
I N F O R M S
Transactions on Education

Vol. 7, No. 3, May 2007, pp. 228–237
issn 1532-0545 �07 �0703 �0228 informs ®

doi 10.1287/ited.7.3.228
©2007 INFORMS

Advanced Lessons on the Craft of Optimization
Modeling Based on Modeling Sudoku in Excel

Rasmus A. Rasmussen
Molde University College, 6402 Molde, Norway, Rasmus.Rasmussen@hiMolde.no

Howard J. Weiss
Department of Management Science/Operations Management, Fox School of Business, Temple University,

Philadelphia, Pennsylvania 19122, USA, hweiss@temple.edu

In a previous paper we (Weiss and Rasmussen 2007) demonstrated lessons that can be learned by formulatingSudoku in Excel using Solver’s standard tools. In this paper we use the advanced tools and solver engines
available with the Premium Solver Platform in order to demonstrate more sophisticated lessons regarding opti-
mization modeling. Optimization modeling is a skill developed by building and testing alternative formulations
for new problems. This paper gives advanced undergraduate and graduate students an opportunity to develop
the craft of optimization modeling, by presenting the construction of two new alternatives for modeling Sudoku
in Excel. We do not present these models because they are more efficient than the previous models; in fact
one of them does not work well at all. The main reason is to highlight strengths and weaknesses when using
different modeling approaches, and to display some of the additional modeling capabilities available using the
Premium Solver Platform rather than the standard Solver.

1. Introduction
Recently, in this journal, Chlond (2005) presented
an integer programming formulation of the popular
puzzle, Sudoku. More recently, we (Weiss and
Rasmussen 2007) have demonstrated several lessons
that students can learn by formulating Sudoku
puzzles in Excel. Essentially, we reduced the number
of variable subscripts from five to three so that we
could easily formulate the problem in Excel. In this
paper, we will take advantage of some of Solver’s
advanced features to reduce the problem size and to
reduce the problem dimension to two. The work in
this paper requires the use of the Premium Solver Plat-
form and some plug-in Solver engines. Trial versions
(15 days) are available through Frontline Systems, Inc
http://www.solver.com/.
In the next section we present a model that takes

advantage of Solver’s more advanced features. Then
we present a two dimensional model that is based
on the literal requirements of Sudoku and uses only
two subscripts which makes it relatively straightfor-
ward to formulate in Excel. While it is easy to create
the 2-dimensional model in Excel, this model creates
difficulties for Solver due to the combination of non-
smooth functions and problem size. The difficulties
afford the instructor the opportunity to discuss the
different solution engines available in Solver.

2. Reducing the Number of Variables
The popular Sudoku puzzle is a 9 by 9 puzzle as exem-
plified by Chlond’s example displayed in Table 1.
The formulation in both Chlond (2005) and Weiss

and Rasmussen (2007) required n3 or 729 variables.
We begin our discussion by reducing the number of
variables.
The previous model was 3-dimensional consisting

of n3 binary variables. A more direct formulation uses
n × n integer variables. An Excel implementation of
such a formulation is displayed in Figure 1.
The problem is to fill the green grid (B14:J22, the

9×9 decision variables) so that the 9 rows all contain
the integers 1 thru 9, and the same for the 9 columns,
and also for the 9 sub-grids. Finally the green solution
grid must contain the initial numbers given by the
specific puzzle in the white grid (B3:J11).

Lesson 1: Alldifferent Constraints Are Efficient in
Combinatorial Problems
Table 2 lists the 5 types of constraints (relations) that
can be used or programmed in the basic Solver. (See
Anonymous 2006b.)
The Premium Solver contains other constraint types

including the “alldifferent” constraint. The Premium
Solver Platform User Guide (Anonymous 2006a, p. 17)
defines this constraint as follows.

228

mailto:Rasmus.Rasmussen@hiMolde.no
mailto:hweiss@temple.edu
http://www.solver.com/

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS 229

Table 1 A Sample 9 by 9

The alldifferent constraint specifies that at the
solution, each integer variable in the group must have
a value that is different from all the others. Hence, the
variables in the group form an ordering, or permuta-
tion, of integers.
Alldifferent constraints can only be applied to

decision variables. If cells A1:An are defined as
Changing Variable Cells, then the constraint: “A1:An=
alldifferent”will act as 4 constraint sets:
• A1:An= integer
• A1:An>= 1
• A1:An<= n
• All cells A1:An must be different (no pair of cells

are allowed to be equal). This is the same as requiring
that all integers 1 through n must be used (at least or
exactly) once.
Sudoku seems to be a perfect case for the alldiffer-

ent constraint in Solver. If we apply such a constraint
to the row B14:J14 Solver will automatically deter-
mine the size to be 9 cells, all restricted to integers
between 1 and 9, and all cells have to be different (no
pair of cells being equal). Thus we could apply the
alldifferent constraint to the 9 rows, 9 columns, and 9
sub-grids.
However, Solver has a restriction that a cell can

only be part of one alldifferent constraint, and in
this layout every cell would be part of 3 alldiffer-
ent constraints. To overcome this limitation we sim-
ply copy the original grid two times so we end up
with 3 separate grids as displayed in Figure 2. We
use one grid for the row constraints, one grid for the
columns constraints, and one grid for the sub-grid
constraints. Even though in our previous paper we
have promoted the advantages of keeping variables
contiguous for easier entry into Solver, we have used
columns K and U to separate the three tables for ease
of discussion.
As the alldifferent constraints can only be applied

to decision variables, we have to define all 3 grids
as decision variables, for a total of 3n2 integer vari-
ables. Technically, there are three dimensions for the
variables (row, column, and table) but since the three

Figure 1 An Excel Spreadsheet for the 9×9 Sudoku Puzzle Formulated
as a 2-Dimensional Problem

tables must be equal to each other, for all intents and
purposes, this is a two-dimensional problem. For the
9 by 9 puzzle this representation will have 243 �3× 81�
integer variables rather than the 729 �9× 81� binary
variables in the models by Chlond and in our previous
paper.
Of course, all 3 grids must be equal since each

represents the same solution to the puzzle. The last
2 grids are only added to implement some of the
alldifferent constraints originally meant for the first
grid. To ensure that the 3 grids are identical we
add the constraints: B14:J22 = L14:T22 and B14:J22 =
V14:AD22.
At this point we have the basic Sudoku require-

ments implemented and need only to implement the
constraints that will require the solution in rows
B14:J22 (and L14:T22 and V14:AD22) to include the
specific puzzle in B3:J11. We need to set up an extra
table on the spreadsheet to do so but we must be very
careful for the following reason.

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
230 INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS

Table 2 Basic Solver Constraint Types

Lesson 2: x= c Is Not Always the Same as c= x
If x is a decision variable and c is a constant, then a
constraint like x= c (or x<= c or x>= c) would be
treated as a bound on x by Solver. When x is an alld-
ifferent variable this will result in an error message,
because Solver does not accept additional bounds on
alldifferent variables.
However, a constraint like c= x will be replaced by

c− x= 0 by Solver. This applies to all RHS involving
decision variables, and will also be evident in a Sen-
sitivity Report for Linear Programming, where the
value of the RHS of the constraint c= x will be dis-
played as 0. Such a constraint is not treated as a

Figure 2 A Formulation with n× n× 3 Integer Decision Variables

bound on the decision variable x and is therefore
accepted, even when x is an alldifferent variable.
For example, adding the constraint B14>= B3 will

lead to the message “Variable bounds conflict in
binary or alldifferent constraint” whereas adding the
constraint B3<= B14 will cause no problems.
The complete model is in the spreadsheet named

“Combinatorial” which we display in Figure 3.
To make sure that the puzzle fits the initial num-

bers the formula: B25 =IF(ISNUMBER(B3);B3-B14;0)
is copied to B25:J33. This formula checks if there is
an initial number for the specific puzzle, and if so
computes the difference between the initial number

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS 231

Figure 3 The Complete Formulation with n× n× 3 Integer Variables

and the number selected by Solver. If no initial num-
ber is given the formula returns 0. Thus the constraint
B25:J33= 0 will only be satisfied if Solver has chosen
the same numbers as the initial numbers given for
the specific puzzle. While in some cases an IF func-
tion may lead to a non-linear model, in this case, the
cells with IF simply act as constants in the linear pro-
gramming model and do not cause any non-linearity
problems. This is because the IF test only depends on
the constant input data.
The constraints in Solver include 9 alldifferent con-

straints for the 9 rows, 9 alldifferent constraints for
the 9 columns, and 9 alldifferent constraints for the

9 sub-grids. Upper and lower limits are automatically
taken care of in the alldifferent constraints. In addition
we add the constraint making the numbers chosen
by Solver equal the initial numbers. We also add the
two constraints forcing the two extra grids of deci-
sion variables equal to the initial grid. In general a
total of n+ n+ n+ 1+ 2 =3n+ 3 constraint lines are

Table 3 Excel Formulas for Checking the Solutions

Cell Formula Copied to

B25 =IF(ISNUMBER(B3);B3-B14;0) B25:J33

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
232 INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS

Figure 4 Solver Settings for the Formulation with n2 × 3 Integer
Variables

required for this linear formulation of Sudoku, and
3n2 integer variables are needed. The Solver settings
are displayed in Figure 4.
Please notice the dropdown box in Solver that reads

“XPRESS Solver Engine.” There are multiple solver
engines available for Solver. We show these engines in
Figure 5. Most Solver Engines accept multiple alldif-
ferent constraints except OptQuest which accepts only
one set of alldifferent constraints.
With this formulation we do not have to use any

code for adding constraints as we had done in our
other paper. The constraints are the same regardless
of the specific puzzle! The student can simply enter
the new puzzle in Cells B3:J11 and use the Excel menu
commands of Tools, Solver, Solve to find the solution
to the puzzle.

Lesson 3: Select the Proper Solver
Engine with Care
For version 6.5 of the Premium Solver Platform, the
XPRESS Solver Engine finds a feasible solution in a
few seconds. Most of the other LP Solver engines have
trouble finding a feasible solution to this formulation.
However, in the recently released version 7.0 of the
Premium Solver Platform, all LP Solver engines (Stan-
dard LP, Large-scale LP, and XPRESS) find a feasible

Figure 5 Solver Engines

solution quickly. Unfortunately some other engines
normally capable of solving ILP problems fail (Large-
scale SQP, KNITRO, and MOSEK) due to the fact that
their branch and bound code is not as sophisticated
as the branch & bound code of the LP Solver engines.

Lesson 4: Formulation Matters
If we run these solver engines on the corresponding
9×9 model in our previous paper, all of them succeed.
Obviously the formulation using binary variables is
easier to solve than the formulation using general
integer variables presented above.

3. Another 2-Dimensional
Formulation

The instructions at www.sudoku.com http://www.
sudoku.com/ are, “Fill in the grid so that every row,
every column, and every 3×3 box contains the digits 1
through 9.” Thus, the problem can be formulated as
follows. Let xi� j be the integer that should be in cell
�i� j� in the puzzle. The problem statement quoted
above indicates that there are three types of constraints
that must be considered.
All integers 1 through n must be used in each row.
All integers 1 through n must be used in each

column.
All integers 1 through n must be used in each

sub-grid.
Each condition generates n2 constraints and there-

fore the total number of constraints is 3n. Obviously,
there are n2 integer variables.
Our previous model started as a 2-dimensional

formulation. Since a cell can only be part of one
alldifferent constraint, we had to increase the size
of the model to be able to include all alldifferent
constraints. However, we can manually construct con-
straints that function in the same manner as alld-
ifferent constraints to avoid this increase in model

www.sudoku.com
http://www.sudoku.com/
http://www.sudoku.com/

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS 233

size. The COUNTIF function can be used to check
that each integer 1 through n is used at least once
in each row, column, and sub-grid. This way we
can create a 2-dimensional formulation with only n2

integer variables, because we do not have to add vari-
ables to include the manually constructed alldifferent
constraints.
To test that each row contains all n integers,

the formula COUNTIF($B4:$J4;B$3) is copied to cells
M4:U12. Cell M4 will then count the number of times
the integer 1 (in cell B$3) appears in row1 (cells $B4:$J4),
cell N4 will count the number of times the integer 2
(in C$3) appears in row 1(cells $B4:$J4), and so on.
To test that each column contains all n integers, the

formula COUNTIF(B$4:B$12;$A4) is copied to cells
V4:AD:12. Cell V4 will then count the number of
times the integer 1 (in Cell $A4) appears in column 1
(cells B$4:B$12), cell V5 will count the number of
times the integer 2 (in cell $A5) appears in column 1
(cells B$4:B$12), and so on.
To test that the first sub-grid contains all n integers,

the formula COUNTIF(B4:D6;B$3) is copied to
cells AE4:AM4. Cell AE4 will then count the number
of times the integer 1 (in Cell B$3) appears in sub-
grid 1 (cells B4:D6), cell AF4 will count the
number of times the integer 2 (in cell C$3) appears
in sub-grid 1 (cells B4:D6), and so on. Note that
we have to make a unique formula for each sub-grid.
For example, the formula COUNTIF(E4:G6;B$3)
refers to the second sub-grid, and is copied to
AE5:AM5. We therefore have to enter n different for-
mulas for the n different sub-grids (rows 4 through 12
in the columns AE thru AM).
Just one constraint in Solver, M4:AM12 >= 1, is

sufficient to implement all 3n2 constraints described
above that function in the same manner as the alld-
ifferent constraints. And, of course, all decision vari-
ables have to be constrained to integers between 1
and n. Conditional formatting has been applied in the
spreadsheet to highlight violations of the manually
constructed alldifferent constraints.
Unfortunately the COUNTIF function used in all of

these cells is non-smooth. We therefore must select the
solver engine carefully.
Most Solver engines rely on derivatives. For linear

models the derivatives are computed only once, as
the derivatives are constant. For non-linear models,
when using a gradient-based solver, the derivatives
are computed for each iteration. For non-smooth func-
tions the derivatives are not always defined, and tra-
ditional solver engines are likely to fail. The Premium
Solver Platform has a PSI Interpreter (Polymorphic
Spreadsheet Interpreter) that when used will diagnose
a function and calculate derivatives more precisely
(in most cases) than the numerical estimates made
when using Excel’s recalculator.

If we try to apply a Linear Programming solver
engine to this model, we will get an error message
stating that this problem is not linear. If we apply
a non-linear solver engine it will most likely fail
to find a feasible solution, due to the non-smooth
constraints. The appropriate solver engines for non-
smooth models are the heuristic solver engines Stan-
dard Evolutionary Solver Engine or OptQuest Solver
Engine.
Heuristic solvers do not rely on derivatives. In fact

they do not have optimality tests either, they sim-
ply try to improve the value of the objective func-
tion based on several heuristic strategies. Instead,
they use simple stopping rules like maximum time
or maximum number of iterations. In addition, both
the Standard Evolutionary Solver and OptQuest have
additional tests for improvements in the objective
function. If we let the heuristic solvers continue to
run after these tests (we get an option to Stop or Con-
tinue), then Solver will in principle run forever.
To this point we have not used an objective func-

tion in our models because the goal is simply to
find a feasible solution. The lack of an objective
is bad for heuristic solvers because typically they
are not very good at handling constraints. Winston
and Venkataramanan (2003) suggest that one way to
reduce this difficulty is to include a penalty in the
objective for violating a constraint. Fortunately we
can easily construct an objective function, which will
consist of the sum of the penalties for not satisfying
each constraint. We can achieve this by computing the
sum of the absolute deviations from the constraints,
and then minimizing this sum. We accomplish this by
placing the formula ABS(M4-1) into M15 and copy-
ing this formula to cells M15:AM23, and entering the
formula SUM(M15:AM23) in L15, which we designate
in Solver as the objective we want to minimize.
When Solver is running, the value of the objective

function, cell L15, is displayed as the Set Cell in the
status bar, in the bottom of the Excel window. When
we see that the objective function has not improved
for a very long time (or we see that the optimal value
has been found), we can press the Esc button and stop
Solver. We display a screen of the problem in mid
execution in Figure 7. Notice in the status bar that the
solution has improved from 32 violations in Figure 6,
to 4 violations in Figure 7, but has not reached the 0
violations we require for a Sudoku solution.

Lesson 5: Ease of Data Entry May Make
the Solution More Difficult
We display the Solver settings in Figure 8. Observe
that we have omitted constraints for the initial values
given in each specific puzzle. Since heuristic solvers
are not good at handling constraints, adding more
constraints is not helpful. In each Sudoku puzzle there

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
234 INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS

Figure 6 The 2-Dimensional Formulation with n2 Integer Variables

are some initial numbers given for a few selected
cells. These cells are therefore no longer among the
decision variables. The simplification to include the
total grid as decision variables and later add con-
straints for the initial fixed cells is a shortcut due to
how most optimization software accepts input. Alge-
braically it looks similar, but it is not an identical for-
mulation. Adding non-existing decision variables and
correcting this shortcut by adding non-existing equal-
ity constraints does not help the heuristic solvers to
find a feasible solution.
The actual number of decision variables in a

2-dimesional model of the Sudoku puzzle is therefore

Table 4 Formulas for the 2-Dimensional Formulation with n2 Integer
Variables

Cell Formula Copied to:

M4 =COUNTIF($B4:$J4;B$3) M4:U12
V4 =COUNTIF(B$4:B$12;$A4) V4:AD12
AE4 =COUNTIF(B4:D6;B$3) AE4:AM4
AE5 =COUNTIF(E4:G6;B$3) AE5:AM5
AE6 =COUNTIF(H4:J6;B$3) AE6:AM6
AE7 =COUNTIF(B7:D9;B$3) AE7:AM7
AE8 =COUNTIF(E7:G9;B$3) AE8:AM8
AE9 =COUNTIF(H7:J9;B$3) AE9:AM9
AE10 =COUNTIF(B10:D12;B$3) AE10:AM10
AE11 =COUNTIF(E10:G12;B$3) AE11:AM11
AE12 =COUNTIF(H10:J12;B$3) AE12:AM12
M15 =ABS(M4-1) M15:AM23
L15 =SUM(M15:AM23)

n2 minus the number of initial fixed values given in a
specific puzzle. The actual decision variables are high-
lighted using conditional formatting as can be seen in
Figures 6 and 7.
Unfortunately, when the variables are not all con-

tained in one rectangular range in Excel, Solver does
not have an option to use all of the decision vari-
ables in one constraint line in order to define them to
be integers, or to add upper or lower bounds on the
decision variables. Therefore each group of decision
variables has to be defined as: integers; with lower
bounds of 1; and with upper bounds of 9. Finally in
order to be consistent with our previous model we
add one constraint for the alldifferent type of tests.
Most of the constraints are displayed in Figure 9. The
objective will then help Solver to find feasible solu-
tions, negating the difficulty that the heuristic solvers
typically have with constraints.
The OptQuest Solver Engine finds a feasible solu-

tion to a 2-dimensional 4×4 puzzle in a few seconds.

Lesson 6: Problem Size Does Matter, Especially for
Nonlinear Problems
While this model solved the 4 by 4 problem OptQuest
was not able to solve the 9 by 9 problem within a
reasonable amount of time. The Set Cell in The Status
Bar never went to 0 (the value of the objective func-
tion), which would indicate that all constraints are
satisfied.

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS 235

Figure 7 The 2-Dimensional Formulation with n2 Integer Variables During Solution Execution

Lesson 7: Speeding Up by Removing Constraints
We have added an objective to help the heuristic
solvers with the constraints that are like the alldiffer-
ent constraints. Actually we do not need both the arti-
ficial objective and the constraints, and if we remove
these constraints the objective should still direct us
towards a feasible solution.
When we remove these constraints the solvers will

of course run faster, as the problem size is reduced. In
this situation, OptQuest finds a feasible solution more
quickly when the constraints are dropped.
The Evolutionary Solver seem to have difficul-

ties with this type of model and makes progress
more slowly than OptQuest. After about 4 days
(and more than 4 million iterations) the Evolutionary
Solver still had 18 deviations, compared to Optquest
that found a solution with only 4 deviations within
20 minutes. However, even though OptQuest got off
to a much better start, it could not reduce the number
of deviations even after 4 days and over 36 million
iterations.

Lesson 3 Revisited: Select the Proper
Solver Engine with Care
The Premium Solver Platform offers several standard
solver engines, and even more solver engines can be
added (at an extra cost). Each of these solver engines
has its advantages and disadvantages, making them
especially suitable for particular problems and unsuit-
able for others. Generally speaking we should use
linear solvers if they accept the problem. If the
problem is non-linear and smooth we should use
one of the non-linear solvers. If the problem is non-
smooth we should use a heuristic solver. The Pre-
mium Solver Platform can automatically diagnose the
problem and list only suitable solvers for a partic-
ular model. This dialog box appears if we click the
“Model” button in the main Solver window:
Observe that if the user checks the “Best” option

in “Select Solver Engines Based on Model Type,” this
may involve none of the installed engines. The option
“Good” or “Valid” should therefore be used if not all
available solver engines have been installed.

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
236 INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS

Figure 8 Solver Settings for the Objective and Listing of the Decision
Variables for the 2-Dimensional Model

Figure 9 Solver Settings for the Constraints for the 2-Dimensional
Model

Figure 10 Solver Can Recommend a Suitable Solver Engine Based on
a Model Diagnose

For heuristic solvers there are some limitations that
must be considered. Adding an artificial objective for
non-smooth problems may be helpful, but adding
non-existing constraints to adjust for non-existing
decision variables is generally not recommended.

4. Conclusions
In our previous paper we noted that in a different
context, Koch (2005) wrote, “Choosing the right for-
mulation is often more important than having the best
solver algorithm.” This is demonstrated here by the
reduction in problem size achieved through the use
of additional modeling techniques such as the alldif-
ferent constraint, and comparing formulations using
binary versus integer variables.
Students can learn several lessons from Sudoku.

The new models have provided an excellent opportu-
nity to introduce students to the alldifferent constraint
and to assorted Solver engines. Hopefully the alter-
native models presented to solve the Sudoku puzzle
will help students build their craft of optimization
modeling.

Acknowledgments
We are extremely grateful to the editor and referees for their
comments. In addition, we are especially grateful to Edwin
Straver of Frontline Systems, the company that developed
Solver, for his help regarding the alldifferent constraint and
his comments on the branch and bound routines in the
Solver engines.

References
Anonymous. 2006a. Premium Solver Platform User Guide, Front-

line Systems, http://www.solver.com/supp_pspguide70.php
(login required), (last accessed on Nov. 3, 2006).

Anonymous. 2006b. SolverAdd function. http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/off2000/html/
xlfctsolveradd.asp, (last accessed on Nov 3, 2006).

http://www.solver.com/supp_pspguide70.php
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/off2000/html/xlfctsolveradd.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/off2000/html/xlfctsolveradd.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/off2000/html/xlfctsolveradd.asp

Rasmussen and Weiss: Advanced Lessons on the Craft of Optimization Modeling Based on Modeling Sudoku in Excel
INFORMS Transactions on Education 7(3), pp. 228–237, © 2007 INFORMS 237

Anonymous. 2006c. Sudoku, http://www.sudoku.com/, (last
accessed on May 11, 2006).

Chlond, M. J. 2005. Classroom exercises in IP modeling: Sudoku
and the log pile. INFORMS Trans. Ed. 5(2), http://ite.pubs.
informs.org/Vol5No2/Chlond/, (last accessed on May 11,
2006).

Koch, T. 2005. Rapid mathematical programming or how to solve
sudoku puzzles in a few seconds. Konrad-Zuse-Zentrum fur

Informationstechnik Berlin, ZIB Report 05-51, http://www.
zib.de/Publications/Reports/ZR-05-51.pdf, (last accessed on
May 11, 2006).

Weiss, H. J., R. A. Rasmussen. 2007. Lessons from modeling sudoku
in excel. INFORMS Trans. Ed. 7(2), http://ite.pubs.informs.org/
Vol7No2/Weiss/.

Wayne, W., M. A. Venkataramanan. 2003. Introduction to Mathemat-
ical Programming: Applications and Algorithms, 4th ed. Duxbury.

http://www.sudoku.com/
http://ite.pubs.informs.org/Vol5No2/Chlond/
http://ite.pubs.informs.org/Vol5No2/Chlond/
http://www.zib.de/Publications/Reports/ZR-05-51.pdf
http://www.zib.de/Publications/Reports/ZR-05-51.pdf
http://ite.pubs.informs.org/Vol7No2/Weiss/
http://ite.pubs.informs.org/Vol7No2/Weiss/

