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Abstract

In this paper, sufficient condition for a conjecture is proposed. This conjecture arises
from joint pricing and scheduling of two classes of customers arriving to a single node where
the problem is to optimally price server’s surplus capacity by introducing new (secondary)
class of customers without affecting the service level of its existing (primary) customers.
A delay dependent priority is used across classes. To find the global optimal operating
parameters, one needs to compare the optimal objectives of two optimization sub problems
arising from queue discipline parameter being finite or infinite. It was conjectured that
for a particular finite interval of service level for existing customers, optimal objective
with finite scheduling parameter is better than that of infinite parameter. We further
investigate the effect of variance of service times on the optimal admission arrival rate,
mean waiting time and unit admission price of new class of customers for the case when it
is optimal to assign strict priority to the existing class of customers. Some other relevent
performance measures of delay dependent priority like switching frequency, variance of
waiting time are also considered. It is conjectured based on numerical experiments that
convex combination of waiting time standard deviation is constant.

Keywords: Parameter sensitivity of performance measures, Variance of waiting times, Switching
frequency, Admission control, Pricing of Services.

1 Introduction

This paper is about two different contributions to the fairly general model that was introduced
in [19]. The model treats a fairly basic question of pricing the surplus server capacity of a
stable M/G/1 queue for a new class of customers when they are also sensitive to their mean
waiting time. In our model, λp and λs are rates of independent Poisson arrival processes of
primary and secondary class of customers. The service times of both classes of customers are
iid with mean µ and variance σ2. We assume that primary class arrival rate λp is given and
the rate for secondary class λs(θ, Ss) = a − bθ − cSs for some given strictly positive constants
a, b, c. Here θ is the unit admission price and Ss is the mean waiting time of secondary class
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customers. Note Ss depends on the scheduling of primary and secondary customers and hence
λs depends on the scheduling discipline used as well. The scheduling discipline used in [19]
was the non-preemptive delay dependent priority scheme introduced by Kleinrock [14]. In such
a scheme, the instantaneous priority at time t of class c customer that arrived at time Tc is
calculated as qc(t) := (t − Tc)bc for some positive number bc; c ∈ {p, s} so that bp and bs
refer to the weights associated with primary and secondary class respectively in our case. At
each service completion, the server chooses the next job with the highest instantaneous priority
qc(·), c ∈ {p, s}. The steady state mean waiting times of each class of customers is derived
by Kleinrock ([14]) and it turns out that only the ratio of bs and bp, say β := bs/bp, matters.
Note β = 0 corresponds to static high priority to primary class, β = 1 is global FCFS queuing
discipline across classes and β =∞ corresponds static high priority to secondary class jobs. Let
Wp(λs, β) and Ws(λs, β) be the mean waiting times of primary and secondary customers when
the arrival rate of secondary jobs is λs and queue management parameter is β. Expression for
Wp(λs, β) and Ws(λs, β) are given as follows [14]:

Wp(λs, β) =
λψ [µ− λ(1− β)]

µ [µ− λ] [µ− λp(1− β)]
1{β≤1} +

λψ

[µ− λ]
[
µ− λs(1− 1

β
)
]1{β≥1} (1)

Ws(λs, β) =
λψ

[µ− λ] [µ− λp(1− β)]
1{β≤1} +

λψ
[
µ− λ(1− 1

β
)
]

µ [µ− λ]
[
µ− λs(1− 1

β
)
]1{β≥1} (2)

So, we are interested in selecting a suitable pair of pricing parameters θ and Ss for the secondary
class customers, a queue disciple management parameter β as well as an appropriate admission
rate of the secondary class customers λs, that will maximize the expected revenue from the
inclusion of secondary class customers while ensuring that the mean waiting time to the primary
class customers is not more than a given quantity Sp. Thus, our optimization problem, called
P0, [19], is

P0: max
λs,β,Ss,θ

θλs (3)

subject to

Wp(λs, β) ≤ Sp (4)

Ss ≥ Ws(λs, β) (5)

λs ≤ µ− λp (6)

λs ≤ a− bθ − cSs (7)

λs, θ, Ss, β ≥ 0 (8)

It is shown by [19] that the above problem can be reduced as non-convex constrained optimiza-
tion problem P1 (as constraint (5) and (7) are tight at optimality)

P1: max
λs,β

1

b

(
aλs − λ2s − cλsWs(λs, β)

)
(9)

2



subject to:

Wp(λs, β) ≤ Sp (10)

λs ≤ µ− λp (11)

λs, β ≥ 0 (12)

Once the optimal secondary class mean arrival rate λ∗s and queue discipline management pa-
rameter β∗ are calculated, the optimal price θ∗ and assured service level S∗s can be found as
λ∗s = a− bθ∗ − cS∗s where S∗s = Ws(λ

∗
s, β

∗).

Note that in the above optimization problem P1, only finite values of β are considered, but
β = ∞ is also a valid decision variable as it corresponds to static high priority to secondary
customers. So, one should also consider following one dimensional convex optimization problem,
P2, wherein β is set to ∞ in P1:

P2: max
λs

1

b
[aλs − λ2s − cλsW̃s(λs)] (13)

subject to:

W̃p(λs) ≤ Sp, (14)

λs ≤ µ− λp, (15)

λs ≥ 0. (16)

where W̃p(λs) = Wp(λs, β = ∞). These two optimization problems are analyzed for their
global optima and their optimal values are compared in [19] to give a solution to P0 via a finite

step algorithm. If a
c
> λp(2µ−λp)

µ(µ−λp)2 ψ, ψ = 1+σ2µ2

2
then both optimization problems have (global)

optimal solutions for Sp ∈ I− ∪ I, for suitably identified finite intervals I and I−; more details
are given below also. While it was shown that in interval I the optimal solution of P1 is better
than that of P2, based on computational evidence it was conjectured in [19] that the optimal
solution of P1 is better than that of P2 in interval I−. Closed form expressions for β∗ are
derived in [19]. They also obtain λ∗s in closed form for some cases of input parameters and in
other cases in terms of root of some cubic equation.

Figure 1: Schematic view of model
This Figure is reproduced from [18]

The first contribution of this paper is that we give a simple sufficient condition for this conjecture
to hold, i.e., it is enough that a certain fifth order polynomial has no roots in interval I−.
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Next, in this interval I− of Sp, we ananlyze how some basic performance measures of this
two class queue like optimal arrival rate of secondary customers, mean waiting times, etc,
depend on variance of service times σ2. Such a performance analysis with respect to various
other parameters of the model was reported in our earlier work [19]. We observe that, in
general the performance of the system degrades with increase in variability of service times,
optimal arrival rate of secondary customers decreases, optimal unit admission price increases,
etc. However, mean waiting time Ws decreases with σ, as the system is now less loaded by
secondary customers. It turns out that σ2 is to be restricted over some range so that the
given Sp continues to be in I−; we first identify these required ranges. We also consider some
computational results for these performance measures for Sp, in interval I. We next consider
variance of waiting times when strict priorities are optimal. Based on our computational results,
we conjecture that convex sum of standard deviation of waiting times of primary and secondary
customers when delay dependent non-strict priorities are used, is same as standard deviation
of waiting times when global FCFS discipline is used. We also consider another interesting
performance measure that is relavent for this two class queue, the number of times the server
switches classes per number of customers served. We call this switching frequency and based
on computations, observe that this performance measure is highest when queue discipline is
FCFS.

In the literature, queue pricing models started with Naor [17] who considered a static pricing
problem for controlling the arrival rate in a finite buffer queueing system. A rich literature on
pricing in queueing context itself has evolved since then. An early survey on admission control
by pricing is by Stidham [12] which also discusses static and dynamic flow control. A detailed
discussion on pricing communication networks along with related aspects can be seen in [5].
Static and dynamic pricing in single and multiple class queueing models arising while offering
integrated services offered by communication networks are reviewed recently in [2]. Pricing
surplus or extra capacity of server is also important in the context where setting up additional
servers incur high costs. In [10] the scenario where a resource is shared by two different classes
of customers is considered. They focused on dynamic pricing and demonstrated the properties
of optimal pricing policies. Game theoretic issues arising in control of queues, i.e., mechanism
design approach for admission control along with pricing is discussed in [6]. A recent com-
prehensive survey on pricing strategies for multiple products is available in [20] which reviews
different types pricing (static, dynamic, non-competitive and competitive) as well as various
demand models (deterministic and stochastic), the properties of such pricing schemes devel-
oped particularly in last decade; it also deals in detail the role of pricing in two other prominent
areas, revenue management and supply chains.
Analysis of multi class priority queue has received significant attention in literature. Mean
waiting time expressions for multi class static priority were first derived by Cobham [3]. Wait-
ing time distribution for each class under static priority are due to Durr [7]. Apart from static
priorities across classes, different types of dynamic priorities are possible for example delay
dependent [14], due date based [9] and numbers in each class based [11]. Mean waiting time
expressions are analytically known for these dynamic priorities. Kleinrock [15] defined conser-
vation laws for a work conserving server in multi class setting which forms a hyperplane in n-1
dimension if n number of classes are considered. Achievable region for all possible vectors of
average waiting time forms a polytope defined by conservation law in multiclass setting and a
parametrized family of scheduling policy is called complete if it swaps the achievable region.
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Detailed discussion on this can be found in [16]. Work on characterizing the waiting time per-
formance realizable by single server queues is done by Coffman and Mitrani [4]. Analysis of
achievable region with multiple servers is explored by Federgruen and Groenvelt [8]. This paper
also describes the synthesis algorithm for delay dependent dynamic priority. Further study on
non linear structure of achievable performance in multi class queueing network is described in
[1]. Note that above discussion on achievable region is with respect to first moment of waiting
time. There is not much known about achievable region with respect to second moment of wait-
ing time or variance. One of the reason for this can be unknown variance of waiting time under
dynamic priority. In this paper, we propose a relation about second moments of waiting time
under delay dependent dynamic priorities based on numerical experiments. This result may
help in characterizing conservation laws and achievable region with respect to second moments.

This paper is organised as follows: Section 2 describes sufficient condition for conjecture to
hold. In Section 3, we present our analysis of the effect of service time variance on different
performance measures. In Section 4, we discuss about variance of waiting time, switching
frequency and propose a conjecture based on numerical experiments. Finally, Section 5 ends
with discussion.

2 A sufficient condition to verify the conjecture of [19]

The conjecture based on numerical experimentation given in [19] which states that, for Sp ∈ I−,
the optimal solution of the original problem is given by the optimal solution of problem P1.
Before proceeding we recall the following two results proved in [19]. We know that intervals
I− and I of Sp of the optimization problem P0 are (Ŝp, Il) and [Il, Iu) respectively, where

Ŝp = λpψ

µ(µ−λp) , Il = ψλ1
µ(µ−λp) , Iu = ψλ1

(µ−λ1)(µ−λ(1)s )
. Here, λ1 = λp + λ

(1)
s where λ

(1)
s is the unique

root of cubic G(λs) in interval (0, µ− λp):

G(λs) = 2µλ3s − [cψ + µ(a+ 4φ0)]λ
2
s + 2φ0[cψ + µ(a+ φ0)]λs − aµφ2

0 + cψλp(µ+ φ0) (17)

where φ0 = µ − λp. Let all parameters with subscript 1 and 2 denote parameters related to
problem P1 and P2 respectively. Following two facts are due to [19].

1. For Sp in the interval I, O∗1 is strictly greater than O∗2, where O∗1 and O∗2 are optimal
objective function values of problems P1 and P2.

2. O∗1 > O∗2 for all Sp ∈ (Ŝp, Ŝp + ε) where ε is a sufficiently small positive number.

Now let us assume that the conjecture is false. So from the above two facts it is clear that for
conjecture to be false it is necessary to have a minimum of two crosses as shown in Figure 2.
Hence for conjecture to be false there should be at least two or more even number of roots of
O∗1 −O∗2 in the interval I− of Sp.

The difference in objective O∗1 −O∗2 is given by (from (13))

O∗1 −O∗2 =
1

b
[a(λs1 − λs2)− (λ2s1 − λ

2
s2

)− c(λs1Ws1 − λs2Ws2)] (18)
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Figure 2: Behaviour of O∗1 and O∗2 if conjecture is not true

First we obtain λs1 and λs2 as given by problems P1 and P2. When Sp is in the interval I− the

solution of problem P1 is given by λ
(2)
s = µ(µ−λp)Sp

ψ
− λp (by Theorem 2 in [19]) i.e., λs1 = λ

(2)
s

so that

λs1 =
µ(µ− λp)Sp

ψ
− λp (19)

where ψ = 1+σ2µ2

2
. For the problem P2 (i.e., when β =∞) in the interval I− of Sp, (irrespective

of whether µ−λp
µλp

> aλp−cψ
2µλ2p+cψ(µ+λp)

or µ−λp
µλp

< aλp−cψ
2µλ2p+cψ(µ+λp)

), Sp will lie in the interval J−. For this

interval, λs2 = λ
(4)
s (as shown in Theorem 4 in [19]) so that

λs2 =
1

2Sp

(
Sp (2µ− λp) + ψ −

√
(Spλp + ψ) 2 + 4µψSp

)
. (20)

Next, we obtain Ws1 and Ws2 , the mean waiting times of secondary class customers implied by
the solutions of problems P1 and P2. For the problem P1, with Sp in interval I− (i.e., with

β = 0) the expression of Ws1 = Ws(λs = λ
(2)
s , β = 0) is given by

Ws1 =
λψ

(µ− λ) (µ− λp)
=

ψSp
ψ + Sp (−µ+ λp)

. (21)

And for the problem P2 (i.e., when β = ∞) with Sp in the interval I− i.e., in the interval J−

the expression for Ws2 = Ws(λs = λ
(4)
s , β =∞) is given by

Ws2 =

((
1

2Sp

(
Sp (2µ− λp) + ψ −

√
(Spλp + ψ)2 + 4µψSp

))
+ λp

)
ψ

µ

(
µ−

(
1

2Sp

(
Sp (2µ− λp) + ψ −

√
(Spλp + ψ)2 + 4µψSp

))) (22)
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On simplifying, we have

λ2s1 =
µ4S2

p

ψ2
− 2µ2Spλp

ψ
−

2µ3S2
pλp

ψ2
+ λ2p +

2µSpλ
2
p

ψ
+
µ2S2

pλ
2
p

ψ2
=

(ψλp + µSp (−µ+ λp))
2

ψ2
(23)

Ws1λs1 =
Sp (µSp (µ− λp)− ψλp)

ψ + Sp (−µ+ λp)
(24)

Ws2λs2 =

(
ψ

(
ψ + 2µSp − Spλp −

√
4µψSp + (ψ + Spλp) 2

)
(
ψ + 2µSp + Spλp −

√
4µψSp + (ψ + Spλp) 2

))/
(

2µSp

(
−ψ + Spλp +

√
4µψSp + (ψ + Spλp) 2

))
(25)

λ2s2 = µ2 +
ψ2

2S2
p

+
2µψ

Sp
− µλp +

λ2p
2
−
ψ
√

4µψSp + (ψ + Spλp) 2

2S2
p

−
µ
√

4µψSp + (ψ + Spλp) 2

Sp
+
λp
√

4µψSp + (ψ + Spλp) 2

2Sp
(26)

Now substituting the above expressions in Equation (18), we get

O∗1 −O∗2 = a
((

µ(µ−λp)Sp

ψ
− λp

)
−
(

1
2Sp

(
Sp (2µ− λp) + ψ −

√
(Spλp + ψ)2 + 4µψSp

)))
(

(ψλp+µSp(−µ+λp))2
ψ2 −

(
µ2 + ψ2

2S2
p

+ 2µψ
Sp
− µλp +

λ2p
2
− ψ
√

4µψSp+(ψ+Spλp)2

2S2
p

µ
√

4µψSp+(ψ+Spλp)2

Sp
+

λp
√

4µψSp+(ψ+Spλp)2

2Sp

))
−c
(
Sp(µSp(µ−λp)−ψλp)

ψ+Sp(−µ+λp)

−
(
ψ
(
ψ + 2µSp − Spλp −

√
4µψSp + (ψ + Spλp) 2

) (
ψ + 2µSp + Spλp −

√
4µψSp + (ψ + Spλp) 2

))/
(

2µSp

(
−ψ + Spλp +

√
4µψSp + (ψ + Spλp) 2

)))
We now equate the right hand side of the above equation to zero and multiply both sides
with (

2µSp

(
−ψ + Spλp +

√
4µψSp + (ψ + Spλp) 2

))
(ψ + Sp (−µ+ λp))Sp
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and on rearranging the terms, we obtain.(
2µψ3 − 2aµψ2Sp + 4µ2ψ2Sp − 2cψ3Sp − 4µ3ψS2

p − 2cµψ2S2
p+

4aµ3S3
p − 2µ4S3

p + 4cµ2ψS3
p − 2cµ3S4

p −
2aµ4S4

p

ψ
−

2µ5S4
p

ψ
+

2µ6S5
p

ψ2
− 2aµψS2

pλp + 4µ2ψS2
pλp − 2cψ2S2

pλp − 4aµ2S3
pλp+

10µ3S3
pλp − 2cµψS3

pλp + 2cµ2S4
pλp +

4aµ3S4
pλp

ψ
−

6µ5S5
pλp

ψ2
− 2µψS2

pλ
2
p − 8µ2S3

pλ
2
p −

2aµ2S4
pλ

2
p

ψ
+

6µ3S4
pλ

2
p

ψ
+

6µ4S5
pλ

2
p

ψ2
−

4µ2S4
pλ

3
p

ψ
−

2µ3S5
pλ

3
p

ψ2

)√
4µψSp + (ψ + Spλp) 2

− 2µψ4 + 2aµψ3Sp − 8µ2ψ3Sp + 2cψ4Sp + 4aµ2ψ2S2
p+

6cµψ3S2
p − 8aµ3ψS3

p + 10µ4ψS3
p − 4cµ2ψ2S3

p+

2aµ4S4
p + 2µ5S4

p − 2cµ3ψS4
p −

2µ6S5
p

ψ
− 2µψ3Spλp+

4aµψ2S2
pλp − 4µ2ψ2S2

pλp + 4cψ3S2
pλp + 4aµ2ψS3

pλp−
18µ3ψS3

pλp + 4cµψ2S3
pλp − 2µ4S4

pλp + 2cµ2ψS4
pλp−

2cµ3S5
pλp −

2aµ4S5
pλp

ψ
+

4µ5S5
pλp

ψ
+

2µ6S6
pλp

ψ2
+

2µψ2S2
pλ

2
p + 2aµψS3

pλ
2
p + 4µ2ψS3

pλ
2
p + 2cψ2S3

pλ
2
p−

2aµ2S4
pλ

2
p + 4µ3S4

pλ
2
p + 2cµψS4

pλ
2
p + 2cµ2S5

pλ
2
p+

4aµ3S5
pλ

2
p

ψ
−

6µ4S5
pλ

2
p

ψ
−

6µ5S6
pλ

2
p

ψ2
+ 2µψS3

pλ
3
p − 4µ2S4

pλ
3
p−

2aµ2S5
pλ

3
p

ψ
+

8µ3S5
pλ

3
p

ψ
+

6µ4S6
pλ

3
p

ψ2
−

4µ2S5
pλ

4
p

ψ
−

2µ3S6
pλ

4
p

ψ2
= 0. (27)

Taking the non-square root terms of the Equation 27 on the RHS and squaring both sides
and re-arranging we get the following polynomial in Sp, which was obtained with the help of
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Mathematica c©.

S11
p

(
16µ13

ψ3
−

80µ12λp

ψ3
+

144µ11λ2p

ψ3
−

80µ10λ3p

ψ3
−

80µ9λ4p

ψ3
+

144µ8λ5p

ψ3
−

80µ7λ6p

ψ3
+

16µ6λ7p

ψ3

)
+

S10
p

(
−
32aµ11

ψ2
−

32µ12

ψ2
−

32cµ10

ψ
+

128aµ10λp

ψ2
+

64µ11λp

ψ2
+

112cµ9λp

ψ
−

160aµ9λ2p

ψ2
+

96µ10λ2p

ψ2
−

112cµ8λ2p

ψ
−

320µ9λ3p

ψ2
−

32cµ7λ3p

ψ
+

160aµ7λ4p

ψ2
+

160µ8λ4p

ψ2
+

128cµ6λ4p

ψ
−

128aµ6λ5p

ψ2
+

192µ7λ5p

ψ2
−

80cµ5λ5p

ψ
+

32aµ5λ6p

ψ2
−

224µ6λ6p

ψ2
+

16cµ4λ6p

ψ
+

64µ5λ7p

ψ2

)
+

S9
p

(
32acµ8 + 80cµ9 +

16a2µ9

ψ
+

96aµ10

ψ
−

16µ11

ψ
+ 16c2µ7ψ − 80acµ7λp − 128cµ8λp−

48a2µ8λp

ψ
−

208aµ9λp

ψ
+

208µ10λp

ψ
− 32c2µ6ψλp + 32acµ6λ2p − 112cµ7λ2p+

32a2µ7λ2p

ψ
−

48aµ8λ2p

ψ
−

432µ9λ2p

ψ
+ 64acµ5λ3p + 256cµ6λ3p +

32a2µ6λ3p

ψ
+

352aµ7λ3p

ψ
+

48µ8λ3p

ψ
+ 32c2µ4ψλ3p − 64acµ4λ4p − 16cµ5λ4p −

48a2µ5λ4p

ψ
−

128aµ6λ4p

ψ
+

528µ7λ4p

ψ
− 16c2µ3ψλ4p + 16acµ3λ5p − 128cµ4λ5p +

16a2µ4λ5p

ψ
−

144aµ5λ5p

ψ
−

336µ6λ5p

ψ
+ 48cµ3λ6p +

80aµ4λ6p

ψ
−

80µ5λ6p

ψ
+

80µ4λ7p

ψ

)
+

S8
p

(
−64a2µ8 − 48aµ9 − 112acµ7ψ − 48cµ8ψ − 64c2µ6ψ2 + 112a2µ7λp − 176aµ8λp+

144acµ6ψλp − 144cµ7ψλp + 48c2µ5ψ2λp + 32a2µ6λ2p + 496aµ7λ2p − 224µ8λ2p+

96acµ5ψλ2p + 368cµ6ψλ2p + 80c2µ4ψ2λ2p − 128a2µ5λ3p + 416µ7λ3p − 160acµ4ψλ3p+

48cµ5ψλ3p − 48c2µ3ψ2λ3p + 32a2µ4λ4p − 496aµ5λ4p + 64µ6λ4p + 16acµ3ψλ4p−

352cµ4ψλ4p − 16c2µ2ψ2λ4p + 16a2µ3λ5p + 176aµ4λ5p − 448µ5λ5p + 16acµ2ψλ5p+

96cµ3ψλ5p + 48aµ3λ6p + 160µ4λ6p + 32cµ2ψλ6p + 32µ3λ7p
)
+

S7
p

(
80a2µ7ψ − 32aµ8ψ + 96µ9ψ + 112acµ6ψ2 + 64cµ7ψ2 + 64c2µ5ψ3 − 16a2µ6ψλp+

256aµ7ψλp − 192µ8ψλp + 32acµ5ψ2λp + 144cµ6ψ2λp + 64c2µ4ψ3λp−

144a2µ5ψλ2p − 16aµ6ψλ2p + 48µ7ψλ2p − 176acµ4ψ2λ2p − 112cµ5ψ2λ2p−

64c2µ3ψ3λ2p + 16a2µ4ψλ3p − 432aµ5ψλ3p + 240µ6ψλ3p − 32acµ3ψ2λ3p−

272cµ4ψ2λ3p − 64c2µ2ψ3λ3p + 64a2µ3ψλ4p + 48aµ4ψλ4p − 240µ5ψλ4p+

64acµ2ψ2λ4p + 48cµ3ψ2λ4p + 176aµ3ψλ5p − 48µ4ψλ5p + 128cµ2ψ2λ5p + 96µ3ψλ6p
)
+

S6
p

(
−32a2µ6ψ2 − 16aµ7ψ2 − 64µ8ψ2 − 32acµ5ψ3 − 64cµ6ψ3 − 80a2µ5ψ2λp+

16aµ6ψ2λp − 128µ7ψ2λp − 112acµ4ψ3λp − 128cµ5ψ3λp − 64c2µ3ψ4λp+

32a2µ4ψ2λ2p − 160aµ5ψ2λ2p + 256µ6ψ2λ2p − 96cµ4ψ3λ2p − 64c2µ2ψ4λ2p+

80a2µ3ψ2λ3p − 16aµ4ψ2λ3p + 96µ5ψ2λ3p + 80acµ2ψ3λ3p + 128cµ3ψ3λ3p+

176aµ3ψ2λ4p − 192µ4ψ2λ4p + 160cµ2ψ3λ4p + 32µ3ψ2λ5p
)
+

S5
p

(
32aµ6ψ3 + 32a2µ4ψ3λp + 16aµ5ψ3λp + 128µ6ψ3λp + 32acµ3ψ4λp + 64cµ4ψ4λp+

32a2µ3ψ3λ2p + 96µ5ψ3λ2p + 32acµ2ψ4λ2p + 128cµ3ψ4λ2p + 16aµ3ψ3λ3p−

128µ4ψ3λ3p + 64cµ2ψ4λ3p − 96µ3ψ3λ4p
)
+

S4
p

(
−32aµ4ψ4λp − 32aµ3ψ4λ2p − 64µ4ψ4λ2p − 64µ3ψ4λ3p

)
= 0 (28)

Simplifying each term with the help of Mathematica c© we get
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S4
p

(
Sp −

2ψ

µ− λp

)(
Sp −

ψλp
µ (µ− λp)

)
(
Sp

5µ3 (µ− λp) 4−
Sp

4
(
µψ (µ− λp) 2 (2aµ (µ− λp) + cψ (2µ− λp) + 3µ (µ− λp)λp)

)
+

Sp
3
(
ψ2 (µ− λp)

)(
a2µ (µ− λp) + acψ (2µ− λp) + aµ

(
2µ2 + µλp − 3λ2p

)
+ c2ψ2+

cψ
(
µ2 + 2µλp − 2λ2p

))
+

Sp
2
(
−2a2µψ3 (µ− λp)− acψ4 (3µ− 2λp) + aµψ3

(
µ2 − 6µλp + 5λ2p

)
−

2c2ψ5 − cψ4
(
µ2 + 3µλp − 4λ2p

)
+ µψ3

(
−2µ3 + 5µ2λp − 5µλ2p + 2λ3p

))
+

Sp
(
a2µψ4 + aψ4 (cψ + µλp) + 2cψ5 (µ+ λp) + 2µψ4

(
µ2 − λ2p

))
−

µψ5 (a+ 2λp)
)

= 0. (29)

We now simply observe in above that all the roots of O∗1 − O∗2 are Sp = 0, Sp = 2ψ
µ−λp , Sp =

λpψ

µ(µ−λp) = Ŝp as well as the roots of fifth degree polynomial in Sp. Recall that interval I− is

( λpψ

µ(µ−λp) ,
λ1ψ

µ(µ−λp)) and hence the roots Ŝp and 0 lie to the left of interval I− which are infeasible,

while the root 2ψ
µ−λp lies to the right of interval I− as upper limit of interval I− is smaller

than this. Lets check the signs of coefficients of the remaining 5th order polynomial. Let this
polynomial be

AS5
p +BS4

p + CS3
p +DS2

p + ESp + F.

A = µ3(µ− λp)4

A i.e., coefficient of S5
p is clearly positive for µ > λ (queue stability condition).

B = −µψ (µ− λp) 2 (2aµ (µ− λp) + cψ (2µ− λp) + 3µ (µ− λp)λp)

For µ > λ, B is negative.

C =
(
ψ2 (µ− λp)

)(
a2µ (µ− λp) + acψ (2µ− λp) + aµ

(
2µ2 + µλp − 3λ2p

)
+ c2ψ2+

cψ
(
µ2 + 2µλp − 2λ2p

))
=
(
ψ2 (µ− λp)

)(
a2µ (µ− λp) + acψ (2µ− λp) + aµ

(
2(µ2 − λ2p) + λp(µ− λp)

)
+ c2ψ2+

cψ
(
µ2 + 2λp(µ− λp)

))
Hence C > 0 for µ > λ. We were unable to determine the sign of D

E = a2µψ4 + aψ4 (cψ + µλp) + 2cψ5 (µ+ λp) + 2µψ4
(
µ2 − λ2p

)

10



Hence E > 0 for µ > λ
F = −µψ5(a+ 2λp)

So F < 0 for µ > λ.

Figure 3: Applying Descartes’ rule of signs; A, B, C, D, E and F are the coefficients of the fifth
order polynomial in Eq. (21)

Proposition 1. The conjecture of Sinha et al. (2010) is true if the fifth order polynomial in
Equation (29) has no roots in the interval I−.

Using the Descartes’ rule of signs, we found that there can be up to 5 or 3 positive real roots
of O∗1 − O∗2. So there are odd number of positive real roots of O∗1 − O∗2 in feasible region, but
we don’t know whether odd or even number of roots are in interval I− of Sp. That means it is
possible that an even number of roots can lie in I− and an odd number of roots in I or J− ∪ J .
So, we can not conclude anything from Descartes rule of sign.

3 Effect of variance of service time on some performance

measures

In this section, we study the variation of some performance measures of the queue when the
variance of the service time σ2 is changed. We assume that all other parameters of the model,
including the mean service time, 1/µ, are held constant. We have that Ŝp is an increasing
function of σ because

∂Ŝp
∂σ

=
λp

µ(µ− λp)
∂ψ

∂σ
=

λp
µ(µ− λp)

µ2σ > 0.

So, the left end point of interval I− of Sp is an increasing function of σ. One can argue that
other ends points Il(σ) and Iu(σ) also change otherwise interval will shrink and vanish which is
not the case. So, the intervals I− and I shift to the right as σ increases as shown schematically
in Figure 4.

So, given a Sp ∈ I−, there is a range of σ for which the given Sp will continue to remain in
interval I−. Similar range of σ will also exist if Sp ∈ I. To be able to do performance evaluation

11



Figure 4: Illustrating the range of σ for which given Sp remain in I or I−.

of various performance measures for a given Sp ∈ I− while changing σ, we need to identify the
range of σ so that Sp continues to be in I−. We obtain such ranges below.

Define mappings, τŜp
: σ → Ŝp, τl : σ → Il, τu : σ → Iu. These mappings are representing

change in Ŝp, Il and Iu as σ changes respectively. Let Sp ∈ I− and define σI− := {σ : Sp ∈
(τ−1l (Ŝp), τ

−1
u (Il))}. So σI− is the range of σ for which Sp continues to lie in I−. Similarly

let Sp ∈ I and define σI := {σ : Sp ∈ [τ−1l (Il), τ
−1
u (Iu))}, this is the range of σ for which Sp

continues to lie in I.

These mappings and their use in obtaining the above valid ranges of σ in a sample system are
illustrated in Figure 5; the values of other parameters of the system considered are shown in the
caption. It can be observed that boundaries of both the intervals I− ≡ (Ŝp, Il) and I ≡ [Il, Iu),

which are Ŝp(σ), Il(σ) and Iu(σ), increase with increase in σ. At any point of σ, I(σ) is interval
I for given σ and we can see the boundaries of these intervals by plotting a vertical line. For
example the boundaries for σ = 0.4 (shown by dotted lines) are Ŝp(0.4) = 3.4, Il(0.4) =
4.124 and Iu(0.4) = 33.528, so the interval I−(0.4) ≡ (3.4, 4.124) and I(0.4) ≡ [4.124, 33.528).
Observe that for σ = 0.4, we have that Sp is in I. As we increase σ, the given Sp which
was earlier in interval I now falls in interval I− if we proceed beyond σ = 0.702. And also,
beyond σ = 0.764 the problem becomes infeasible. So the interval σI ≡ (0.1, 0.702] and
σI− ≡ (0.702, 0.764).

3.1 Effect of service time variance on mean performance measures
for Sp ∈ I−

We consider the effect of variance of service times on the nature of change of some mean
performance measures like optimal arrival rate of secondary class customers λs, optimal unit
admission price θ, and mean waiting times of both classes of customers, when the upper bound
on the mean waiting time of primary class customers Sp is in the interval I−. For the rest of
this subsection, we impose the following two conditions:
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Figure 5: Illustration of the range of σ for which given Sp remain in I or I−. We consider
µ = 10, λp = 8, a = 100, b = 0.2, c = 0.1 and Sp = 11.9. Here, σI ≡ (0.1, 0.702] and σI− ≡
(0.702, 0.764).

C1: The fifth order polynomial in Eq. (21) has no roots in I−, so that the optimal solution for
the original problem P0 is given by P1.

C2: We assume that among the given parameters, standard deviation σ alone is varied so that
σ ∈ σI− holds.

The optimal admission rate of the secondary class of customers λs, when Sp lies in interval I−

is [19]

λs = λ(2)s =
µ(µ− λp)Sp

ψ
− λp.

We can show that the partial derivative of this w.r.t. σ2 is negative and hence, we have,

Proposition 2. Under conditions C1 and C2, the optimal arrival rate of secondary class of
customers, λs, decreases with increase in variance of service time σ2.

Proof. We know that when Sp in the interval I−, and as long as σ ∈ σI− the optimal arrival
rate of secondary class customers is,

λs = λ(2)s =
µ(µ− λp)Sp

ψ
− λp.

13



Now differentiating λs partially with respect to σ2 we get (as ∂ψ
∂σ2 = µ2

2
)

∂λs
∂σ2

=
−µ(µ− λp)Sp

ψ2

∂ψ

∂σ2
=
−µ3(µ− λp)Sp

2ψ2
< 0. (30)

We recall from [19] that the constraint Wp ≤ Sp is binding at optimality for Sp ∈ I−, and hence
we have,

Proposition 3. Under conditions C1 and C2, the mean waiting time of primary customers Wp

does not change with increase in σ2.

Proof. For Sp in the interval I−, and as long as σ ∈ σI− , β = 0, so the mean waiting time of
primary class customers is

Wp(λs, β = 0) =
λψ

µ(µ− λp)
. (31)

Now differentiating Wp partially with respect to σ2 and using Equation (30), we get

∂Wp

∂σ2
=

(
λ

µ(µ− λp)
+

ψ

µ(µ− λp)

(
−µ(µ− λp)Sp

ψ2

))
µ2

2

=

(
λ

µ(µ− λp)
− Sp
ψ

)
µ2

2

=

(
λψ − µ(µ− λp)Sp

µ(µ− λp)ψ

)
µ2

2
.

∴
∂Wp

∂σ2
=

(
λψ − µ(µ− λp)Sp

µ(µ− λp)ψ

)
µ2

2
(32)

Substituting λ = µ(µ−λp)Sp

ψ
, in Equation (32) we get

∂Wp

∂σ2
= 0. (33)

Hence in the interval I− of Sp the mean waiting time of primary class customers, Wp, remains
constant, i.e., does not depend on σ2.

Using the expression for mean waiting time of secondary class of customers, Ws, and from
Proposition 2 the fact that the partial derivative of λs w.r.t. σ2 is negative, one can show

Proposition 4. Under conditions C1 and C2, Ws decreases with increase in variance of service
time σ2.

Proof. For Sp in the interval I−, β = 0, the mean waiting time of secondary class customers is

Ws(λs, β = 0) =
λψ

(µ− λ)(µ− λp)
. (34)
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Differentiating partially with σ2 and using Equation (30) for
∂λs
∂σ2

we get

∂Ws

∂σ2
=

λ

(µ− λ)(µ− λp)
µ2

2
+

ψ

(µ− λp)
∂

∂σ2
(

λ

µ− λ
)

=

(
λ

(µ− λ)(µ− λp)
+

ψ

(µ− λp)
µ

(µ− λ)2
∂λs
∂σ2

)
µ2

2

=

(
λ

(µ− λ)(µ− λp)
+

ψ

(µ− λp)
µ

(µ− λ)2

(
−µ(µ− λp)Sp

ψ2

))
µ2

2

=

(
λ

(µ− λ)(µ− λp)
− µ2Sp

(µ− λ)2ψ

)
µ2

2

=
1

µ− λ

[
λ

µ− λp
− µ2Sp/ψ

µ− λ

]
µ2

2

=
1

µ− λ

(
λ(µ− λ)− µ2Sp(µ− λp)/ψ

(µ− λp)(µ− λ)

)
µ2

2

=
1

µ− λ

(
λ(µ− λ)− µλ

(µ− λp)(µ− λ)

)
µ2

2

=
−λ2µ2

2(µ− λ)2(µ− λp)
.

Hence
∂Ws

∂σ2
=

−λ2µ2

2(µ− λ)2(µ− λp)
< 0. (35)

As λs = a− bθ − cWs and λs and Ws decrease with σ2, we have,

Proposition 5. Under conditions C1 and C2, the optimal admission price, θ increases with
the variance of service time σ2.

Proof. Since θ = 1
b
[a− λs − cWs], differentiating it partially with respect to σ2 we get,

∂θ

∂σ2
=

1

b

[
−∂λs
∂σ2
− c∂Ws

∂σ2

]
. (36)

Since it is assumed that Sp is in I− and σ ∈ σI− we can use Eq. (22) and (27) which say that,
∂λs
∂σ2

< 0 and
∂Ws

∂σ2
< 0 we can say that

∂θ

∂σ2
> 0.

3.2 Effect of service time variance on mean performance measures
for Sp ∈ I

While the above looked at dependence of some first order (mean) performance measures on
variance of service times when Sp ∈ I−, we now consider such dependence when Sp ∈ I.

Proposition 6. The optimal arrival rate of secondary class customers, for Sp in the interval
I, decreases with the increase in variance of service time of server, as long as σ ∈ σI .
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Proof. Recall [19] that G(λs) = 2µλ3s − [cψ + µ(a + 4φ0)]λ
2
s + 2φ0[cψ + µ(a + φ0)]λs − aµφ2

0 +
cψλp(µ+ φ0). where φ0 = µ− λp and ψ = (1 + σ2µ2)/2. Then, we have that,

∂G(λs)

∂σ2
= (−cλ2s + 2φ0cλs + cλp(µ+ φ0))

∂ψ

∂σ2

Using ∂ψ
∂σ2 = µ2

2
and on factorizing the above quadratic in λs, we get

∂G(λs)

∂σ2
= −cµ

2

2
(λs − (2µ− λp)) (λs + λp) (37)

Note that λs − (2µ− λp) ≤ 0. Hence from Equation (37)

∂G(λs)

∂σ2
≥ 0 (38)

We know from Claim 1 in [19] that G(λs) has a unique root in (0, µ− λp) and other two roots
will be real or imaginary depending on condition aµ+cψ ≥ 2µ(µ−λp) or aµ+cψ < 2µ(µ−λp).
G(λs) can be written as

G(λs) = 2µ(λs − λs1)(λs − λs2)(λs − λs3)

Consider derivative of G(λs) w.r.t. σ2

∂G(λs)

∂σ2
= −2µ

∂λs1
∂σ2

(λs − λs2)(λs − λs3)

−2µ
∂λs2
∂σ2

(λs − λs1)(λs − λs3) −2µ
∂λs3
∂σ2

(λs − λs1)(λs − λs2).
(39)

Using equation (39), at λs = λs1 we have

∂G(λs1)

∂σ2
= −2µ

∂λs1
∂σ2

(λs1 − λs2)(λs1 − λs3)

In case of imaginary roots, λs2 , λs3 are a+ib, a−ib. We get ∂G(λs)
∂σ2 |λs=λs1 = −k ∂λs1

∂σ2 ((λs1−a)2+b2)
and from (38), we have

∂λs1
∂σ2

< 0. (40)

In case of real root, let λs1 ≤ λs2 ≤ λs3 be the roots. By using the ordering of roots (λs1 , λs2 , λs3)
and equation (38), we have

∂λs1
∂σ2

< 0. (41)

Hence from equation (40) and (41), the proposition follows.

3.2.1 A numerical study of first order (mean) performance measures for Sp ∈ I

Analysis of dependence of other performance metrics of the model on σ2 seems very difficult,
given that those metrics depend complicatedly on the root of G(λs). So, we report below a
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limited numerical study of dependence of admission rate of secondary class of customers and
some other performance measures like queue discipline parameter, mean waiting times of both
classes of customers, etc. on standard deviation of service times for a given Sp in I. We consider
a model with a = 100 customers per hour, b = 0.2 customers per hour per unit price, c = 0.1
customers per hour, µ=10 customers per hour, λp = 8 customers per hour and Sp = 11.9 hours.
Starting with σ = 0.1, we plot various performance measures for an incremental change in σ of
∆σ = 0.001.

• Variation of λs with standard deviation σ: As shown in Figure 6, in the interval σI of
σ, λs decreases gradually, but it decreases steeply in σI− . As Sp is 11.9 for σ = 0.4,

Ŝp increases with σ and hence Sp gets closer to Ŝp passing through the interval of our
interest σI . In the interval σI , λs is known to be constant for a given σ [19] and hence
the gradual decrease of λs with σ in the interval. However, when σ ∈ σI− the system is
nearly congested as Sp is close to Ŝp, so very few customers can be admitted and hence
this steep decrease in λs in interval σI− .

Figure 6: Variation of λs with σ Figure 7: Variation of β with σ

• Variation of β with standard deviation σ: In Figure 7 the optimal β decreases exponen-
tially to zero with increase in σ. This is to be expected as for larger values of σ, Sp is in
I− and the optimal β in I− is known to be zero [19] and hence β steeply approaches to
this zero value for Sp in I.

• Variation of Wp, Ws, θ and O∗ with standard deviation σ: Performance measures Wp, Ws,
θ and O∗ depend on quantities β and λs [19]. For example, Wp is known to be constant
as constraint Wp ≤ Sp is binding at optimality in both I and I−.

As β decreases for σ ∈ σI , the secondary class customers loose out on priority to primary
class of customers and hence their mean waiting time Ws increases in this case.

As both λs and θ decrease slowly with σ when σ ∈ σI , the optimal profit O∗ also decreases
with σ in σI , but, only marginally.
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Figure 8: Variation of Wp with σ Figure 9: Variation of Ws with σ

4 Variance of waiting times and switching frequency

In this section we consider two more performance measures of this delay dependent priority
queue.

4.1 Variance of Waiting Times

For Sp ∈ I− and J ∪ J− it is optimal to assign strict priorities and we can use available results
for second moments of waiting times [7]. Second moment of waiting time is given by following
expression for two classes.

W
(2)
p =

λa(3)

3(1− σp−1ap−1)2(1− σpap)

+
λa(2)σp−1a

(2)
p−1

2(1− σpap)(1− σp−1ap−1)3

+
λa(2)σpa

(2)
p

2(1− σpap)2(1− σp−1ap−1)2

(42)

Where

ap, ap−1, a are all the same and is equal to the first moment of service time distribution of server
for the case when service time distribution are same for all classes.

a
(2)
p , a

(2)
p−1, a

(2) are all the same and is equal to the second moment of service time distribution
of server for the case when service time distribution are same for all classes.

18



Figure 10: Variation of unit admission price θ
with standard deviation σ of service time

Figure 11: Variation of O∗ with standard devi-
ation σ

a(3) is the third moment of service time distribution.

σp =
i=p∑
i=1

λi where 1 being the highest priority and P being the lowest priority and 1 ≤ p ≤ P

and λp is the arrival rate of class p customer.

λ =
i=P∑
i=1

λi i.e., it is the sum of arrival rates of all classes

When primary class customers have strict priority over secondary class i.e. (β = 0)

W (2)
p =

λ(σ3µ3γ + 3σ2µ2 + 1

3(µ− λp)µ2
+
λλp(1 + σ2µ2)2

2µ2(µ− λp)2
(43)

W (2)
s =

λ(σ3µ3γ + 3σ2µ2 + 1)

3(µ− λp)2(µ− λ)
+

λλp(1 + σ2µ2)2

2(µ− λ)(µ− λp)3
+

λ2(1 + σ2µ2)2

2(µ− λ)2(µ− λp)2
(44)

When secondary class customers have strict priority over primary class i.e. (β =∞)

W (2)
p =

λ(σ3µ3 + 3σ2µ2 + 1)

3(µ− λs)2(µ− λ)
+

λλs(1 + σ2µ2)2

2(µ− λ)2(µ− λs)2
+

λ2(1 + σ2µ2)2

2(µ− λ)2(µ− λs)2
(45)

W (2)
s =

λ(σ3µ3γ + 3σ2µ2 + 1)

3µ2(µ− λs)
+
λλs(1 + σ2µ2)2

2µ2(µ− λs)
. (46)

here σ is the service time variance and γ is the skewness of service time distribution.

In Table 1, we tabulate variance of primary class waiting times and variance of secondary class
waiting times when one class is given strict priority in a particular example. For this case, we
see that a class suffers higher variance of waiting when strict priority is given to the other class
of customers. For Sp ∈ I, the optimal queue management parameter β is such that 0 < β <∞,
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λs β Variance of Wp Variance of Ws

0.2 0 0.2419 16.57702716
0.4 0 0.2436 20.015375
0.8 0 0.2464 31.77531111
1.2 0 0.2484 61.8125
1.6 0 0.2496 204
1.8 0 0.2499 722.75

1.898 0 0.24997399 2595.8096
1.898 ∞ 147.2741 0.01522442
1.905 ∞ 166.7163 0.01524894

Table 1: Theoretical variance of waiting times of primary and secondary class customers for
λp = 8, µ = 10 and σ = 0.1, where inter arrival times and service times are exponentially
distributed.

i.e., strict priority is not assigned to either class of customers. For such values of Sp the waiting
times depend on β apart from depending on λs and service time distributions. We also observed
that variances of waiting times of the class of customers offered strict priority act as bounds on
variances of waiting times. For example, variance of waiting times of primary class of customers
can not have variance lower than variance of waiting times incurred when β = 0. Similarly,
their waiting time variances can’t be more than those when β is ∞.

Another observation is that variance of waiting times of primary class of customers is an in-
creasing function of β (note β= 0 means primary class of customers are given strict priority
in our model), while variance of secondary class of customers is a decreasing function of β. In
fact, we note in Figure 11 that the rates of changes are exponential. These are of the form
aebβ + cedβ. Such type of functional dependence seems to be a good curve fit. We are not

Figure 12: Weighted average of standard deviation of waiting time over β

aware of any result about the variance of waiting times when Sp lies in I. We simulated delay
dependent priority queue using Arena c© [13] for different values of β and list the mean and
standard deviation of waiting times in one particular setting of parameters of the model in
Table 2. Note that we held secondary arrival rate constant in these computations.
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We found an interesting relationship between standard deviations of primary and secondary
class of customers with regard to standard deviation of waiting times of (global) FCFS queue.
Based on our experiments, we found that

λp
λp + λs

σWp +
λs

λp + λs
σWs = σFCFS (47)

where σFCFS is an arbitrary customer’s standard deviation of stationary waiting time when the
queue disciple is FCFS, i.e., β = 1. So, we have,

Conjecture: The convex combination of standard deviations of stationary waiting times in
any strict delay dependent queue (for 0 < β <∞) is constant and is equal to that of stationary
waiting times in FCFS queue.

λs β Wp Ws σWp σWs σWp

λp
λ

+ σWs

λs
λ

1.9167 0.029369 1.3631 36.7354 1.236551006 40.7210067 8.807891571
1.9167 0.066556 2.3984 32.4123 2.401557295 35.78187822 8.802398332
1.9167 0.11516 3.433 28.0923 3.569021014 30.88563875 8.807115478
1.9167 0.18141 4.4661 23.7783 4.728673259 26.03713596 8.814672796
1.9167 0.27701 5.499 19.465 5.880620631 21.22954957 8.823848619
1.9167 0.42705 6.5326 15.1491 7.025299797 16.45432372 8.833355255
1.9167 0.69652 7.5651 10.8375 8.160224384 11.72000827 8.842822582
1.9167 1 8.1952 8.2062 8.848655093 8.849761667 8.848858436
1.9167 1.3232 8.59891 6.5236 9.287020341 7.019568579 8.852215841
1.9167 4.4889 9.6315 2.2085 10.414135 2.32095406 8.862216673

Table 2: Simulation results for standard deviation of waiting time. λp = 8 and µ = 10 with
service time distribution as uniform [0, 0.2].

4.2 Switching frequency

As our model is a dynamic priority queue, the server switches from one class to another. We
define switching frequency as the number of switches between primary and secondary class of
customers to service them per number of customers served. So, a low switching frequency means
that a type of customers are served for a long time before the server serves waiting customers
of other type, while a high switching frequency means that the server switches service between
the two classes frequently. Note that service times of both classes of customers are i.i.d. in
our model. In simulations, for a given β, we noted that this switching frequency stabilizes
fairly quickly. See Figure 13. We also plotted the variation of switching frequency as a function
of priority parameter β. We noted that this performance measure is more for β = 1; when
the queue discipline is FCFS, the server ends up with more switches without any bunching of
customers of a class. See Figure 14.
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Figure 13: Switching frequency vs number of customers served graph describing reaching steady
state

Figure 14: Variation of switching frequency with β

5 Discussion

Queuing models involving joint pricing and queue management aimed at revenue maximization
while offering some specified QoS levels offer various possibilities of further work. While we
gave a sufficient condition for the Conjecture of [19] to hold, it is desirable to have a probabilis-
tic/queueing based argument to settle it. Analysis of the dependence of various performance
measures on the variance of service times when Sp is in interval I would be interesting. Settling
of the new Conjecture that a certain convex combination of standard deviations of waiting times
of primary and secondary class customers is same as standard deviation of waiting times when
FCFS policy is used, is another aspect that can be pursued. This conjecture may be further
generalized with more than two classes and forms intuition for second order conservation law.
Models involving networks of queues can also be analysed.
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