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ABSTRACT
We �rst propose an empirical risk minimization based binary classi-

�cation algorithm, ExpERM, with exponential function as surrogate

loss function. Our ExpERM algorithm is scalable in both the di-

mension of feature space as well as in the number of data points

as it is an unconstrained di�erentiable convex optimization prob-

lem or a convex optimization problem with a single constraint in

the regularized ExpERM framework. Under mild assumption on

data, we show that ExpERM classi�er is unique. We implement

ExpERM on wide collection (large-features, large-examples) of real

datasets. We use Wilcoxon signed-rank test to show that these

easily computable classi�ers have good generalization property as

their 5 or 10-fold cross validation error is not signi�cantly di�erent

from those classi�ers obtained by standard hinge loss based SVMs

or AdaBoost classi�ers. Using some large feature sized datasets,

we make a statistical comparison of SVM and ExpERM and ob-

serve that ExpERM takes remarkably less time to train the model.

Towards be�er understanding this simple and e�ective learning

algorithm, we obtain PAC like sample complexity bounds for reg-

ularized ExpERM and high probability bounds for ExpERM based

on Rademacher complexity and uniform stability notions. Our

computational experience suggests that the regularization does

not signi�cantly improve the performance of the ExpERM based

classi�er. Due to repeated calls to be made to the binary classi�er

routines in implementation of combined multi-class algorithms,

ExpERM scheme is expected to be signi�cantly computationally

cheaper and hence scalable. We statistically show that CV error of

our binary ExpERM classi�ers on many multi-class datasets is com-

parable to those obtained using computationally expensive binary

class SVMs.
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1 INTRODUCTION
One important building block of learning algorithms is the loss

function used to come up with a learner by algorithmically process-

ing the given training data. So, loss functions also have a direct

bearing on the generalization property of the learner that is being

designed. Also of importance is the scalability of the learning al-

gorithm both in terms of the data size and runtime requirements.

Depending upon the underlying learning problem, these loss func-

tions are required to possess di�erent properties. We are interested

in designing learners for classi�cation problems, both binary class

and multi-class.

�e domain set or feature space and the label set is denoted by

X ⊆ Rn and Y ∈ {−1, 1} respectively. Let D be a joint probability

distribution over Z = X × Y . �e learner has access to the training

data S = (z1, . . . , zm ) where zi ∈ Z. �e learner is requested to

output a prediction rule f : X 7→ Y such that f (x) = sign(д(x))
where д : X 7→ R is a measurable function on X. As is mostly

common we restrict ourselves to the set of all linear classi�ers h(x)
by considering д(·) as linear functionals. �at is, our hypothesis

class is of the form H = {(w,b) : w ∈ Rn ,b ∈ R} so that h(x) =
wTx + b. For the sake of convenience, we incorporate the bias b
into w as an extra coordinate at the end of the vector. �e error of

a prediction rule f (x) = sign(h(x)) is the probability that it does

not predict the correct label on an instance z = (x,y) generated by

D.

Multi-class classi�cation is the problem of classifying instances

into one of several possible classes; [14] and [18] provide a good

introduction to this topic. We brie�y describe the problem and

popular approaches used to solve it. Our goal here is to learn a

prediction rule f : X 7→ Y where Y is a given �nite set of classes.

Without loss of generality, let us denote Y = {1, 2, . . . , c}. �ere

exist two broad classes of algorithms: uncombined algorithms which

are speci�cally designed for multi-class problems and combined
algorithms where the multi-class problem is solved by reduction to

binary classi�cation problem. In the later class of algorithms, two

popular methods are One-versus-All (OVA) and One-versus-One

(OVO) or Pairwise method.

In OVA, we learn c binary classi�ers, fl = sign(hl ) derived from

linear functions, hl : X 7→ R, for l ∈ Y . Given S , we construct

c binary training sets Si = ((x1, (−1)1[y1
,i ] ), . . . , (xm , (−1)1[ym,i ] ))

such that each instance label is 1 if it belongs to class i , else −1.

�en, the multi-class prediction rule f : X 7→ Y de�ned by OVA

method is given by:

∀x ∈ X, f (x) = argmax

l ∈Y
hl (x). (1)

In OVO, for each pair of distinct classes (l , l ′) ∈ Y 2, l , l
′
,

a binary classi�er fl l ′ : X 7→ Y is obtained by training a binary

classi�cation algorithm on sub-sample containing exactly the points
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labeled with l or l
′
, with 1 returned for class l

′
and −1 for class

l . �e �nal multi-class prediction rule f is de�ned by training

(c
2
) = c(c−1)

2
classi�ers, combined via majority vote:

∀x ∈ X, f (x) = argmax

l ∈Y
|{l : fl l ′ (x) = 1}|. (2)

Since a multi-class problem is reduced to a binary classi�ca-

tion problem, we give a detailed analysis of binary classi�cation

problems. Given any set H and Z, a loss function is de�ned as

l : H × Z 7→ R+. �e risk function, de�ned to be the expected loss

of a classi�er, h ∈ H, with respect to the probability distribution D
over Z is,

LD(h) := E
z∼D
[l(h, z)] (3)

Let η(x) := P[y = 1|x] be conditional in-class probability. �en, we

can write

LD(h) = EX[η(x)l(h(x), (x, 1)) + (1 − η(x))l(h(x), (x,−1))]. (4)

If the loss function is 0 − 1 loss, de�ned as,

l0−1(h, (x,y)) :=

{
0 if sign(h(x)) = y
1 if sign(h(x)) , y

(5)

then the risk function in (3) becomes,

LD,0−1(h) = E
z∼D
[l0−1(h, z)] = E

z∼D
[1{sign(h(x)),y }]

= P
z∼D
[sign(h(x)) , y] (6)

and is called true risk or generalization error of h. �e minimum

value of true risk over all prediction rules is called Bayes risk. �e

population minimizer of 0 − 1 loss function or minimizer of Bayes

Risk, sign(2η(x) − 1) is called Bayes decision rule.
�e empirical risk, de�ned to be the expected loss over a given

sample S = (zi . . . , zm ) ∈ Zm is,

LS (h) :=
1

m

m∑
i=1

l(h, zi ) (7)

Since, the only representation of the domain set we have is in the

form of training sample S , the best classi�er h can be found by

minimizing LS (h), i.e.,

h∗S ∈ arg min

h∈H
LS (h).1 (8)

�is learning paradigm is called Empirical Risk Minimization (ERM).

However, solving the ERM problem with respect to the 0 − 1 loss is

known to be NP-hard ([18], Chapter 8). One popular approach is

to upper bound the non-convex 0− 1 loss function by a convex sur-

rogate function, say lsur . In classi�cation, most common surrogate

loss functions are margin-based, i.e., there exists a function ϕ such

that lsur (h(x), (x,y)) = ϕ(yh(x)), y ∈ Y and h(x) ∈ R. For example,

hinge loss de�ned as lhinдe (h, (x,y)) = max{0, 1 − yh(x)} is one

such surrogate loss function used in SVM. Another surrogate for

0 − 1 loss function is exponential loss de�ned as lexp (h, (x,y)) =
e−yh(x). �is loss function is relevant in AdaBoost, a popular boost-

ing method; boosting algorithms are an important part of ensemble

schemes whose paradigm is quite di�erent from ERM paradigm.

1l (h, zi ) need not be strictly convex and hence, minimizer h∗S need not be unique.

1.1 Relevant work and our contribution
�ere has been a lot of work on the role of loss functions, their

properties and interpretation from various perspectives. It is known

that a large family of margin-based loss functions are Fisher con-

sistent, i.e., the population minimizer of the loss function leads to

the Bayes optimal rule [12]. �ey also use connection between

Fisher consistency and consistency in classi�cation to derive con-

sistency and rate of convergence results of classi�ers based on

margin-based loss functions. �e convergence rate of the risk of

a function that minimizes empirical risk over some �xed class

H was studied in [22]. Under the assumption of low noise, it

was shown that the risk converges to the minimum risk over

class H. Suppose the generic conditional ϕ−risk is de�ned as

Cη (α) = ηϕ(α) + (1 − η)ϕ(−α), then ϕ is classi�cation calibrated if,

for any η , 1/2, inf

α :α (2η−1)≤0

Cη (α) > inf

α ∈R
Cη (α). Using a weaker

condition, [3] shows that if a margin-based loss function is clas-

si�cation calibrated, then the convergence of excess risk due to

lsur implies convergence of excess risk due to l0−1, i.e., for every

sequence of measurable functions {hi }i≥1,

if LD,lsur (hi ) −→ min

h∈H
LD,lsur (h)

then, LD,l0−1
(hi ) −→ min

h∈H
LD,l0−1

(h)

A general theory on various loss functions is presented in [20].

Another approach to these classi�cation problems is via function

estimation where conditional in-class probabilities are estimated. A

new loss function using the probability elicitation idea is developed

in [13]. By selecting a risk and hypothesis class, they construct a

loss lsur and use the convexity of minimum conditional risk as a

su�cient condition to obtain an optimal classi�er. An extension

of the work by [5] applied to composite losses in [13] is presented

in [17]. �ey also generalize the notion of classi�cation calibrated

losses from [3]. An axiomatic framework for classi�er design via

coherent loss function is proposed in [23]. �ey derive a tractable

upper bound for empirical misclassi�cation error and claim that

coherent loss approach has robustness properties. A family of co-

herence functions, as majorization to hinge loss is proposed in [25].

�ey show that using these coherence functions one can estimate

the class probabilities and devise new large margin classi�ers.

Various researchers have addressed the problem of comparing

two or more classi�cation algorithms by using standard parametric

and non-parametric statistical tests. �e appropriate test can be

chosen depending upon the comparison, whether two or multiple

algorithms on single dataset or multiple datasets. A good overview

of this can be seen in [2], [10], [8]. We use these tests later.

We present an exponential loss function, lexp (h, (x,y)), based

ERM framework in Section 2. We explore its properties like Lips-

chitzness and smoothness which help us in developing high proba-

bility bounds for the unknown risk. �ese properties are in addition

to the already known properties like classi�cation calibration, etc.,

of exponential loss function. We also reinterpret the exponential

loss function as loss-reward function, which rewards all correctly

classi�ed examples and penalizes misclassi�ed examples; maximiza-

tion of this in ERM framework is equivalent to the above. We prove

that under mild assumptions, the ExpERM classi�er is unique.
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In Section 3, we give some high probability bounds on gener-

alization error by building upon the existing results. We obtain

bounds based on algorithmic stability as ExpERM is shown to be

uniformly stable. We also present some sample complexity bounds

using the properties of exponential loss function shown in Section

2.

In Section 4, we give statistical evidence to validate the perfor-

mance of ExpERM scheme. We perform Wilcoxon signed-rank test

to make statistical comparisons of CV error and runtime between

two algorithms. We show on a wide variety of real datasets that

there is no signi�cant di�erence between the CV error of ExpERM,

SVM and Boosting based binary classi�ers. It was seen that gen-

eralization error of the RegExpERM based binary classi�ers is not

signi�cantly di�erent from that of ExpERM based classi�ers. In

particular, we illustrate the scalability of ExpERM by comparing

its runtime with SVM for some large feature sized datasets and

observe that ExpERM is computationally e�cient. For multi-class

datasets with large number of classes, combined OVO/OVA based

techniques make repeated calls to the binary classi�er routines;

for such instances ExpERM scheme is expected to be signi�cantly

computationally cheaper and hence scalable. To illustrate this, we

implement ExpERM on multi-class datasets and observe that there

is no statistically signi�cant di�erence between the CV error of

ExpERM based classi�er and SVM classi�er.

Section 5 concludes along with some promising directions of

further work. Proofs of all results are presented in Appendix A.

2 EXPONENTIAL LOSS FUNCTION BASED
EMPIRICAL RISK MINIMIZATION
CLASSIFIER, ExpERM

In this section, we �rst consider the exponential loss function and

a modi�ed version of exponential loss. A�er showing some of its

properties, we then de�ne exponential loss function based ERM

scheme.

2.1 Exponential loss function and its
loss-reward interpretation

Exponential loss function is de�ned as lexp (h(x), (x,y)) = e−yh(x).
Figure 1 shows the plot of lexp (h(x), (x,y)) along with

lhinдe (h(x), (x,y)) and l0−1(h(x), (x,y)). Clearly, lexp is an upper

bound on l0−1. Also, lexp (yh(x)) : R 7→ R is a positive and strict

convex function. So, it is a valid candidate for surrogate function.

For a data point x, if yh(x) ≤ 0 (misclassi�cation), then lexp ≥ 1

i.e., a large exponential loss is assigned. If yh(x) > 0 (correct classi-

�cation), then lexp ∈ (0, 1]. �erefore, unlike hinge loss lhinдe (·, ·)
which penalizes some correctly classi�ed examples along with the

misclassi�ed examples with a positive loss, exponential loss func-

tion, lexp assigns a strictly positive loss to all correctly classi�ed

points. Also, for misclassi�ed points, hinge loss penalization is only

linear whereas exponential loss penalizes exponentially.

One property that any loss function is expected to have is that

it should not give unbounded positive value to correctly classi�ed

examples. �is is because inherently on a dataset any reasonable

classi�er will correctly classify a majority of the sample points. If

the loss function gives arbitrarily large values to correct classi�ca-

tions, then the classi�er obtained by optimizing over cumulative
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Figure 1: Aplot showing 0−1 loss function and its two convex
surrogates; hinge loss and exponential loss. �ese functions
are plotted as a function of the margin y f (x).

loss might not be �nite. �is motivates us to give a di�erent per-

spective to the way a classi�er is evaluated.

We reinterpret the exponential loss function such that it rewards

all the correctly classi�ed examples and penalizes the misclassi�ed

examples. In particular, let this loss-reward function, lrexp (h(x), z)
be de�ned as follows:

∀h ∈ H, ∀z = (x,y), lrexp (h(x), z) = 1 − e−yh(x). (9)

lrexp (h(x), z) is a smooth and concave function w.r.t. hypothesis

h = w ∈ Rn . For correctly classi�ed examples, lrexp (h(x), (x,y)) ∈
[0, 1) and for misclassi�ed examples, lrexp (h(x), (x,y)) ∈ (−∞, 0).
�is surrogate function incrementally rewards a sample point if it

is correctly classi�ed and exponentially penalizes it if it is misclas-

si�ed, both based on the margin yh(x). Figure 2 shows the plot of

lrexp (h(x), (x,y)). �is loss-reward interpretation holds for Boost-

ing as it is also an exponential loss based classi�cation algorithm.

In Section 2.3, we use the fact that the performance of classi�ers

designed using lexp and lrexp is equivalent.

2.2 Some properties of exponential loss
function

In this section, we study some properties of the exponential loss

function lexp (h(x), (x,y)) = e−yh(x) as a surrogate loss function.

We assume through out this work that the domain set or the feature

space is bounded, i.e., ‖x‖2 ≤ R for a given R > 0. For practical

applications, some knowledge about the value of R can be obtained

from the domain experts. Following properties of lexp (w, (x,y)) =
e−y(w

Tx+b)
are used in deriving the performance guarantees for

the classi�er obtained from ExpERM. For the sake of convenience,

let xi = (xi , 1) ∈ Rn+1
where xi ∈ Rn such that ‖x‖2 ≤ R̃. We also

assume that hypothesis class is bounded and the norm includes

bias term, i.e., ‖(w,b)‖2 ≤ B for a given B > 0.

�e proofs of following results are given in the appendix.

Lemma 2.1. For a given sample zi = (xi ,yi ), lexp ((w,b), zi ) is a
convex function in w and b.
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Figure 2: A plot showing 1 − 0 reward function and its con-
cave surrogate lrexp (h(x), z) = 1 − e−yh(x). All examples cor-
rectly classi�ed by lrexp (·, ·) are assigned positive reward
within [0, 1) and misclassi�ed examples are assigned nega-
tive reward within (−∞, 0).

Lemma 2.2. Given ‖w‖2 ≤ B, ‖x‖2 ≤ R̃ and a sample zi = (xi ,yi ),
lexp ((w,b), zi ) is a ρ−Lipschitz function with ρ = R̃eBR̃ .

Lemma 2.3. Given ‖w‖2 ≤ B , ‖x‖2 ≤ R̃ and a sample zi =
(xi ,yi ), lexp ((w,b), zi ) is a γ−smooth function γ = R̃eBR̃ .

One more property of the loss function, later used in evaluating

the algorithm based on it, is stability. In simple words, an algorithm

is called stable if error due to hypothesis obtained using almost

similar (di�ering by an instance) samples is very small. �ere

have been various notions of stability ([4],[19]). We show that the

exponential loss function based ERM is β−uniformly stable using

the following de�nition of stability from [14]:

De�nition 2.4 (Uniform stability). Let S and S
′
be any two training

samples that di�er by a single point. �en, a learning algorithm A
is uniformly β−stable if the hypotheses it returns when trained on

any such samples S and S
′

satisfy

∀z ∈ Z, |l(hS , z) − l(hS ′ , z)| ≤ β (10)

Lemma 2.5. ExpERM is uniformly β−stable with β = eBR̃ (e2BR̃ −
1).

Remark 1. We already know some properties of exponential loss
function like Fisher consistency and classi�cation calibration. For a
given x, true risk of the classi�erh(x) trained by using lexp (h(x), (x,y))
is

η(x)e−(1)h(x) + (1 − η(x))e−(−1)h(x). (11)

�e population minimizer of exponential loss function,
lexp (h(x), (x,y)), i.e., the decision rule which minimizes (11) is

f ∗,exp (x) = sign
(

1

2
ln

η(x)
1−η(x)

)
and is same as Bayes decision rule.

Hence, it is Fisher consistent. It is known that exponential loss function,
lexp (h(x), (x,y)) is classi�cation calibrated as de�ned in [3].

2.3 Binary ExpERM classi�er
We obtain a binary classi�er by using exponential loss function,

lexp (h, z) as surrogate function in (7) and minimize the empirical

risk (ExpERM), i.e.,

h
exp
S = arg min

h∈H
1

m

m∑
i=1

lexp (h, zi ) = arg min

h∈H
1

m

m∑
i=1

e−yih(xi ). (12)

For linear classi�ers, it can be rewri�en as follows:

h
exp
S = arg min

w∈Rn,b ∈R

1

m

m∑
i=1

e−yi (w
Txi+b)

(13)

Another, very popular version of ERM is Regularized Empirical Risk

Minimization. It is a learning rule in which one jointly minimizes

the empirical risk and a regularization function R : Rd → R and

the regularized loss minimization rule outputs a hypothesis,

arg min

h∈H
(LS,lsur (h) + R(h)) (14)

We also give a regularized version of ExpERM with Tikhonov

regularization function (RegExpERM) as follows, for a given λ >
0:

h
exp(r eд)
S = arg min

h∈H
1

m

m∑
i=1

e−yih(xi ) + λ‖h‖2
2

(15)

�e value of regularization function measures the complexity of

the hypothesis space. �e optimal h
exp(r eд)
S trades o� between the

empirical risk and hypothesis complexity. An interesting interpre-

tation for λ in terms of the robustness properties of the learning

rule or the classi�er is presented in Chapter 10 of [21]. Another role

of regularization term in RegExpERM is to avoid the unbounded

objective condition.

We now obtain the ExpERM classi�er using lrexp . Consider max-

imizing the average of the loss-reward function over all examples:

Wmax = arg max

w∈Rn,b ∈R

1

m

m∑
i=1

(1 − e−yi (wTxi+b)). (16)

We observe that the classi�ers h
exp
S and Wmax are the same. �e

same equivalence holds for the regularized version with regularizer

λ, i.e., h
exp(r eд)
S and Wr eд

max de�ned as:

Wr eд
max = arg max

w∈Rn,b ∈R

1

m

m∑
i=1

(1 − e−yi (wTxi+b)) − λ‖w‖2
2
. (17)

For our numerical experiments, we consider the datasets which are

linearly inseparable. �en, the linear classi�ers for such datasets

based on our loss function, ExpERM (16), will be �nite:

Theorem 2.6. Consider the following optimization problem,

(P) max

w∈Rn,b ∈R

m∑
i=1

(1 − e−yi (wTxi+b))

(P) will have a �nite solution (w,b) if and only if the given data is
linearly inseparable.

As we are now sure about the existence of ExpERM classi�er,

we are interested in its uniqueness. If the classi�er is not unique,

then one needs to decide out of the many classi�ers with same total
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empirical risk which one to choose for prediction as the generaliza-

tion error of multiple optimal classi�ers can di�er. From Lemma

2.1, we know that lexp (h(x), (x,y)) is convex (but not necessarily

strict). However, due to linear inseparability of data we expect that

m∑
i=1

lexp (h(xi ), (xi,yi )) is strictly convex function of (w,b). Under

mild assumption on the data, we show in the following theorem

that the optimal classi�er obtained from ExpERM is unique. �e

proof is given in Appendix.

Theorem 2.7. If the data matrix A(n+1)×m (with m > n + 1)
de�ned as follows

A :=



x11 x21 . . . xm1

x12 x22 . . . xm2

...
. . .

...

x1n x2n . . . xmn
1 1 1 1


,

is full rank, then optimal classi�er obtained from ExpERM is unique.

Remark 2. As in the proof of�eorem 2.7, if datamatrixA as above
is full rank, using mid-point convexity (as the function is continuous)
and AM-GM inequality, one can show that (13), the empirical risk
minimization involving exponential loss function, is in fact a strictly
convex problem having a unique solution.

It is known that objective function of SVM QP is strictly convex

only in normal w and not in b. �is leads to w being uniquely

determined but the choice of b is not unique. �e uniqueness of

SVM classi�ers for binary classi�cation problem is studied in [6].

�e authors give closed form expression for the threshold b, which

is unique. �eorem 2.7 shows that ExpERM jointly determines the

classi�er uniquely i.e., both w and b are unique.

Remark 3. Let B be the data matrix de�ned as below.

B :=


x11 x21 . . . xm1

x12 x22 . . . xm2

...
. . .

...

x1n x2n . . . xmn

n×m
We argue that full rank assumption on B is not same as full rank
assumption on A i.e. rank(B) = n does not imply rank(A) = n + 1.
Let B′n×n be the submatrix of B of rank n. �erefore, the rows of B′

span the whole of Rn . If we append a row [1, . . . , 1] to B′, then for

some {β1, . . . , βn }, we have
n∑
j=1

βjxi j = 1, ∀i = 1, . . . ,m. If there

is a (n + 1) × (n + 1) dimensional submatrix A′ of matrix A such

that
n∑
j=1

βjx(n+1)j = 1, then in such cases rank of A′ and inturn of

A continue to be n. In fact, given that rank of B is n, this condition
on last column of A′ can be veri�ed easily to be both necessary and
su�cient for A to have rank n.

3 PERFORMANCE GUARANTEES ON BINARY
ExpERM CLASSIFIERS

In this section, we specialize various high probability bounds on

the generalization error of the hypothesis. �ere have been a va-

riety of generalization bounds based on di�erent measures of the

complexity of the hypothesis setH and some based on stability of

the speci�c algorithm used.

3.1 Algorithmic stability bounds
Recall that some generalization error bounds exploit the algorithmic

stability property to give algorithm dependent guarantees. As seen

in Lemma 2.5, ExpERM is β− stable with β = eBR̃ (e2BR̃ − 1). We

see that the coe�cient β is independent of m. Also, under the

assumption on the boundedness of hypothesis class and feature

space, loss function lexp (h(x), (x,y)) is bounded byM = eBR̃ . As

all the assumptions and conditions of �eorem 11.1 from [14] are

satis�ed, we have the following:

Corollary 3.1. Let ExpERM be implemented on a sample S ofm
points drawn i.i.d. according to distribution D. �en, with probability
at least 1 − δ over the sample S drawn, the following holds :

LD(h
exp
S ) ≤ LS (h

exp
S )

+ eBR̃
(e2BR̃ − 1)

(
1 +

√
2m log( 1

δ
)
)
+

√
log( 1

δ )
2m

 (18)

Above result gives a data-dependent bound on the deviation of

the unknown generalization error LD(h
exp
S ) from the computable

empirical error LS (h
exp
S ); note that this empirical error is obtained

from a stable learning algorithm ExpERM.

3.2 Sample complexity type bounds
Here, we give PAC like bounds on the generalization error of the

hypothesis obtained by solving regularized version of ExpERM. We

consider the Convex-Lipschitz-Bounded (H,Z, lexp , ρ) and Convex-

Smooth-Bounded (H,Z, lexp ,γ ) learning problems de�ned in [18].

�ese problems were found to be PAC learnable. Following are

bounds on the generalization error of h
exp
S (x) in terms of the gener-

alization error of the optimal classi�erh∗,exp = arg min

w ∈H
LD,lexp (w).

�e proofs are given in appendix.

Corollary 3.2. (α) Suppose that D is a distribution over
Z = X×Y such that with probability 1 we have that ‖x‖2 ≤ R̃

Consider the hypothesishexp(r eд)S (x) obtained by implement-
ing RegExpERM on (H,Z, lexp , ρ). For any training set size

m, let λ =
√

2ρ2

B2m .�en, RegExpERM rule (15) satis�es

ES [LD,lexp (h
exp(r eд)
S )] ≤ min

w ∈H
LD,lexp (w) + ρB

√
8

m
. (19)

In particular, for every ϵ > 0, ifm ≥ 8ρ2B2

ϵ2
then for every

distributionD, ES [LD,lexp (h
exp(r eд)
S )] ≤ min

w ∈H
LD,lexp (w)+

ϵ .
(β) Also, RegExpERM satis�es,

P[LD,lexp (h
exp(r eд)
S ) ≤ min

w ∈H
LD,lexp (w) + ϵ] ≥ 1 − δ (20)

withm ≥ 8ρ2B2

ϵ2
and λ =

√
2ρ2

B2m .

Corollary 3.3. (α) Suppose thatD is a distribution overZ =
X × Y such that with probability 1 we have that ‖x‖2 ≤ R̃.
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Consider the hypothesishexp(r eд)S (x) obtained by implement-
ing RegExpERM on (H,Z, lexp ,γ ) For any ϵ ∈ (0, 1), let
m ≥ 192γ B2

ϵ 2
and set λ = ϵ

2B2
. �en, for every distribution D,

ES [LD,lexp (h
exp(r eд)
S )] ≤ min

w ∈H
LD,lexp (w) + ϵ (21)

(β) Also, RegExpERM satis�es,

P[LD,lexp (h
exp(r eд)
S ) ≤ min

w ∈H
LD,lexp (w) + ϵ] ≥ 1 − δ (22)

withm ≥ 192γ B2

ϵ 2
and λ = ϵδ

2B2

Remark 4. Since, lexp (h(x), (x,y)) is both ρ−Lipschitz and
γ−smooth with ρ = γ , we observe that the bound in (19) (or (21)) is
tighter if γ < 48 (or γ ≥ 48).

Remark 5. Another type of bound on generalization error of linear
predictors with bounded norm constraint as given in Chapter 26 of
[18] is via Rademacher complexity. Since, lexp (h(x), (x,y)) satis�es
all the assumptions and su�cient condition of �eorem 26.12, by
substituting ρ = R̃eBR̃ and c = eBR̃ , we get the following.

For any δ ∈ (0, 1), with probability at least 1− δ over the choice of
an i.i.d. sample of sizem,

∀h ∈ H, LD,lexp (h) ≤ LS,lexp (h)+
eBR̃
√
m

(
2BR̃2 +

√
2 ln(2/δ )

)
(23)

4 COMPUTATIONAL EXPERIMENTS
In this section, we obtain linear classi�ers by ExpERM and RegEx-

pERM scheme described in Section 2 for a variety of binary and

multi-class datasets taken from [1], [11] and [9]. Using Wilcoxon

signed-rank test, we statistically compare 5 or 10 fold cross valida-

tion error (test error ) and runtime due to ExpERM with methods

like SVM and Boosting. We implement ExpERM and RegExpERM

in AMPL Version 20170616 and use SNOPT 7.5-1.2 solver. SVM (with

linear kernels) has been implemented in R version 3.1.3 (2015-03-09)
and Boosting in Python 2.7.13. All the computations are performed

on machine equipped with 4 Intel Xeon 2.13 GHz cores and 64 GB

RAM. As shown in Subsection 2.3, minimization of loss function,

lexp (h(x), (x,y)) is same as maximization of loss-reward function,

lrexp (h(x), (x,y)). So, for numerical experiments, we solve (16) and

(17) and do not include the bounded norm constraint. As part of

reproducible research regime, we can make the code available, if

needed.

Wilcoxon signed-rank test is a non-parametric test which uses

both sign and magnitude of the di�erence between the observations

[15]. If the null hypothesis is H0 : µ = µ0, then depending upon

the statement which a person is interested in testing, alternative

hypothesis could be two-sided (H1 : µ , µ0) or one-sided (H1 : µ ≶
µ0). �e idea of this test is to rank the performance di�erences in

absolute value in ascending order and then calculate the sum of

ranks for positive (W +) and negative (W −) di�erences separately.

Let w∗d,α be the critical values of W for d datasets at α level of

signi�cance. For two sided tests, if the observed value of statistic

w = min(W +,W −) ≤ w∗α , the null hypothesis is rejected. For one-

sided tests, if the alternative is H1 : µ > µ0, reject H0 ifW − ≤ w∗d,α ;

and if the alternative is H1 : µ < µ0, reject H0 ifW + ≤ w∗d,α .

4.1 Binary classi�cation problems
First, we consider moderate sized binary classi�cation datasets with

both balanced and imbalanced classes. Of the datasets described

in Table 1, 5 datasets (Appendicitis, Vehicle Silhoue�es, Image Seg-

mentation, Winconsin, Page Blocks) have imbalanced classes. Table

1 shows the details of datasets and comparison of ExpERM with

SVM (C = 1) and Boosting technique in terms of the CV error. We

determined C in SVM through cross validation. We only report

SVM CV error with C = 1 (Column 5 of Table 1) as it is within

1% of the above. We have used decision trees as base classi�ers

for Boosting. We iterate over a list L = {5, 10, . . . , 145, 150} denot-

ing the maximum number of base classi�ers at which Boosting is

terminated and average over it to compute the �nal Boosting CV

error.

We performed Wilcoxon signed-rank test [15] on the CV error

of ExpERM (µE ) and SVM (µS ) based classi�er to test if there is

any signi�cant di�erence between them. �e null hypothesis HS
0

:

µS = µE is tested against the alternative HS
1

: µS < µE . �e

sum of positive ranks isW +S = 108 and sum of negative ranks is

W −S = 28. �e observed Wilcoxon test statistic value,W −S is more

than tabulated value ofW16,0.01 = 23. So, we cannot rejectHS
0

at 1%

level of signi�cance. Hence, we can say that there is no signi�cant

di�erence between the CV error of ExpERM and SVM based binary

classi�ers. Similarly, for comparing the CV error of ExpERM and

Boosting, consider the null hypothesis HB
0

: µB = µE against the

alternative HB
1

: µB < µE . �e sum of positive ranks isW +B = 86

and sum of negative ranks isW −B = 50. �e observed Wilcoxon test

statistic value,W −B is more than tabulated value ofW16,0.01 = 23.

So, we cannot reject HB
0

at 1% level of signi�cance. Hence, we can

say that there is no signi�cant di�erence between the CV error of

ExpERM and Boosting based binary classi�ers.

It is observed that there is no signi�cant improvement a�er

regularizing, i.e., ExpERM and RegExpERM are performing almost

same. Table 2 to Table 9 show the comparison of RegExpERM with

SVM for various regularization parameter λ on some of the above

datasets given in Table 1.

For some large feature sized datasets, we implemented ExpERM

and SVM. In Table 10, we report test error and runtime of both

ExpERM and SVM. We performed Wilcoxon signed-rank test on

the runtime of ExpERM (tE ) and SVM (tS ) based classi�er to test

if there is any signi�cant di�erence between the runtime of these

algorithms. �e null hypothesis H tS
0

: tS = tE is tested against the

alternative H tS
1

: tE < tS . �e sum of positive ranks isW +tS = 0 and

sum of negative ranks is W −tS = 45. �e observed Wilcoxon test

statistic value,W +tS is less than tabulated value ofW9,0.01 = 3. So,

we reject H tS
0

at 1% level of signi�cance. Hence, we can say that

runtime of ExpERM is signi�cantly less than that of SVM.

4.2 Multi-class classi�cation problems
We implemented ExpERM on some multi-class datasets and com-

pared its CV error with SVM. Table 11 gives details of the datasets

and the number of folds, k and compares the results of ExpERM

and SVM. As the CV error of SVM with di�erent values of C was

almost same, for the sake of consistency we work with C = 1. �e

SVM module in Kernlab package in R for multi-class classi�cation



Scalable linear classifiers based on exponential loss function CoDS-COMAD ’18, January 11–13, 2018, Goa, India

S.no Dataset name (# of
examples, # of features) k ExpERM

CV error
SVM

CV error
(C=1)

Boosting
CV error

1 Spambase (4601,57) 10 0.082374 0.07064 0.0685

2
Blood transfusion service

center (748,4)
5 0.217971 0.236564 0.235284

3 Appendicitis (106,7) 5 0.150600 0.132468 0.141125

4
Default of Credit

Card (30000,23)
10 0.199062 0.190767 0.182633

5
Pima Indians

Diabetes(768,8)
10 0.226594 0.230388 0.256642

6
Sonar, Mines

vs Rocks (208,60)
5 0.278630 0.2499 0.276030

7
Magic Gamma

Telescope (19020,10)
10 0.253733 0.2084 0.167777

8 COIL : Insurance (9822,85) 10 0.060578 0.059864 0.060442

9 Vehicle Silhoue�es (846,18) 5 0.033087 0.030734 0.039826

10
Image Segmentation

(2308,19)
5 0.003466 0.002601 0.003554

11 Winconsin (683,9) 5 0.039513 0.032335 0.045207

12 Page Blocks (5472,10) 10 0.059395 0.049 0.047025

13 Banana (5300,2) 10 0.448302 0.448302 0.275038

14 Haberman (306,3) 5 0.261449 0.268059 0.351451

15 Titanic (2201,3) 10 0.223970 0.223998 0.221732

16
Skin Segmentation

(245057,4)
10 0.107171 0.070979 0.0725

Table 1: Comparison of ExpERM with SVM and Boosting
methods based on their CV errors

λ
RegExpERM
CV error

SVM
CV error

0.05 0.081739 0.067814
0.1 0.081522 0.069766

0.5 0.081739 0.072162

1 0.082374 0.071287

Table 2: Spambase dataset

λ
RegExpERM
CV error

SVM
CV error

0.1 0.226594 0.229242

0.5 0.230498 0.222664
1 0.230524 0.227909

2 0.240939 0.234454

Table 3: Pima dataset

λ
RegExpERM
CV error

SVM
CV error

0.05 0.217971 0.237888
7 0.213770 0.23932

20 0.210001 0.237942

100 0.207579 0.237969

Table 4: Blood Transfusion
dataset

λ
RegExpERM
CV error

SVM
CV error

0.03 0.216260 0.283275

0.05 0.211498 0.216144
0.09 0.221022 0.268873

0.1 0.221022 0.255633

Table 5: Sonar dataset

λ
RegExpERM
CV error

SVM
CV error

1 0.035122 0.035133

1.8 0.035133 0.027834
2.5 0.036604 0.030754

5 0.040983 0.038117

Table 6: Wisconsin dataset

λ
RegExpERM
CV error

SVM
CV error

0.1 0.030721 0.039025

0.5 0.029544 0.033122

0.8 0.028361 0.029558
2.5 0.027184 0.034278

Table 7: Vehicle Silhouettes
dataset

λ
RegExpERM
CV error

SVM
CV error

0.01 0.003466 0.149817

1.2 0.003466 0.00953

2.5 0.002600 0.003465
15 0.002600 0.006067

Table 8: Image Segmenta-
tion dataset

λ
RegExpERM
CV error

SVM
CV error

0.01 0.059395 0.155346

0.1 0.059760 0.065789

0.5 0.059029 0.057749

2 0.058481 0.048611

Table 9: Page Blocks dataset

S.no
Dataset name
(# of examples
(train + test),

# of features, k)

ExpERM
Test error

SVM
Test error

(C=1)

ExpERM
time
(in s)

SVM
time
(in s)

1
Arcene

((200+100),10000)
0.18 0.17 0.72 2.05

2
Dexter

((300+300),20000)
0.09 0.07 2.09 4.09

3
Dorothea

((800+350), 100000)
0.06 0.06 28.78 53.06

4
Gise�e

((6000+1000),5000)
0.022 0.024 11.79 72.59

5
Madelon

((2000+600),500)
0.41 0.42 1.03 124.78

6

LSVT Voice

Rehabilitation

((101+25),310)

0.28 0.32 0.036 0.06

7
Colon Cancer

((50+12),2000)
0.33 0.25 0.10 0.31

8

Duke

Breast Cancer

((38+4),7129)

0 0.25 0.27 1.04

9
Leukamia

((38+34),7129)
0.08 0.117 0.28 1.06

Table 10: Comparison of ExpERMwith SVM in terms of test
error and time taken to train the model.

uses OVO method. For datasets with large number of classes (Le�er

Recognition dataset), OVO performs be�er than OVA. To compare

the results of ExpERM using OVO method (µmE ) and SVM (µmS )
classi�ers, we performed Wilcoxon signed ranks test on their CV

errors. �e null hypothesis H
S (m)
0

: µmS = µ
m
E is tested against the

alternative H
S (m)
1

: µmS < µ
m
E . Since, for one dataset the di�erence

between CV error is 0, only 6 datasets are considered for compari-

son. �e sum of positive ranks isW +S (m) = 18 and sum of negative

ranks is W −S (m) = 3. �e observed Wilcoxon test statistic value,

W −S (m) is more than tabulated value ofW6,0.05 = 2. So, we cannot

reject H
S (m)
0

at 5% level of signi�cance. Hence, we have shown that

there is no signi�cant di�erence between the CV error of ExpERM

and SVM based binary classi�ers used for multi-class problem.

5 DISCUSSION AND ONGOING RESEARCH
Exponential loss function has been popular in frameworks like Ad-

aboost. We propose its use in the ERM se�ing. ExpERM based classi-

�ers obtained using such a convex loss function inherit uniqueness
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S.no
Dataset name
(# of examples,
# of features,
# of classes)

k
ExpERM
CV error
(OVA)

ExpERM
CV error
(OVO)

SVM
CV error
(C=1)

1 Iris(150,4,3) 5 0.04 0.04 0.04

2 Balance(625,4,3) 5 0.128 0.12 0.0832

3
Hayes-Roth

(160,4,3)
5 0.46875 0.4625 0.4125

4
New�yroid

(215,5,3)
5 0.023255 0.018605 0.027907

5
Page-Blocks

(5472,10,5)
10 0.050073 0.068532 0.03783

6

White wine

quality

(4898,11,7)

10 0.467326 0.467941 0.478367

7

Le�er Recog-

nition

(20000,17,26)

10 0.305448 0.169250 0.14645

Table 11: Comparison of ExpERM with SVM for multi-class
datasets based on their CV errors

and some desirable statistical properties like classi�cation calibra-

tion and consistency. We show some additional properties of these

learners in terms of high probability bounds on their generalization

error.

We have considered a wide range (small or large features, small

or large examples, balanced and imbalanced classes) of datasets

and used Wilcoxon signed-rank test to statistically test if there

is any di�erence between the performance of ExpERM and other

existing algorithms in terms of CV error (test error) and runtime.

We have demonstrated on many datasets that ExpERM scheme

outputs a binary classi�er with generalization error comparable

to existing methods like hinge-loss based SVMs and Boosting. We

have also analyzed regularized version of ExpERM. We observe

that in a large number of datasets, regularization has no signi�cant

improvement on the generalization error. Note that our scheme in-

volving unconstrained di�erentiable convex minimization problem

is easy and scalable [16]. For some large datasets (with both large

number of examples and features), we show that the computational

time of ExpERM is signi�cantly less than that of SVM. A�er reduc-

ing the multi-class classi�cation problem into many binary ones,

our initial computations show that CV error of ExpERM scheme

is statistically comparable to the existing SVM based combined

class of algorithms. We believe that viewing a modi�ed version

of exponential loss function as a loss-reward function gives an-

other explanation for our ExpERM classi�ers having performances

comparable to some popular classi�ers, but, obtained at much less

computational cost.

Existing SVM packages (based on LIBSVM) use some �ne tuned

and tailor made algorithm for the hinge loss based SVM QP. How-

ever, we are only using a generic non-linear solver (SNOPT) to solve

ExpERM optimization problem. An algorithm exploiting properties

of exponential loss function to solve ExpERM can lead to an im-

provement in its computational time performance. Besides runtime,

it was observed that AMPL is taking a signi�cant amount of time

to read the speci�c format data �le, particularly for large datasets.

�is aspect of ExpERM can be improved upon. One interesting

question that we are currently looking at is, if ExpERM is implicitly

performing some form of regularization. Also, some more the-

oretical guarantees on the classi�er for multi-class classi�cation

problems can help in using ExpERM for developing an uncombined

multi-class classi�er.
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A PROOFS
A.1 Proof of Lemma 2.1

Proof. We will show that lexp ((w,b), zi ) is a convex function

by showing its Hessian to be a positive semi-de�nite matrix. �e

�rst and second partial derivatives of lexp ((w,b), zi ) are as follows:

∂lexp ((w,b), zi )
∂w j

= −yixi je−yi (w
T xi+b)

∂lexp ((w,b), zi )
∂b

= −yie−yi (w
T xi+b)

∂2lexp ((w,b), zi )
∂w j

2
= (yixi j )2e−yi (w

T xi+b)

∂2lexp ((w,b), zi )
∂w j∂b

= y2

i xi je
−yi (wT xi+b)

∂2lexp ((w,b), zi )
∂b2

= y2

i e
−yi (wT xi+b)

∂2lexp ((w,b), zi )
∂w j∂wk

= y2

i xi jxike
−yi (wT xi+b)

�e eigenvalues of the Hessian H in terms of the above partials

are{
y2

i e
−yi (wT xi+b)

(∑n
j=1

x2

i j + 1

)
, 0, . . . , 0

}
. �is implies that it is a

positive semi-de�nite matrix and in turn, lexp ((w,b), zi ) is a convex

function. �

A.2 Proof of Lemma 2.2
Proof. A su�cient condition for a function to be ρ−Lipschitz

is that the gradient of the function is uniformly bounded. Since,

‖w‖2 ≤ B and ‖x‖2 ≤ R̃, using Cauchy Schwartz inequality, we

obtain |wTx| = ‖wTx‖ ≤ BR̃.

‖Olexp ((w,b), z)‖ =


n+1∑
j=1

x2

i je
−2yi (wT xi+b)


1/2

≤

n+1∑
j=1

x2

i je
|2yi (wT xi+b) |


1/2

≤

n+1∑
j=1

x2

i je
2BR̃


1/2

≤ R̃eBR̃
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�erefore, the gradient of lexp ((w,b), z) is uniformly bounded with

Lipschitz constant ρ = R̃eBR̃ . �

A.3 Proof of Lemma 2.3
Proof. A su�cient condition for a function to be γ -smooth is

that the second derivative or Hessian of the function is uniformly

bounded. �e induced matrix norm is the spectral norm given

by the largest singular value of A, i.e., square root of the largest

eigenvalue of A ∗A.

‖A‖2 = max

j
σj

�e Hessian H of lexp ((w,b), zi ) is a positive semi-de�nite matrix

with only non-zero eigenvalue y2

i (e
−yi (wT xi+b)(

n∑
j=1

x2

i j + 1)). So, by

de�nition, the spectral norm of H can be bounded as follows :

‖H ‖2 = y2

i (e
−yi (wT xi+b)(

n∑
j=1

x2

i j + 1))

= ‖xi ‖2e
−yi (wTxi )

≤ R̃eBR̃

�erefore, lexp ((w,b), z) is γ−smooth with γ = R̃eBR̃ . �

A.4 Proof of Lemma 2.5
Proof. Let hS = (w1,b1) and hS ′ = (w2,b2). Without loss

of generality, we can write,

[
w2

b2

]
=

[
w1

b1

]
+

[
a1

a2

]
For proving

β−stability we need to uniformly upper bound

|lexp (hS , z) − lexp (hS ′ , z)| for all z ∈ Z.

|lexp (hS , z) − lexp (hS ′ , z)|
= |lexp ((w1,b1), (x,y)) − lexp ((w2,b2), (x,y))|

= |e−y(w1Tx+b1) − e−y(w2Tx+b2) |
= |e−y(w1Tx+b1)(1 − e−y(a1Tx+a2))|
= |e−y(w1Tx+b1) | |(1 − e−y(a1Tx+a2))|.

Since, ‖w‖ ≤ B, we get ‖(a1,a2)‖ ≤ 2B. Also,

e−BR̃ ≤ e−yw
Tx ≤ eBR̃ , and e−2BR̃ ≤ e−y(a

1Tx+a2) ≤ e2BR̃ .

�erefore, we have |(1 − e−y(a1Tx+a2))| ≤ (e2BR̃ − 1). �is is true

because ifp ∈ [−r , r ], then |(1−e−p )| ≤ (er−1) as (1−e−r ) ≤ (er−1).
Using the above inequalities, we get |lexp (hS , z) − lexp (hS ′ , z)| ≤
eBR̃ (e2BR̃ − 1). Hence, ExpERM is uniformly β−stable with β =

eBR̃ (e2BR̃ − 1). �

A.5 Proof of �eorem 2.6
Proof. We will �rst prove that (P) will have an objective value

arbitrarily close to m if and only if the given data (xi ,yi ), i =
1, . . . ,m is linearly separable and then take the negation of this to

show that theorem statement is true.

Suppose the given data is linearly separable. �en, there exist

w ∈ Rn and b such that

yi (wTxi + b) ≥ 0 which implies 1 − e−yi (wTxi+b) ≥ 0 ∀i = 1, . . . ,m

If a1 ∈ R+ and a2 ∈ R+ s.t. a1 < a2 then, 1 − e−a1 < 1 − e−a2
.

Hence, for a given w ∈ Rn and b, we can always �nd a w
′
= αw

and b ′ = αb for some α > 0 s.t.

m∑
i=1

(1 − e−yi (wTxi+b)) <
m∑
i=1

(1 − e−yi (wT′xi+b′)).

�is implies that, given a (w,b), one can always �nd (w′ ,b′) whose

objective value is higher than that of the former. �erefore, (P) will

have an objective value arbitrarily close tom.

Suppose (P) has an objective value arbitrarily close to m. We know

that,

sup

w,b

m∑
i=1

(1 − e−yi (wTxi+b)) =m

which implies sup

w,b
(1 − e−yi (wTxi+b)) = 1.

So, there exists a sequence {(wk ,bk )}k which makes e−yi (w
Txi+b)

arbitrarily close to 0. �is can be possible only when yi (wTxi + b)
goes to ∞ in limit, i.e., yi (wTxi + b) ≥ 0 ∀ i = 1, . . . ,m. �at is,

all the examples are correctly classi�ed and the data is linearly

separable. �

A.6 Proof of �eorem 2.7
Proof. Suppose the optimal classi�er is not unique i.e. there

exist two distinct optimal classi�ers w∗ := (w∗,b∗) and w̃ := (w̃, ˜b).
For notational convenience, de�ne xi := (xi , 1). Let loss incurred

on the ith data point by w∗ and w̃ is l
w∗

i = e−yi (w
∗T xi ) and l

w̃
i =

e−yi (w̃
Txi ) respectively. Also, let the total loss for w∗ and w̃ be

Lw
∗

:=
m∑
i=1

l
w∗

i and Lw̃ :=
m∑
i=1

l
w̃T

i . Due to optimality, Lw
∗
= Lw̃.

Since, (12) is convex, so the set of optimal solution is also be

convex. Hence, the total loss for any convex combination classi�er

wα
:= (αw∗ + (1−α)w̃,αb∗ + (1−α) ˜b) = αw∗ + (1−α)w̃, is same

as that of w∗ and w̃. i.e. Lw
∗
= Lw̃ = Lα . Let α = 1/2 Consider the

loss l
1/2
i on the ith point due to 1/2 convex combination classi�er,

w1/2
.

l
1/2
i = e

−yi
(
w∗+w̃

2

)T
xi

=
[
e−yi (w

∗T xi )
]

1/2 [
e−yi (w̃

Txi )
]

1/2

Now, using the inequality that AM ≥ GM we get,

l
1/2
i ≤

[
e−yi (w

∗T xi ) + e−yi (w̃
Txi )

]
2

(24)

Summing (24) over all data points we get,

L1/2 =

m∑
i=1

l
1/2
i (25)

≤

[
m∑
i=1

l
w̃T

i +
m∑
i=1

l
w∗

i

]
2

(26)

= Lw
∗

(27)

Now, we know that L1/2 = Lw
∗
. �is implies that inequality in (24)

should be strict for all i . �e AM ≥ GM inequality is strict if and
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only if the individual values are equal. �erefore, we should have,

for all i ,

l
w∗

i = l
w̃
i

e−yi (w
∗T xi ) = e−yi (w̃

Txi )

(w∗ − w̃)T xi = 0

(w∗ − w̃)TA = 0 (28)

Next, we show that if A is full rank, then (28) has 0 as the only

solution. Taking transpose on both sides of (28) we get,

AT (w∗ − w̃) = 0 (29)[
AT

1

AT
2

]
(w∗ − w̃) = 0 (30)[

AT
1
(w∗ − w̃)

AT
2
(w∗ − w̃)

]
= 0 (31)

Since A is full rank, say n + 1 = min(n + 1,m), A1 ( (n + 1) ×
(n + 1) dimensional matrix ) is also full rank. �is implies that

AT
1
(w∗ − w̃) = 0 has (w∗ − w̃) = 0 as unique solution. �erefore,

only solution to AT (w∗ − w̃) = 0 is 0 which implies that w∗ = w̃.

�is contradicts our starting assumption of two distinct optimal

classi�ers. Hence, the optimal classi�er obtained from ExpERM is

unique. �

A.7 Proof of Corollary 3.2
Proof. (α) Clearly, from Lemma 2.1 and 2.2, lexp (h(x), (x,y))

is convex and ρ− Lipschitz with ρ = R̃eBR̃ . So,

lexp (h(x), (x,y)) along with the bounded hypothesis space

constraint satis�es all the su�cient conditions given in

Corollary 13.9 from [18]. Hence, (19) follows.

(β) We have, ES [LD,lexp (h
exp(r eд)
S )] ≤ min

w ∈H
LD,lexp (w) + ϵ

and hence,

ES [LD,lexp (h
exp(r eд)
S ) − min

w ∈H
LD,lexp (w)] ≤ ϵ . Since, the

random variable LD,lexp (h
exp(r eд)
S ) − min

w ∈H
LD,lexp (w) is

always non-negative, we can apply Markov’s inequality to

get (20).

�

A.8 Proof of Corollary 3.3
Proof. (α) Clearly, from Lemma 2.1 and 2.3, lexp (h(x), (x,y))

is convex andγ−smooth. From �eorem 13.2 and Corollary

13.7 of [18], we have,

ES [LD,lexp (h
exp(r eд)
S ) − LS,lexp (h

exp(r eд)
S )] ≤ 48γ

mλ
C .

Since, lexp (0, z) = 1, we have C = 1. �erefore, we get,

ES [LD,lexp (h
exp(r eд)
S )] ≤ ES [LS,lexp (h

exp(r eд)
S )] + 48γ

mλ

≤ ES [LS,lexp (h
exp(r eд)
S ) + λ‖hexp(r eд)S ‖2] + 48γ

mλ

= LD,lexp (h
exp(r eд)
S ) + λ‖hexp(r eд)S ‖2 + 48γ

mλ

We optimize RHS for λ and get the following, inf

λ
(λB2 +

48γ
mλ ) =

√
192γ B2

m and get λ =
√

48γ
mB2

. If

√
192γ B2

m ≤ ϵ , then

we have m ≥ 192γ B2

ϵ 2
. Using this value of m in λ, we get

λ ≤ ϵ
2B2
.

(β) We have, ES [LD,lexp (h
exp(r eд)
S )] ≤ min

w ∈H
LD,lexp (w) + ϵ

and hence,

ES [LD,lexp (h
exp(r eд)
S ) − min

w ∈H
LD,lexp (w)] ≤ ϵ . Since, the

random variable LD,lexp (h
exp(r eд)
S ) − min

w ∈H
LD,lexp (w) is

always non-negative, we can apply Markov’s inequality to

get (22).

�
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[1] Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquı́n Derrac, Salvador

Garcı́a, Luciano Sánchez, and Francisco Herrera. 2011. Keel data-mining so�ware

tool: data set repository, integration of algorithms and experimental analysis

framework. Journal of Multiple-Valued Logic & So� Computing 17 (2011).

[2] Ethem Alpaydin. 2010. Introduction to Machine Learning (2nd ed.). �e MIT

Press.

[3] Peter L Bartle�, Michael I Jordan, and Jon D McAuli�e. 2006. Convexity, classi�-

cation, and risk bounds. J. Amer. Statist. Assoc. 101, 473 (2006), 138–156.
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