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Abstract. The regularization parameter of support vector machines is
intended to improve their generalization performance. Since the feasible
region of binary class support vector machines with finite dimensional
feature space is a polytope, we note that classifiers at vertices of this
unbounded polytope correspond to certain ranges of the regularization
parameter. This reduces the search for a suitable regularization parame-
ter to a search of (finite number of) vertices of this polytope. We propose
an algorithm that identifies neighbouring vertices of a given vertex and
thereby identifies the classifiers corresponding to the set of vertices of
this polytope. A classifier can then be chosen from them based on a suit-
able test error criterion. We illustrate our results with an example which
demonstrates that this path can be complicated. A portion of the path
is sandwiched between two finite intervals of path, each generated by
separate sets of vertices and edges.

Keywords: Support vector machines, regularization path, polytopes, neigh-
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1 Introduction

A classical learning problem is that of binary classification wherein the learner
is trained on a given data set (training set) and predicts the class of a new data
point. Let the n point training set be {(xi, yi)}ni=1, where xi ∈ Rm is a vector of
m features and yi ∈ {−1,+1} is the label of xi, i ∈ {1, · · · , n}. We consider the
class of linear classifiers, (w, b), with w ∈ Rm and b ∈ R. The classifier predicts
the class of data point x as −1 if w · x + b < 0 and predicts the class as +1
otherwise, i.e., the predicted class for x is sign(w · x + b). Such classifiers are
called linear Support Vector Machines (SVMs).

Among finite dimensional models for binary class prediction, the class of
polynomial kernels form an important class. These are quite popular in natural
language processing (NLP) because fast linear SVM methods can be applied to
the polynomially mapped data and can achieve accuracy close to that of using
highly nonlinear kernels [2].



The standard soft-margin SVM optimization problem (SVM QP), for a given
λ > 0 [6] is:

min
w,b,ξ

λ||w||+
n∑
i=1

ξi

s. t. yi(w · xi + b) ≥ 1− ξi ∀i ∈ {1 . . . n} (1)

ξi ≥ 0 ∀i ∈ {1 . . . n}

The objective function is a sum of the regularization penalty term with reg-
ularization parameter λ ∈ R+ and the classification error (measured from the
margins, w ·x+ b = ±1, of the classifier) as captured by {ξi}ni=1.We are working
with linearly inseparable data. Therefore, ξi > 0 for at least one i ∈ {1, . . . , n}.
The points lying on the margins of the classifier are called support vectors. Hence
the name support vector machines.

The purpose of the regularization parameter λ is to improve the general-
ization error of the SVM. It is known that a proper choice is needed; see, for
example, Figure 4 of [7]. The purpose of this paper is to investigate this choice
in fairly basic SVMs by considering the polyhedral nature of the feasible region
of the above SVM QP.

The main results of this paper are summarized as follows: We characterize,
to the best of our knowledge for the first time, the polytope, P , associated
with the feasible space of (1), in terms of its vertices and give an algorithm
that lists all its vertices. We notice that, starting off from a vertex, the path
is generated by vertices and edges (one-dimensional facets) as well as facets of
higher dimensions. The regularization parameter, λ, for any classifier can be
identified by linear programs; and for classifiers corresponding to vertices, this
is an interval. The SVMs are generally assessed in terms of their performance on
0− 1 loss criterion. We find that the vertex classifiers dominate other boundary
classifiers on a single test point using this 0 − 1 loss function. This means that
for the SVMs that we consider, a suitable choice of λ as a design parameter can
be replaced by a search among the finite but large number of the vertices of P .

Different approaches have been employed to select an optimal regularization
parameter, λ, for the SVM QP. The task of tracing an entire regularization
path was pioneered by [7]. The sets E,L and R of [7] in the feature space
(w, b) correspond to a vertex v of the polytope P in the lifted space in (w, b, ξ).
Another approach [3] considers finding the optimal parameters for SVM based
classifiers with kernel functions that could be infinite dimensional, where λ is
included in the parameter vector. Bounds on the test error are obtained, based
on the leave-one-out testing scheme and these are differentiable with respect to
the parameter vector. A gradient based scheme is proposed for finding optimal
parameters. Apart from tracing the path, various other aspects have been studied
regarding the design of the SVMS, such as the feature selection problem [3], [9].

Note that, to trace the path, [7] use the dual optimization program to the
SVM QP to study the trajectories of the primal and dual variables as a function
of the regularization parameter; whereas the polytope considered in this paper



resides in the primal space itself. As a consequence, we need to search among a
finite, albeit a large, set of vertices. And unlike [3], we restrict our analysis to the
case of finite dimensional kernels, which can be handled using fast algorithms.

2 The Polytope of the Feasible Region of SVMs

First we notice that the feasible region is unbounded; hence it admits a Minkowski
decomposition into a base polytope, P , and a recession cone. We want to con-
centrate on characterizing P in terms of its vertices and more importantly, the
role of these vertices in the regularization path of the SVM.

Theorem 1. For a given λ ≥ 0, the optimal point (the classifier for the SVM)
lies on the boundary of the polytope P .

Proof. Consider the unconstrained problem with the same objective function of
SVM QP: λ||w|| +

∑
i ξi. This optimization is separable into two optimization

problems: minRm λ||w|| and minRn

∑
i ξ. While the first one has the optimal

value zero at w = 0, the second one is unbounded. Hence the unconstrained
problem has an unbounded value, whereas the SVM QP has a finite non-negative
optimal value. The SVM QP is a convex minimization problem and hence its
finite optimal solution will lie on the boundary of its feasible region, the polytope
P . ut

Theorem 2. A classifier on the vertex of the polytope dominates a boundary
classifier, i.e., a classifier corresponding to an edge or a facet, on 0 − 1 loss
function.

Proof. Consider two classifiers (w1, b1) and (w2, b2) on the λ-path, lying on two
different vertices of the polytope. Suppose, for a test data x̂, we have

sign(w1 · x̂ + b1) = +1

and sign(w2 · x̂ + b2) = −1.

A classifier (w̃, b̃) on the related edge can be identified as (w̃, b̃) = α(w1, b1) +
(1− α)(w2, b2) for some α ∈ (0, 1). We can see that

sign(w̃ · x̂ + b̃) =

{
1 if α ≥ α0,

−1 if α < α0,

where α0 ∈ (0, 1) is the normalized distance of x̂ from w1. Thus, (w̃, b̃) can be
dominated on the grounds of 0-1 loss function by one of the vertices depending
on the true label of x̂. Dominance over the classifiers belonging to a facet of the
polytope can be shown using similar arguments.

Remark 1. The above result was shown for a single test point. When we have a
collection of the points, we will have a ‘dominating set’ of vertices, which may
or may not lie on the λ-path.



2.1 Characterization of the Vertices in Terms of Active Constraints

We recall the following (see [1], [8], [10], etc.): For a polytope in Rk, a vertex is a
point of zero dimension. A vertex in Rk can be identified as a solution of k linearly
independent linear equation. A vertex is an extreme point of the polytope, and
can not be obtained as a convex combination of any two distinct points. An edge
is a facet of dimension one and is a convex combination of two vertices of the
polytope. A facet of dimension two is a convex combination of three vertices and
so forth. We define a vertex classifier as a classifier corresponding to a vertex on
the polytope of the feasible region of the standard SVM model. The edge and
facet classifiers are defined in a similar fashion. Henceforth, these notations will
be used in the rest of the paper.

The dimension of (w, b, ξ) is (m+1+n) and we have n linear inequalities with
n positively constrained variables, ξ = (ξ1, . . . , ξn). (We make the assumption
that (m + 1) < n.) Rewriting them as n equalities with positive slack variables
si, we get a set of 2n linear constraints whose intersection gives us a polytope
as the feasible region. Hence, if at least (m+ n+ 1) of these 2n constraints are
active and are linearly independent, the resulting unique solution is a vertex.

So, with si, we have the following:

yi(w · xi + b)− 1 = si − ξi ∀i ∈ {1 . . . n}, (2)

where si, ξi ≥ 0 ∀i ∈ {1 . . . n}.
At a vertex v, then, for a given i ∈ {1, · · · , n}, if ξi − si 6= 0, then only one

of ξi or si is non-zero. It can be noted that,

si− ξi =



(−∞,−2) if xi is misclassified by (w, b) and outside the margin

−2 if xi is misclassified by (w, b) and on the margin

(−2,−1) if xi is misclassified by (w, b) and within the margin

−1 if xi is correctly classified by (w, b) and on the classifier

(−1, 0) if xi is correctly classified by (w, b) and within the margin

0 if xi is correctly classified by (w, b) and on the margin

i.e., xi is a support vector

(0,∞) if xi is correctly classified by (w, b) and outside the margin.

We can identify three different categories of classifiers based on the above
values of (si − ξi), as mentioned in the following theorem:

Theorem 3. There are three types of linear SVM classifiers for the case of
binary classification problem:-

(i) The classifiers for which the points can be within, on or outside the margin.
Thus, (si − ξi) ∈ (−∞,∞) ∀i ∈ {1, . . . , n} for such classifiers.

(ii) The (0, 1) and (0,−1) classifiers, for which ξi is either 0 or 2 and
(si − ξi) ∈ {0,−2} ∀i ∈ {1, . . . , n}.

(iii) The classifiers for which all the points are within or on the margins. For
such classifiers (si − ξi) ∈ (−2, 0) ∀i ∈ {1, . . . , n}.



We have another important characterization of a vertex of the polytope in
terms of support vectors of the classifier.

Theorem 4. A vertex v = (w, b, ξ) of the polytope P has at least one correctly
classified point on its margin, also known as the support vector. Therefore, for
v ∈ P , we have

|{i ∈ {1, . . . , n}|ξi = si = 0}| ≥ 1. (3)

Proof. For the type (ii) classifiers, the above is trivially true using (2). For the
type (i) and type (iii) classifiers, using the definition of a vertex of a polytope,
at least (m+n+ 1) of the 2n constraints in (1) have to be active. Thus, for any
set of at least (m+ 1 + n) active constraints, I∗

∃ at least one i ∈ I∗ such that yi(w · xi + b) = 1− ξi
and, ξi = 0.

ut

Rewriting the constraints in (1) in a matrix form, we have: A · (w, b, ξ) ≥ b,
where A corresponds to the coefficient matrix of the two sets of constraints of

the SVM QP and b =

(
1
0

)
.

Let us denote by I∗(v), the set of (indices of) active constraints at vertex v.
So, given a set of active constraints, I∗(v), we can find the corresponding vertex
v = (w, b, ξ) by solving the following equation:

A[I∗(v), ] · (w, b, ξ) = b[I∗(v)], (4)

where A[I∗(v), ] is a sub-matrix of A with rows corresponding to I∗(v). Such
a vertex corresponds to a basic solution of the feasible region. It is a feasible
vertex if and only if it satisfies (1). Equivalently, it is not a feasible point if si is
strictly negative. A feasible vertex corresponds to a basic feasible solution [1].

Given an active set of constraints, I∗(v), Algorithm Vertex(Active)) com-
putes a vertex v corresponding to these active constraint set, if it exists and is
feasible.



Algorithm 1. Finding a vertex corresponding to an active set of constraints, Ver-
tex(Active)

Require: {xi, yi}ni=1, xi ∈ Rm, yi ∈ {+1,−1}
1: procedure Vertex(Active)
2: Solve for ṽ = (w̃, b̃, ξ̃) using the system of linear equations s.t.

yiw̃ · xi + yib̃+ ξ̃i = 1 ∀i ∈ Active& i ≤ n
ξ̃i = 0 ∀i ∈ Active& i > n

3: Set feasible← 1
4: for k in 1 to n do
5: if (ykw̃ · xk + yk b̃+ ξ̃k − 1) < 0 then
6: feasible← 0
7: break
8: end if
9: end for

10: if (feasible = 1) then return ṽ
11: else return φ
12: end if
13: end procedure

2.2 Neighbours of a Vertex of the Polytope, P

Given that a vertex is characterized by the set of constraints, I∗(v), that are
active at that point, we can find a neighbouring vertex ṽ by changing I∗(v) in
the following way:

Replace an active constraint by the one that is currently inactive at v. The
constraint i ∈ I∗(v) to leave the active set is the one such that ξi = si = 0.
The existence of such a constraint i ∈ I∗(v) is guaranteed by Theorem 3. The
incoming constraint j ∈ I∗(v) is chosen so that {j | (sj > 0 & ξj = 0) or (ξj >
0 & sj = 0)} at v. And at the neighbour ṽ, we set ξj = sj = 0 to ensure a support
vector for ṽ.

If the solution to (4) with these new active constraints is feasible, then it
is a valid neighbour of v. Note that if the given vertex v is degenerate, then,
the above change in active constraint set I∗(v) can lead to another degenerate
vertex and hence not a neighbouring vertex. Such degenerate vertices need to
be ignored in the list of neighbours of v.

Such a careful updating of the set of neighbouring vertices avoids poten-
tial cycling while listing the set of all vertices of the polytope P . The set of
all such neighbours of given v is denoted by N(v) and can be found as in
Algorithm Neighbour(v).



Algorithm 2. Finding the set of neighbours for a given vertex, Neighbour(v)

Require: v ∈ P where v = (w, b, ξ); {xi, yi}ni=1, xi ∈ Rm, yi ∈ {+1,−1}
1: procedure Neighbour(v)
2: Initialize N(v)← φ
3: Set degenerate← 0
4: Find I∗(v), the set of active constraints at v s.t.

yiw · xi + yib+ ξi = 1 ∀i ∈ I∗(v) & i ≤ n
ξi = 0 ∀i ∈ I∗(v) & i > n

5: if |I∗(v)| > (m+ n+ 1) then
6: degenerate← 1
7: end if
8: Let Leaving(v) := {i ∪ (i+ n) | ξi = si = 0}
9: Let Incoming(v) := {j | (sj > 0 & ξj = 0) or (ξj > 0 & sj = 0)}

10: for all j ∈ Incoming(v) do
11: if degenerate = 0 then
12: for all i ∈ Leaving(v) do
13: I∗(ṽ)← I∗(v) \ {i} ∪ {j}
14: N(v)← N(v) ∪Vertex(I∗(ṽ))
15: end for
16: else
17: for all S ⊂ Leaving(v) s.t |S| = |I∗(v)| − (m+ n) do
18: I∗(ṽ)← I∗(v) \ S ∪ {j}
19: if (det(A[I∗(ṽ), ]) 6= 0) then
20: N(v)← N(v) ∪Vertex(I∗(ṽ))
21: end if
22: end for
23: end if
24: end for
25: return N(v)
26: end procedure

2.3 Vertices of the Polytope, P

We observe that for λ = 0, the SVM QP is a linear program and its optimal
solution by a simplex type algorithms will be at a vertex, say v0, and the set
of active constraints, I∗(v0), can be easily obtained. Intializing with this vertex
v0 and its active set I∗(v0), Algorithm 3 Vertex Search finds the set of all
vertices of polytope P using Algorithm Neighbour(v)) as required, which in
turn calls procedure Vertex(Active) with I∗(v).



Algorithm 3. Vertex Search(P )

1: Solve the SVM QP at (1) with λ = 0. Let this optimal classifier be (w0, b0, ξ0).
This corresponds to a vertex, say v0 ∈ P

2: Set Current← {v0}, N(P )← φ
3: while (Current 6= φ) do
4: Next← φ
5: for all v ∈ Current do
6: Next← Next ∪Neighbour(v)
7: end for
8: N(P )← N(P ) ∪ Current
9: Current← Next \N(P )

10: end while
11: return N(P )

3 The Regularization Path

As the optimal classifiers for SVM QP are on the boundary of the polytope, by
Theorem 1, the set of classifiers given by the regularization path is a subset of
the set of vertices and related edges of the polytope of feasible region. Since the
classifier is chosen by 0-1 loss function, using this in SVM design phase itself,
one can argue that vertex classifiers on the path dominate those at the related
edges.

However, for some set of test points, the dominating vertex classifier (as in
Theorem 2) may or may not be on the path (see the example in Section 4).
In the following discussion, we focus on the classifiers at vertices that generate
some portions of the regularization path.

Before describing the procedure to identify the vertices on the path traced by
the parameter λ, we mention a few results which will be used by this procedure.

Using the fact that, at optimality, the gradient of the objective function in a
convex setting needs to be a member of the normal cone at that point and the
KKT system gives an algebraic representation of this geometric phenomena, we
have the following:

Theorem 5. The bounds [λl, λu] on the range of values of the regularization
parameter λ for which a given classifier (w, b, ξ) ∈ P is optimal for SVM QP
at (1), can be obtained as solutions to the following two linear programs, respec-
tively:

λl = minλ≥0 λ (5)

over S(w, b, ξ)

λu = maxλ≥0 λ (6)

over S(w, b, ξ)



where S(w, b, ξ) = {(λ, α1, . . . , αn)} such that

n∑
i=1

αiyixi = 2λw

n∑
i=1

αiyi = 0

αi [yi(w · xi + b)− ξi)] = 0 ∀i ∈ {1, . . . , n}
(1− αi)ξi = 0 ∀i ∈ {1, . . . , n}

0 ≤ αi ≤ 1 ∀i ∈ {1, . . . , n}

Proof. For (w, b, ξ) to be optimal for a given λ in the SVM QP, the Karush-
Kuhn-Tucker (KKT) system should hold with Lagrange multipliers {αi}ni=1. The
set S(w, b, ξ) has been defined using the KKT system for the SVM QP. Hence
the bounds on the range of λ are given by the above two LPs. ut

The next result says that a portion of the λ-path of a given SVM is partitioned
by intervals corresponding to some of the vertices and edges of the polytope P .
Also, we can see that the λ value for an edge classifier is a harmonic mean of
the bounds on the λ interval of the related vertices.

Theorem 6. (i) For a classifier (w, b) which is a vertex v := (w, b, ξ) on the
polytope P , the range [λl, λu] of λ values, for which v is optimal, is an
interval in R. In fact, this range is always finite since the gradient of the
objective is never parallel to the generators of the normal cone.

(ii) For a classifier on an edge or a facet of P , the feasible λ value is a singleton,
i.e., λl = λu. Specifically, for an edge point classifier, ev1,v2 , lying between
two on-the-path vertices v1 and v2 such that λu(v1) < λl(v2), we have

λ(ev1,v2) =
λu(v1)λl(v2)

βλl(v2) + (1− β)λu(v1)
. (7)

(iii) A portion of the regularization path corresponding to vertex-edge boundary
of P can be decomposed into intervals corresponding to vertices on the path
and the edges between them. This is so because, for an edge point classifier,
ev1,v2 , as described above, we have

λ(ev1,v2) ∈ (λu(v1), λl(v2)). (8)

Proof. (i) For optimality we require that the gradient of the objective function,
Of(x∗), of (1) to lie in the normal cone to the polytope at the optimum x∗.
The normal cone at the vertex v is a full dimensional polyhedral forward
cone [?].



Of(w, b, ξ) =



2λw1

...
2λwm

0
1
...
1


(9)

and Og1i (w, b, ξ) =



yixi,1
...

yixi,m
yi
0
...
1
...
0


∀i of type A1 (10)

Og2i (w, b, ξ) =



0
...
0
...
1
...
0


∀i of type A2 (11)

where A1 and A2 are the coefficient matrices for the constraints of the
SVM QP as defined in (??) and (??).
For an optimal classifier (w, b, ξ), it is required that the gradient of the ob-
jective function at this classifier can be expressed as a convex combination
of the generators of the normal cone at this point, i.e.,

Of(w, b, ξ) =
∑

i∈I∗(w,b,ξ)

[
αiOg

1
i (w, b, ξ) + α̃iOg

2
i (w, b, ξ)

]
. (12)

where 0 ≤ αi, α̃i ≤ 1 for all i ∈ {1, . . . , n}. By equating the components, it
can be easily verified that α̃i = 1− αi for all i ∈ {1, . . . , n}.
Using (9), (10) and (11), it can be noted that the regularization parameter
λ impacts only the w component of the classifier (w, b, ξ) for optimality.
And hence only some suitable scaling(s) of w via λ lie in the normal cone
generated above. The generators for the normal cone at the vertex v span
Rm+n+1. This results in a finite interval of λ for which the vertex is optimal
for (1).



It is important here to note that Of(v) is not parallel to any generator of
the normal cone, otherwise the there would be an infinite range of λ for
v to be optimal, which is not generally the case. We prove this claim as
below:
Suppose Of(v) is parallel to some generator Og1i (v) of the normal cone at
vertex v, which implies,

αi > 0 and αj = 0 ∀j ∈ {1, . . . , n} \ {i}. (13)

If the above is true, then the KKT condition (??) is violated and hence v
cannot be optimal for any λ value.
Also, looking at the components of the gradients at (9), (10) and (11), we
can see that for no convex combination, Of(v) is parallel to the generators
Og1i (v) or Og2i (v).

(ii) For a point on the edge ev1,v2 , which is the set of convex combinations of two
vertices, the normal cone is a part of the orthogonal hyperplane to this edge.
Hence there is a unique λ for which Of(ev1,v2) intersects this hyperplane.
Similarly, for classifiers on the facets of dimension k < (m + n + 1), the
generators of the normal cone span Rm+n+1−k and only a unique suitable
scaling of Of(x) lies in the Rm+n+1 subspace.

(iii) The λ value for an edge classifier on the path is bounded by the upper
bound of one vertex and lower bound of the other. This is evident from the
continuity of the λ path between two λ-feasible vertices on the polytope P .
Consider two neighbouring vertices, v1 = (w1, b1, ξ1) and v2 = (w2, b2, ξ2)
lying adjacent on the λ-path with λ intervals as (λl(v1), λu(v1)) and (λl(v2), λu(v2))
respectively, where λu(v1) < λl(v2). Suppose ev1,v2 = (wev1,v2 , bev1,v2 , ξev1,v2 )
is a point on the edge between v1 and v2. Then ev1,v2 can be expressed as:

ev1,v2 = βv1 + (1− β)v2 for some β ∈ (0, 1). (14)

If ev1,v2 is optimal for some λ(e), then (we, be, ξe, λ(e)) should satisfy the
KKT system for the SVM QP. Thus,

2λ(ev1,v2)wev1,v2 =

n∑
i=1

αi(ev1,v2)yixi (15)

Now, since v1 and v2 are optimal for λu(v1) and λl(v2), they too satisfy
the KKT system and hence we have the following relationships:

2λu(v1)w1 =
∑n
i=1 αi(v1)yixi (16)

2λl(v2)w2 =
∑n
i=1 αi(v2)yixi (17)

Substituting for w1 and w2 in (15) using the above two relations, we have

n∑
i=1

αi(ev1,v2)yixi = λ(ev1,v2)

n∑
i=1

[
βαi(v1)

λu(v1)
+

(1− β)αi(v2)

λu(v2)

]
yixi (18)



Comparing the components of the sum, we arrive at following relation:

αi(ev1,v2) = λ(ev1,v2)

[
βαi(v1)

λu(v1)
+

(1− β)αi(v2)

λu(v2)

]
∀i = 1, 2, . . . , n (19)

Consider a point xi, i ∈ {1, . . . , n} such that αi(v1) = αi(v2) = 1. This
implies αi(ev1,v2) = 1 using the KKT system and the fact that ev1,v2 is a
convex combination of v1 and v2. Solving for λ(ev1,v2) in (19) for such an
i, we get

λ(ev1,v2) =
λu(v1)λl(v2)

βλl(v2) + (1− β)λu(v1)
(20)

Since, λu(v1) < λl(v2), we get

λu(v1) < [βλl(v2) + (1− β)λu(v1)] < λl(v2) ∀β ∈ (0, 1), (21)

and hence, λu(v1) < λ(ev1,v2) < λl(v2).
ut

To trace the regularization path, we solve the SVM QP for λ = 0 which is a
linear program. This gives us a classifier corresponding to a vertex in P , say v0.
The range of λ for v0 can be obtained via the solutions to the linear programs:
(5) and (6). We know that λ traces a continuous path along the boundary of
P , so the next vertex on the path will be a neighbour of v0, found using the
procedure Neighbour(v). Many of the neighbouring vertices are not optimal
classifiers for any value of λ and hence, the LPs (5) and (6) become infeasible
at such neighbouring vertices. We will have one such neighbour for which there
exists an interval of λ and hence it becomes the next vertex on the λ-path. Then
we search amongst the neighbours of the current vertex, to find the next vertex
on the path. This procedure continues iteratively till all the neighbours of the
current vertex become infeasible for the path. Such a vertex corresponds to the
last but one vertex on the path.

Yet, there can be instances, as we will show in our example, where the path
does not retain continuity along the vertex-edge boundary of the polytope. This
happens when none of the neighbours of the current vertex are optimal for any
value of λ. This forces us to search exhaustively for next generation neighbours
which are optimal for some value of the parameter λ.

4 An Illustrative Example

The purpose of this example is to illustrate two aspects of the regularization path:
a contiguous portion of the path composed of vertices and edges of the polytope,
and another portion on facets of two or more dimensions. Interestingly, this
portion is sandwiched between intervals generated by some vertices and edges.
We tabulate the λ intervals for the vertices of P on the λ-path for a binary
classification SVM model. We consider a training set with 50 points drawn from
a bivariate normal distribution. The two classes have means (0, 0) and (1, 0) and



Fig. 1. Test error (averaged over 5 test
data sets) for the λ-path for a bivariate
normal data with 50 points

Table 1. (λl, λu) for vertices on λ-path
for a bivariate normal data with 50
points

Vertex Index λl(v) λu(v)

7274 (v0) 0 0.002712

7325 0.002776 0.059187

7327 0.059275 0.339041

7326 0.339110 0.522892

7328 0.523507 0.602838

7426 0.610561 0.745904

7420 0.749820 0.818734

7421 0.851777 1.191843

7424 1.198099 1.370998

7425 1.456195 1.723649

7352 1.785567 2.047029

9038 2.206312 2.428423

9158 2.535443 3.053205

- 3.5 3.5

- 4.25 4.25

10470 5.372196 6.368380

10471 6.486113 7.576469

same covariance matrix (0.5, 0; 0, 0.5). A list of 15002 valid vertices with an index
was generated using rcdd package [5] in R programming language.

The vertices are arranged so that the lower and upper bounds on the λ
intervals are in an increasing order. It was observed that each vertex on this path
is a neighbour of the previous vertex on the list (except the first vertex, v0). The
portion of the path that occurs between vertices 9158 and 10470 corresponds to
classifiers on the facets, since none of the first generation neighbours of vertex
9158 are optimal for any value of λ. The next optimal vertex is 10470 which may
be obtained as a fifth generation neighbour to the vertex 9158.

Using Theorem 6, we note that only 15 of these 15002 vertices are on the
λ-path. The set of first 13 vertices correspond to the first portion of the path,
followed by a portion on the facets of two or higher dimensions. The last two
vertices and the edge involving them correspond to the next segment of the path.
As mentioned above, there are no more optimal vertices on the path.

We have plotted the test error of these classifiers in Figure 1, computed on
5 test data sets of 15 points with the same distribution as the training data set.
From Figure 1, we can also see that the classifiers corresponding to the facets are
dominated by the vertex classifiers in terms of test error. Hence, it is sufficient
to consider the vertices corresponding to low values of parameter λ. The test
error is lower for the last but one vertex on the path for the given test sets.



5 Discussion

The polyhedral structure of the feasible space of the standard SVM optimization
model allows us to trace the λ-path on a subset of vertices of the base polytope. It
was observed that for initial values, the λ-path comprises of vertices and related
edges. We have examples where the path has classifiers that are on facets of
the SVM polytope, P . We have restricted ourselves to the subset of vertices
that dominate the whole polytope of feasible classifiers on 0-1 loss. The vertices
and their neighbours can be identified via suitable active constraint sets. We
noticed in our limited computational exercise, that the tracing of the λ-path has
encountered numerical instabilities; such problems are also reported by [7].

Some aspects that naturally need attention include the need to come up with
a scheme to pick that neighbour of a vertex which generates the adjacent interval
on the λ-path, if such an interval exists. Perhaps, a more broader and important
aspect is to be able to restrict ourselves to a suitable subset of vertices, which
may or may not be on the λ-path, but have a promising test error.

A leave-one-out scheme [3] can be employed for testing the design of the clas-
sifier. Such leave-one-out training sets can be viewed as suitable perturbations
of a given training set, and corresponding robust classification problems can be
formalized. We can ensure the stability of the SVM algorithm by establishing
such equivalence with a robust optimization formulation [13].

Besides the test error, some other measures such as bias, variance and the
margin [4] of the classifier can be used for design. An analysis of error decom-
position of the learning algorithms such as decision trees, k-NNs, etc. is done by
[4], where the main consideration is for the algorithms that are consistent in the
use of the same loss function for training as well as testing. This analysis was
further taken up by [12] to the case of SVMs, where training makes use of hinge
loss and testing is based on 0− 1 loss.

Some statistical properties about the risk of the classifier [14], [11] can be
explored to improve the efficiency of our algorithms. These results may help us
pick ‘good’ vertex classifiers, for example, via the λ intervals corresponding to
good generalizations guarantees.
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