 100, b = 0.2, c = 0.1, λp = 8 and µ =

10. Conditions for this case are satisfied under these parameter settings. Depending on service level

Sp, solution is given by Theorem 1, 2 of Section 3.1.1 and Theorem 4 of Section 3.1.2 for pre-emptive

priority scheduling. Feasible solution will exist for Sp ≥ 0.4 (= Ŝp). Since
a

c
>
λp(2µ− λp)
µ(µ− λp)2

, algorithm

(see Section 3.2) will directly jump to step 7 and calculation in this step results in λ∗s = λ
(1)
s = 1.8980

and β∗ = 0 for Sp = 0.4 (= Ŝp). For Sp > 0.4, algorithm jumps to step 8 and Jl =∞ is assigned. In

step 9, intervals I and I+ are calculated as (0.4, 12.0068) and [12.0068,∞) and Iu = 12.0068. Table

4 presents percentage increase in revenue for different service levels. Details of all optimal operating

parameters for different values of Sp are shown in Table 5. Optimal operating parameters for different

service level instances with non pre-emptive priority scheduling are also reported in Table 4 and 5

using the results of Sinha et al. (2010) for comparison.

Problem is infeasible with non pre-emptive priority scheduling at Sp = Ŝp = 0.4 while solution is

given by Theorem 2 of Section 3.1.2 in pre-emptive scheduling for this service level. Hence, no revenue

will be generated at Sp = Ŝp = 0.4 for non pre-emptive scheduling as shown in Table 4. Consider the

service level range I− of non pre-emptive priority (see Theorem 2 in Sinha et al. (2010)). Optimal

scheduling parameter, β∗, is zero with non pre-emptive priority for this range I− ≡ (0.4, 0.4949)

of service level as shown in Table 5. Optimal arrival rate under pre-emptive priority scheme turn

out to be much higher than that with non pre-emptive priority for the range I−. This gives quiet

a significant improvement in revenue due to higher secondary class admission rate (see Table 5).

Improvement is not that significant for larger service level, for example Sp ≥ 15 in Table 4. It is also

noted in the experiments that pre-emptive and non pre-emptive priority generate same revenue for

the service level range where pure dynamic policy is optimal, for example Sp ∈ (0.4949, 12) in Table 4

and 5. In such cases, algorithm adjusts optimal scheduling parameter, β∗, such that other parameters
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Non Pre-emptive priority Pre-emptive priority
Sp Revenue Revenue Percentage increase

O∗NP = λ∗s × θ∗ O∗PR = λ∗s × θ∗ in revenue
0.4 infeasible 884.56 -
0.41 99.57 884.60 788.42
0.45 492.75 884.76 79.55

0.4949 884.94 884.94 0
1 886.96 886.96 0
6 906.96 906.96 0
10 922.96 922.96 0
11 926.96 926.96 0

11.5 928.96 928.96 0
12 930.96 930.96 0
15 940.58 940.61 0.0031
20 950.27 950.33 0.0063

Table 4: Percentage increase in revenue for Case 1

Non Pre-emptive priority Pre-emptive priority
Sp Priority Rate Price Service Priority Rate Price Service

β∗ λ∗s θ∗ S∗s β∗ λ∗s θ∗ S∗s
0.4 Infeasible Solution 0 1.898 466.03 48.94
0.41 0 0.2 497.86 2.28 0.0002 1.898 466.06 48.90
0.45 0 1 492.75 4.5 0.0010 1.898 466.14 48.73

0.4949 0 1.898 466.25 48.52 0.0020 1.898 466.24 48.54
1 0.0115 1.898 467.30 46.39 0.0136 1.898 467.30 46.41
6 0.2289 1.898 477.83 25.34 0.2319 1.898 477.83 25.34
10 1.1812 1.898 486.26 8.48 1.1791 1.898 486.26 8.48
11 2.6205 1.898 488.37 4.26 2.5828 1.898 488.37 4.26

11.5 5.5736 1.898 489.43 2.15 5.3621 1.898 489.43 2.15
12 ∞ 1.898 490.44 0.1222 416.77 1.898 490.48 0.052
15 ∞ 1.918 490.35 0.1227 ∞ 1.918 490.40 0.0237
20 ∞ 1.9384 490.24 0.1233 ∞ 1.9383 490.29 0.0240

Table 5: Comparison of optimal parameters with pre-emptive and non pre-emptive scheduling for
Case 1

(λ∗s, S
∗
s and θ∗) remain same. It can be observed that optimal arrival rate for pre-emptive and non

pre-emptive priority is same for such service level range. This follows as both optimal arrival rates

are obtained by the root of same cubic G(λs) (see Theorem 1 in above Section 3.1.2 and Theorem 1

in Sinha et al. (2010)).

Case 2:
a

c
>
λp(2µ− λp)
µ(µ− λp)2

and
µ− λp
µλp

>
aλp

2µλ2
p + c(µ+ λp)

We consider a numerical example with parameter settings a = 3, b = 0.2, c = 0.1, λp = 8 and µ =

10. Conditions for this case are satisfied under these parameter settings. Depending on service level

Sp, solution is given by Theorem 1, 2, 3 and 4 of Sections 3.1.1 and 3.1.2 for pre-emptive scheduling.

Feasible solution will exist for Sp ≥ 0.4 (= Ŝp). Since
a

c
>

λp(2µ− λp)
µ(µ− λp)2

, algorithm (see Section
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3.2) will directly jump to step 7 and calculation in further steps result in λ
(1)
s = 1.002, λ

(3)
s =

1.498, Iu = 1.014, Jl = 2.243 . The intervals I, I+ and J are (0.4, 1.014), [1.014, 2.243] and

(2.243,∞) respectively. Table 6 presents percentage increase in revenue for different service levels.

Details of all optimal operating parameters for different values of Sp are shown in Table 7. Optimal

operating parameters for different service instances with non pre-emptive priority scheduling are also

reported in Table 6 and 7 using the results of Sinha et al. (2010) for comparison.

Non Pre-emptive priority Pre-emptive priority
Sp Revenue Revenue Percentage increase

O∗NP = λ∗s × θ∗ O∗PR = λ∗s × θ∗ in revenue
0.4 Infeasible 7.5501 -
0.41 2.5722 7.5901 194.18
0.435 6.8788 7.6901 11.77
0.4501 7.7505 7.7505 0
0.55 8.1501 8.1501 0
0.85 9.3501 9.3501 0
0.95 9.7501 9.7438 -0.06

1 9.9501 9.9469 -0.03
1.0031 9.9625 9.9599 -0.02

1.5 10.9588 11.0051 0.42
2.5 11.1665 11.2368 0.62
4 11.1665 11.2368 0.62

Table 6: Percentage increase in revenue for Case 2

Non Pre-emptive priority Pre-emptive priority
Sp Priority Rate Price Service Priority Rate Price Service

β∗ λ∗s θ∗ S∗s β∗ λ∗s θ∗ S∗s
0.4 Infeasible Solution 0 1.002 7.53 4.91
0.41 0 0.2 12.86 2.28 0.0040 1.002 7.57 4.83
0.435 0 0.7 9.83 3.35 0.0148 1.002 7.67 4.63
0.4501 0 1.002 7.73 4.51 0.0217 1.002 7.73 4.51
0.55 0.0536 1.002 8.12 3.71 0.0784 1.002 8.12 3.71
0.85 0.6037 1.002 9.32 1.32 0.6316 1.002 9.32 1.32
0.95 1.995 1.002 9.72 0.52 1.8223 1.002 9.71 0.53

1 36.4400 1.002 9.92 0.12 8.6314 1.002 9.92 0.13
1.0031 ∞ 1.002 9.93 0.10 11.0731 1.002 9.93 0.10

1.5 ∞ 1.289 8.50 0.10 ∞ 1.283 8.57 0.01
2.5 ∞ 1.4926 7.48 0.11 ∞ 1.4981 7.50 0.01
4 ∞ 1.4926 7.48 0.11 ∞ 1.4981 7.50 0.01

Table 7: Comparison of optimal parameters with pre-emptive and non pre-emptive scheduling for
Case 2

Observations similar to Case 1 can be made here. Significant improvement in revenue is noted

for service level range I− ≡ (0.4, 0.4501) of non pre-emptive priority. Optimal arrival rates under

both scheduling schemes are same for certain range of service level as both optimal arrival rates

are obtained by the root of same cubic G(λs). Pre-emptive and non pre-emptive priority generate
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approximately same revenue when optimal scheduling discipline is pure dynamic (0 < β∗ <∞). It is

also noted that percentage increase in revenue is negative for the service level range where β∗|NP > 1

and 1 < β∗|PR <∞. This decrement is negligible as it is of order 10−2.

It is noted from above experiments that pre-emptive scheduling always generates at least as good

revenue as non pre-emptive scheduling and a certain range of service level (I−) is identified where

pre-emptive priority gives significant improvement.

6 Conclusions and Future work

This paper has two parts. First of all, optimal operating and pricing parameters are obtained when

pre-emption is allowed in admitting a new class of customers. Pre-emptive scheduling discipline is

prevalent and motivated from various applications. A finite step algorithm is presented to find the

global optimal operating parameters, i.e., the optimal arrival rate for secondary class customers and

delay dependent queue discipline management parameter.

We then compare revenue generated with pre-emptive and non pre-emptive scheduling discipline.

First, we identify certain range of primary class service level where service provider generates revenue

with pre-emptive scheduling while problem is infeasible with non pre-emptive scheduling. We further

explore revenue comparison when both scheduling schemes give feasible solution. Some complemen-

tary conditions are identified to compare revenue theoretically where optimal scheduling parameter,

β, is infinite for both scheduling policies. It is noted in computational experiments that these con-

ditions adjust in such a way that pre-emptive scheduling generates more revenue than that of non

pre-emptive scheduling. Further, it is noted that comparison of revenue is hard to tract analytically

when at least one of the scheduling parameter is finite (pure dynamic policy). Hence, we perform

computational experiments to compare revenue for such instances and identify a certain range where

significant improvement in revenue is observed with pre-emptive scheduling discipline. It is noted in

all experiments that pre-emptive priority scheduling is at least as good as non pre-emptive priority.

Our analysis assumes linear demand function for secondary class customers. Future research direc-

tions can be to attempt a similar analysis with non-linear demand function. A subsequent study

involving more than two classes can also be done. Quality of service is defined in terms of mean

waiting time. Defining service level in terms of variance of waiting time, tail probability and vari-

ability in queue length can be another interesting future avenue. One can try network variation of

this model. Some more sophisticated pricing models can also be studied where pre-emption cost is

involved.

A Some properties of Wp(λs, β) and Ws(λs, β)

We observe from Equation (4) and (5) that Wp(λs, β) and Ws(λs, β) always take finite positive value

for λp ≥ 0, λs ≥ 0 and λp + λs < µ. Also, Wp(λs, β) and Ws(λs, β) are continuous function of β.
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Consider the notation ∆0 := µ− λp − λs, ∆1 := µ− λp(1− β), and ∆2 := µ− λs(1−
1

β
). Following

derivatives are calculated using Maple.

∂Wp

∂λs
=

µβ

∆2
0∆1

1{β≤1} +
µ(∆2 + ∆0(1− 1

β
))

∆2
2∆2

0

1{β>1} (A.1)

∂Wp

∂β
=

µλs
∆0∆2

1

1{β≤1} +
µλs

β2∆0∆2
2

1{β>1} (A.2)

∂2Wp

∂β2
= −2µλpλs

∆0∆3
1

1{β≤1} −
2µλs(µ− λs)
β3∆0∆3

2

1{β>1} (A.3)

∂2Wp

∂λ2
s

=
2µβ

∆1∆3
0

1{β≤1} + 2µ

(
∆0(1− 1

β
) + ∆2

∆3
0∆2

+
(1− 1

β
)2

∆0∆3
2

)
1{β>1} (A.4)

∂Ws

∂β
= − µλp

∆0∆2
1

1{β≤1} −
µλp

β2∆0∆2
2

1{β>1} (A.5)

∂2Ws

∂β2
=

2λ2
pµ

∆0∆3
1

1{β≤1} +
2µλp(µ− λs)
β3∆0∆3

2

1{β>1} (A.6)

∂Ws

∂λs
=

µ

∆2
0∆1

1{β≤1} +
1

µ

( 1

∆2

+
λµ

β∆2∆2
0

+
λ

β∆0∆2

)
+

1− 1

β

∆0∆2
2

(
λp∆0

β
+
λ2

β
+ λs∆0

)1{β>1}

(A.7)

∂2Ws

∂λ2
s

=
2µ

∆3
0∆1

1{β≤1} +
2

µβ

(
λ2

∆3
0∆2

+
(λ+ µ)

∆2∆2
0

)
+

(1− 1
β
)

∆3
2

(
2λp(1− 1

β
)

β
+

1

β∆2
0

(
2λ∆0∆2 + λ2(2∆0(1− 1

β
) + ∆2)

)
+ ∆2 + 2λs(1−

1

β
)

)
1{β>1}

(A.8)

Property 1. Wp(λs, β) and Ws(λs, β) are increasing convex function of λs in interval [0, µ− λp).

Proof. It follows from Equations (A.1) and (A.4) that
∂Wp

∂λs
≥ 0 and

∂2Wp

∂λ2
s

≥ 0. Hence, Wp(λs, β)

is an increasing convex function of λs in interval [0, µ− λp). Also observe from Equation (A.7) and

(A.8),
∂Ws

∂λs
≥ 0 and

∂2Ws

∂λ2
s

≥ 0. Hence, Ws(λs, β) is an increasing convex function of λs in interval

[0, µ− λp).

Property 2. Wp(λs, β) is an increasing concave function of β ≥ 0 and Ws(λs, β) is a decreasing

convex function of β ≥ 0.

Proof. It follows from Equations (A.2) and (A.3) that
∂Wp

∂β
≥ 0 and

∂2Wp

∂β2
≥ 0. Hence Wp(λs, β)

is an increasing convex function of β. Also observe from Equation (A.5) and (A.6),
∂Ws

∂β
≤ 0 and

∂2Ws

∂β2
≥ 0. Hence Ws(λs, β) is decreasing convex function of β.

33



Property 3. Wp(λs, β) is neither convex nor concave function of (λs, β) where λs ∈ [0, µ− λp) and

β ≥ 0. Also, Wp(λs, β) is not a quasi convex function of (λs, β)

Proof. Consider the diagonal elements of Hessian matrix of Wp(λs, β), i.e.,
∂2Wp

∂λ2
s

and
∂2Wp

∂β2
. Observe

from Equation (A.4) and (A.3),
∂2Wp

∂λ2
s

≥ 0 and
∂2Wp

∂β2
≤ 0. Hence Hessian matrix is indefinite.

This shows that Wp(λs, β) is neither convex nor concave function of (λs, β). Consider the following

counter example for proving second part. Let us take µ = 5, λp = 3 and α1, α2 = 0.5. Note that

Wp(0.5, 1) = 0.3,Wp(1, 0.5) = 0.6571,Wp(0.5, 1) = 0.4667 so we have

Wp(0.5(1.5, 0) + 0.5(0.5, 1)) = Wp(1, 0.5) > max(Wp(1.5, 0)Wp(0.5, 1))

Hence Wp(λs, β) is not even quasi convex function.

Property 4: λsWs(λs, β) is neither convex nor concave function of (λs, β) where λs ∈ [0, µ − λp)
and β ≥ 0

Proof. We will calculate Hessian matrix of λsWs(λs, β) under the parameter setting as discussed.

µ = 5, λp = 3, β = 0.5 and λs = 0.1. Hessian matrix of λsWs(λs, β) at mentioned parameter setting

is

(
1.267 −1.5708

1.5708 0.3867

)
. First and second principal minors are 1.267 and -1.9774 respectively. Hence

Hessian matrix is indefinite and the property holds.

B Proof of Claims

We briefly outline the proof of claims.

Proof of Claim 1: Wp(λs, β) depends on β being less or more than 1. We have two cases on the

basis of this i.e. 0 < β ≤ 1 and β > 1.

Case(a): 0 < β ≤ 1 Using Equation (4) in Wp(λs, β) = Sp, we get

β =
(µ− λ)(µSp(µ− λp)− λp)
λ2 − (µ− λ)(µSpλp − λs)

(B.1)

Since we are solving for the case of 0 < β ≤ 1, above expression should be in the same range. Value

of β will be positive if either both numerator and denominator are positive or negative. Based on

this we get the following conditions for β being positive. Either

Sp >
λp

µ(µ− λp)
and Sp <

λ2 + λs(µ− λ)

µλp(µ− λ)

or

Sp <
λp

µ(µ− λp)
and Sp >

λ2 + λs(µ− λ)

µλp(µ− λ)
(B.2)

Now consider
λ2 + λs(µ− λ)

µλp(µ− λ)
− λp
µ(µ− λp)

> 0
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There will be no feasible Sp for Equation B.2 as above difference is positive. Hence, β will be positive

for following range of Sp.
λp

µ(µ− λp)
< Sp <

λ2 + λs(µ− λ)

µλp(µ− λ)
(B.3)

On using Equation B.1 for β ≤ 1, we have

(µ− λ)(µSp(µ− λp)− λp)
λ2 − (µ− λ)(µSpλp − λs)

≤ 1

(µ− λ)(µSp(µ− λp)− λp)− λ2 + (µ− λ)(µSpλp − λs)
λ2 − (µ− λ)(µSpλp − λs)

≤ 0

Equation (B.3) implies that the denominator of above expression is positive. Thus above inequality

will hold if numerator is non-negative which simplifies to

Sp ≤
λ

µ(µ− λ)
(B.4)

Now we will take intersection of Equations B.3 and B.4 for condition 0 < β ≤ 1 to hold, we have

λp
µ(µ− λp)

< Sp ≤
λ

µ(µ− λ)
(B.5)

One can verify that above range of Sp forms an interval as the difference between upper and lower

limit of Sp turn out to be positive.

Case(b): β > 1 Using Equation (4) in Wp(λs, β) = Sp, we get

β =
λs(µ− λ)(1 + µSp)

λµ+ (µ− λ)(λs + µSpλs − µ2Sp)
(B.6)

Note that numerator is positive in above expression. Hence, β will be finite and positive iff denomi-

nator is positive. This implies

λµ+ (µ− λ)(λs + µSpλs − µ2Sp) > 0

Sp <
λµ+ (µ− λ)λs
µ(µ− λ)(µ− λs)

(B.7)

Simultaneously, β > 1 should hold. Using Equation (B.6), we have

λs(µ− λ)(1 + µSp)

λµ+ (µ− λ)(λs + µSpλs − µ2Sp)
> 1

Equation (B.7) implies that denominator of above expression is positive. By using this fact and on

further solving the above equation, we get

Sp >
λ

µ(µ− λ)
(B.8)

Now we will take intersection of Equations (B.7) and (B.8). Hence for condition β > 1 to hold, we

have
λ

µ(µ− λ)
< Sp <

λµ+ (µ− λ)λs
µ(µ− λ)(µ− λs)

(B.9)

One can verify that above range of Sp is actually an interval as difference in the range is positive.

Proof of Claim 2: Consider the equality W̃p(λs) = Sp. On using the expression of W̃p(λs), we have

λµ+ λs(µ− λ)

µ(µ− λ)(µ− λs)
= Sp
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On further simplifying the above inequality, we get the following quadratic equation in λs.

Q(λs) ≡ (µSp + 1)λ2
s + (µSpλp − 2µ2Sp + λp − 2µ)λs + µ3Sp − µ2Spλp − µλp = 0 (B.10)

Note that Q(0) = µ(Spµ(µ−λp)−λp) > 0 holds under the supposition of claim i.e. Sp >
λp

µ(µ− λp)
.

Also note that Q(µ−λp) = −µ2 < 0. Hence Q(λs) has at least one positive root in (0, µ−λp). Roots

of this quadratic are as follows

α1 = µ− λp
2
− 1

2

√
λ2
p +

4µ2

µSp + 1
and α2 = µ− λp

2
+

1

2

√
λ2
p +

4µ2

µSp + 1

Observe that α1 < µ−λp and α2 > µ. Hence α1 is the root of quadratic equation lying in the interval

(0, µ− λp). Hence the claim follows as α1 = λ
(4)
s .

Proof of Claim 3: Solution of optimization problem P1 (β < ∞) is given by Theorem 1 for

Sp ∈ I and it follows from theorem statement that the constraint Wp ≤ Sp is binding. Solution of

optimization problem P2 is given by Theorem 3 and Theorem 4. We consider following two cases

for problem P2.

• Case 1: (µ− λp)(2µλ2
p + c(µ+ λp)) ≤ aµλ2

p

It is clear from the supposition of Theorem 3 and 4 that J− = (Ŝp,∞) and J = φ. This implies

I ⊂ J− and hence solution is given by Theorem 4 and constraint Wp ≤ Sp will be binding.

• Case 2: (µ− λp)(2µλ2
p + c(µ+ λp)) > aµλ2

p

It is again clear from the supposition of Theorem 3 and 4 that J− = (Ŝp, Jl] where Jl is the lower

limit service level range J . Constraint Wp ≤ Sp is non binding in interval J from Theorem 3.

Hence claim follows if we argue that I ⊂ J− or equivalently Iu < Jl where Iu is the upper limit

service level range I. Note that Iu = ξ(λ
(1)
s ) and Jl = ξ(λ

(3)
s ) where ξ(λs) =

λµ+ λs(µ− λ)

µ(µ− λ)(µ− λs)
.

We have
∂ξ

∂λs
=

µ(2µ− 2λs − λp)
(µ− λs)2(µ− λp − λs)2

> 0

ξ(λs) is an increasing function of λs. This implies Jl > Iu iff λ
(3)
s > λ

(1)
s . The inequality

λ
(3)
s > λ

(1)
s can be established using the fact that the roots of the cubics G(λs) and G̃(λs) are

increasing functions of market demand (Equation (6)) co-efficient a.

Proof of Claim 4: λ
(4)
s |NP and λ

(4)
s |PR are given by Theorem 4 of Sinha et al. (2010) in non

pre-emptive scheduling and that of section 3.1.2 in pre-emptive scheduling respectively. We have

λ(4)
s |PR = µ−λp

2
−1

2

√
λ2
p +

4µ2

µSp + 1
and λ(4)

s |NP =
1

2Sp

(
Sp (2µ− λp) + ψ −

√
[Spλp + ψ]2 + 4µψSp

)
Note that ψ = 1 as we are working with M/M/1 queue setting. Consider the difference

λ(4)
s |NP − λ(4)

s |PR =
1

2Sp

(
1−

√
[Spλp + 1]2 + 4µSp + Sp

√
λ2
p +

4µ2

µSp + 1

)
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Let λ
(4)
s |NP − λ(4)

s |PR ≤ 0, and take M = [Spλp + 1]2 + 4µSp and N = λ2
p +

4µ2

µSp + 1
. Above equation

results in 1−
√
M + Sp

√
N ≤ 0. On taking 1 to the right hand side and doing further simplification

in the direction of removing square root term, we get

(M + S2
pN)2 + 1− 2(M + S2

pN)− 4S2
pMN ≥ 0

On putting the values of M and N in above expression, LHS become the following after some

simplifications using Maple c©

−16µ2(µSp(µ− λp)− λp)
(µSp + 1)2

< 0 as Sp >
λp

µ(µ− λp)
(= Ŝp)

Hence we get the contradiction. And λ
(4)
s |NP − λ(4)

s |PR > 0 holds.

Proof of Claim 5: Note that λ
(4)
s |PR is the unique solution of equality W̃p(λs)|PR = Sp. By

definition, W̃p(λs)|PR = Wp(λs, β =∞)|PR. From Equation (4), we have

Wp(λs, β =∞)|PR =
λµ+ λs(µ− λ)

µ(µ− λ)(µ− λs)

It follows from above equation and by definition of Cl that W̃p(λ
(3)
s |NP )|PR = Wp(λ

(3)
s |NP , β =∞)|PR

at Sp = Cl. Hence λ
(3)
s |NP = λ

(4)
s |PR at Sp = Cl. W̃p(λs) is an increasing convex function of λs in

(0, µ−λp) and λ
(3)
s |NP is independent of Sp. Hence λ

(3)
s |NP > λ

(4)
s |PR for Sp < Cl and λ

(3)
s |NP < λ

(4)
s |PR

for Sp > Cl.

Proof of Claim 6: G̃(λs)|NP and G̃(λs)|PR are given by Theorem 3 of Sinha et al. (2010) in non

pre-emptive scheduling and that of section 3.1.2 in pre-emptive scheduling respectively. We have

G̃(λs)|NP = 2µλ3
s − (aµ+ c+ 4µ2)λ2

s + 2µ(aµ+ c+ µ2)λs − µ(aµ2 − cλp)

G̃(λs)|PR = 2µλ3
s − (aµ+ c+ 4µ2)λ2

s + 2µ(aµ+ c+ µ2)λs − aµ3

Note that we have made use of ψ = 1 in above expressions. G̃(λs)|NP = G̃(λs)|PR + cµλp, so there

will be always some gap between these two functions. Also note that G̃(0)|NP = −aµ3 + cλpµ < 0

as
a

c
>

λp
µ2

from Theorem 3 in non pre-emptive scheduling. G̃(0)|PR = −aµ3 < 0. This implies

G̃(0)|PR < G̃(0)|NP . So the corresponding unique roots will be ordered, i.e., λ
(3)
s |NP < λ

(3)
s |PR.
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