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Abstract

Normally distributed data arise in various contexts and often one is interested in
estimating its variance. We limit ourselves to the class of estimators that are (pos-
itive) multiples of sample variances. Two important qualities of the estimators are
bias, which captures the accuracy of the estimator, and variance, which captures
the estimator’s precision. Apart from the two standard estimators for variance of
such normally distributed data, we also consider the one that minimizes the mean
square error and another which minimizes the maximum of the square of the bias
and variance, the minmax estimator. This minmax estimator can be identified as
fixed point of a suitable function. Our observation is that, for moderate to large
sample sizes, all these estimators have the same order of the mean square error,
(which is the inverse of the sample size). We next consider another criterion for
quality of an estimator – the fraction of square of bias in mean square error of
the estimator. For UMVUE, this fraction is zero; while for the minmax estimator
this fraction is half. So, while these estimators are quite similar on mean square
error aspect, they differ in the contribution of bias to their mean square error. An-
other framework to compare the estimators is the Pareto efficient frontier with the
components, squared bias and variance of the estimators. The classical estimators,
UMVUE, optimal MSE and minmax estimators are non-dominated feasible points
in this space i.e., lie on the Pareto frontier which we also identify.

1 Introduction

It is well known that normally distributed data sets are observed in numerous situations.
One major reason for this is the following situation. Suppose one has a random error
which is the aggregate of a large collection of errors. Then, under mild conditions, by
the classical Central Limit Theorem and its variants [Billingsley, 1995], [Chung, 2001],
[Fristedt and Gray, 1997], [Kallenberg, 2002], [Wasserman, 2005], etc., the standardized
sum of the collections of errors (and hence suitable scaling of the centered random error)
has approximately the distribution of a zero mean normal random variable.
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A central theme in statistical inference is that given a sample from a parametric dis-
tribution, one is interested in finding a suitable ‘best’ estimator for a parameter of the
distribution. Most of such inference procedures concentrate on the unbiased estima-
tors and finding the ‘best’ (i.e., the one having the minimum variance) amongst them.
These are the classical Uniformly Minimum Variance Unbiased Estimators, (UMVUE)
[Casella and Berger, 2002], [DeGroot and Schervish, 2012], etc. However, one can trade-
off the bias of the estimator to achieve lower variance and hence find a better estimator in
terms of Mean Squared Error (MSE) as MSE is the sum of squared bias and variance of
the estimator, leading to the optimal MSE estimator. Further, one can view both squared
bias and variance of an estimator as equally important and hence search for an estimator
that minimizes the maximum of these two (undesirable) quantities, the minmax estimator.

In fact, one can view MSE as capturing a quality of an estimator and hence compare var-
ious estimators on the basis of their MSEs. Also, one can compare estimators in terms
of the percentage of squared bias in MSE. Yet an another way to compare estimators is
to view this comparison as a multi-criteria problem involving squared bias and variance
and then search for those estimators that are Pareto optimal: the set of estimators such
that reducing of one of these quantities leads to increase in the other quantity.

In this chapter, we illustrate the above aspects of estimators and various measures of
quality of estimators when the underlying data is normally distributed and the parame-
ter we are interested is the variance of this normal random variable.

Consider a random sample (X1, X2, . . . , Xn) of size n from a N(µ, σ2) distribution and
consider the two cases for estimation of population variance (σ2): µ known and µ un-
known. For µ known case, the classical unbiased estimator is

σ̂2 =
1

n

n∑
i=1

(Xi − µ)2. (1)

But one can also consider the following estimators of σ2:

S
2

c = c
n∑

i=1

(Xi − µ)2, (2)

parametrized by coefficients, c > 0. S
2

c can be viewed as scalings of σ̂2.

Similarly for the µ unknown case, we decided to look for estimator for σ2 of the form

S2
c = c

n∑
i=1

(Xi −X)2, c > 0. (3)

It is assumed that the sample size, n, is at least two. Also, we can restrict ourselves to
c > 0 as estimators of this nature dominate the zero estimator corresponding to c = 0,
both on MSE as well as minmax criteria. Details on this and related points are in given
in the appendix.
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With c > 0, it is known [Casella and Berger, 2002], since χ2
n is a random variable of

location-scale exponential family, that

S
2

c

cσ2
∼ χ2

n, (4)

S2
c

cσ2
∼ χ2

n−1. (5)

2 Different risk criteria and estimators based on them

A loss function measures the quality of an estimator. Bias of an estimator can be in-
terpreted as capturing its accuracy while variance can be interpreted as measuring its
precision, [Casella and Berger, 2002], [Alpaydin, 2010]. One of the most common meth-
ods is minimizing the variance over the class of unbiased estimators. This gives us what is
called the Uniform Minimum Variance Unbiased Estimator (UMVUE). Another popular
loss function is mean squared error (MSE) which is the sum of square of the bias and
variance, [Casella and Berger, 2002]. Minimizing MSE can be interpreted as minimizing
the weighted average of square of bias and variance where weights are equal. Treating
each of the squared bias and the variance of an estimator as dissatisfactions associated
with that estimator, minimizing the maximum of them can be viewed as attempt towards
achieving a certain notion of fairness (towards squared bias and variance); thus, a min-
max estimator can be viewed as an estimator with this property. Also, both the optimal
MSE estimator and minmax estimator are biased estimators, unlike UMVUE.

2.1 Uniformly Minimum Variance Unbiased Estimator (UMVUE)

The UMVUE is, as the name suggests, the estimator that has the minimum variance
among the unbiased estimators for the parameter of interest. Among the two basic mea-
sures of the quality of an estimator, the bias is more important factor for UMVUE than
the variance. Hence, first the bias is brought down to its minimum possible value, that is
zero, and then the ‘best’ is picked from this class of estimators with the minimum value
of bias.

However, the existence of an unbiased estimator can not always be guaranteed. As
pointed out by [Doss and Sethuraman, 1989], when an unbiased estimator does not exist,
any attempt to reduce the bias below a given value can result in substantial increment
in the variance, thereby providing an even worse estimator on the MSE grounds.

The UMVUE can be obtained analytically by identifying the coefficient, c, as a function
of sample size, n, (for a given n) at which squared bias, B2

c , becomes zero. Note that
we could uniquely pin down the coefficient c (and hence the UMVUE) because the set of
unbiased estimators for σ2 is a singleton for both the cases: µ known and µ unknown.
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(i) Case: µ known

Bc = 0

⇒ E(S
2

c)− σ2 = 0

⇒ cσ2E

(
S
2

c

cσ2

)
− σ2 = 0

⇒ (nc− 1)σ2 = 0 (using (4))

⇒ c =
1

n
(6)

Thus, the UMVUE for σ2 in the µ known case is σ̂2 =
1

n

n∑
i=1

(Xi − µ)2.

(ii) Case: µ unknown

Bc = 0

⇒ E(S2
c )− σ2 = 0

⇒ cσ2E

(
S2
c

cσ2

)
− σ2 = 0

⇒ [(n− 1)c− 1]σ2 = 0 (using (5))

⇒ c =
1

n− 1
(7)

The UMVUE for σ2 in the µ unknown case is S2 =
1

n− 1

n∑
i=1

(Xi −X)2.

Suppose, for a given sample size, we plot squared bias values on the horizontal axis and
variance values on the vertical axis. Then the UMVUE can be determined on the graph
as the point where the graph touches the vertical axis, i.e., where the squared bias (and
hence the bias) becomes zero. The graphical method for finding the UMVUE for σ2 for
the case of known mean, µ, gives us the estimators shown in Figure 1.

2.2 The optimal MSE estimator

The UMVUE gives the best estimator in the class of unbiased estimators. But an optimal
MSE estimator tries to minimize the Mean Squared Error (MSE) which is the sum of
squared bias and variance of the estimator. Thus, the optimal MSE estimator has lower
MSE value than the UMVUE since it has significant decrease in the variance as compared
to the increment in the bias value.

MSE takes into account both the squared bias and variance and weighs them equally.
Hence, it makes sure that the performance of the estimator does not overlook the effects
of any one of these components. This helps us extend the domain of comparison to the
biased estimators as well, unlike the case of UMVUE, where by definition, we look only
for unbiased estimators and choose the optimal amongst them.
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Figure 1: UMVUE for normal variance (σ2) for different sample sizes (n)

We use the MSE value as criterion for comparing different estimators in a later section.
Hence, as a baseline case, we now derive the optimal MSE estimator here. But before that
we define the bias and the variance of an estimator, denoted by Bc and Vc, respectively.

First consider the µ known case. The bias Bc for an estimator S
2

c , (c > 0) is obtained as:

Bc = E(S
2

c)− σ2

⇒ Bc = cσ2E

(
S
2

c

cσ2

)
− σ2

⇒ Bc = (nc− 1)σ2. (8)

And the variance of S
2

c is given by:

Vc = Var(S
2

c)

⇒ Vc = c2σ4 Var

(
S
2

c

cσ2

)
⇒ Vc = 2nc2σ4. (9)

Similarly for an estimator S2
c , (c > 0) of σ2 in the µ unknown case, we obtain the bias

and variance values as:

Bc = [(n− 1)c− 1]σ2, (10)

Vc = 2(n− 1)c2σ4. (11)

Using the mean and variance of chi-squared distribution from (4) and (5), MSE can be
calculated as:
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(i) Case: µ known

MSE(S
2

c) = (bias(S
2

c))
2 + Var(S

2

c)

=
[
ncσ2 − σ2

]2
+ 2nc2σ4

= σ4[(n2 + 2n)c2 − 2nc+ 1]. (12)

The minimum MSE estimator can be found by setting

∂

∂c
MSE(S

2

c) = 0

⇒ σ4[2c(n2 + 2n)− 2n] = 0

⇒ c∗MSE =
1

n+ 2
. (∵ n ≥ 1, σ4 6= 0) (13)

c∗MSE is a point of minimum since

∂2

∂c2
MSE(S

2

c) = σ4(n2 + 2n) > 0 (∵ n ≥ 1, σ2 > 0).

Thus the minimum MSE estimator for variance of normal distribution when mean
is known is

S
2

c∗MSE
=

1

n+ 2

n∑
i=1

(Xi − µ)2. (14)

(ii) Case: µ unknown By similar analysis as in previous case,

MSE(S2
c ) = [E(S2

c )− σ2]2 + Var(S2
c )

=
[
(n− 1)cσ2 − σ2

]2
+ 2(n− 1)c2σ4

= σ4[(n2 − 1)c2 − 2(n− 1)c+ 1]. (15)

The minimum MSE estimator in this case is obtained as:

∂

∂c
MSE(S2

c ) = 0

⇒ σ4[2c(n2 − 1)− 2(n− 1)] = 0

⇒ c∗MSE =
1

n+ 1
(∵ n > 1, σ4 6= 0). (16)

Thus the minimum MSE estimator for variance of normal distribution when mean
is unknown is

S2
c∗MSE

=
1

n+ 1

n∑
i=1

(Xi −X)2. (17)

2.2.1 Graphical Illustration

We can identify the optimal MSE estimator for a given sample size, n, graphically by
plotting the MSE values (in σ4 units) versus the coefficient values and picking the coef-
ficient value that has the minimum MSE value on this plot.
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Figure 2: Coefficient of optimal MSE estimator of σ2 for different sample sizes (n)

We consider the case where the mean, µ, is known and identify the optimal MSE estimator
as described above (See Figure 2). The marked points are the coordinates corresponding

to coefficient of optimal MSE estimator, c∗MSE, and its MSE value, MSE(S
2

c∗MSE
), which

are:

c∗MSE =
1

n+ 2
and MSE

(
S
2

c∗MSE

)
=

2σ4

n+ 2
.

Hence, as n increases, c∗MSE and MSE(S
2

c∗MSE
) decrease in value, which is also verified from

the graph.

Consider the graph of squared bias versus variance values for estimators with coefficients,
c in Figure 3 and Figure 4. To spot the optimal MSE estimator on this graph, we draw
a line with slope -1 and translate it so at we get a tangent to the curve. At this point of
intersection, sits the optimal MSE estimator.

2.3 The min max estimator

Now, instead of using MSE criterion which takes sum of the squared bias and the variance

of the estimator, we propose to look at these quantities as vector

(
B2

c

Vc

)
and try to find

an estimator that compares the two components on the same scale by using min max
criterion: min

c
max{B2

c , Vc}. Note that we are considering the estimators only with c > 0.

Squared bias and variance are two different criteria for comparing the estimators; yet
it is difficult to weigh one against the other. Even though MSE, as a sum of squared
bias and variance of the estimator, gives equal weightage to both of them, the minmax
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criterion explicitly treats squared bias and variance as equally important and competing
risks. Such a minmax estimator minimizes the maximum of squared bias and variance
among all the estimators of form given by (2) or (3), as the case may be. The minmax
estimator views both squared bias and variance in a more equitable manner. We also
interpret the minmax estimator as a fixed point for a suitable function.

(i) Case: µ known

min
c

max
B2

c ,Vc

(S
2

c) = min
c

max{(nc− 1)2σ4, 2nc2σ4}

= σ4 min
c

max{(nc− 1)2, 2nc2}.

since σ4 is just a positive scaling factor. Now,

B2
c ≥ Vc

⇔ (nc− 1)2 ≥ 2nc2

⇔ (n2 − 2n)c2 − 2nc+ 1 ≥ 0.

For a fixed n, the RHS term is a quadratic in c, whose sign can be deduced by
looking at its roots. The roots of this quadratic are given as:

c =

√
n±
√

2√
n(n− 2)

.

Thus, from the definitions of B2
c and Vc, one has that

B2
c ≥ Vc when 0 ≤ c ≤

√
n−
√

2√
n(n− 2)

or c ≥
√
n+
√

2√
n(n− 2)

,

and, B2
c < Vc when

√
n−
√

2√
n(n− 2)

< c <

√
n+
√

2√
n(n− 2)

.

The roots

√
n−
√

2√
n(n− 2)

and

√
n+
√

2√
n(n− 2)

are the points where B2
c = Vc. So the minmax

estimator is chosen by comparing the variance values at these roots. (We chose
variance values over squared bias values for the ease of comparison.)

Say the two roots are c1 and c2, then

Vc1 = 2nc21 =
2(n+ 2− 2

√
2n)

(n− 2)2
,

Vc2 = 2nc22 =
2(n+ 2 + 2

√
2n)

(n− 2)2
.

Clearly, Vc1 < Vc2 for n ≥ 1 except n = 2.

Hence, the coefficient of the min max estimator is

c∗mm =

√
n−
√

2√
n(n− 2)

=
1

√
n(
√
n+
√

2)
, for n 6= 2. (18)
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Special case: n = 2

B2
c ≥ Vc

⇔ (2c− 1)2 ≥ 4c2

⇔ 1− 4c ≥ 0

⇒ c∗mm =
1

4
.

This is same as that given by c∗mm =

√
n−
√

2√
n(n− 2)

=
1

√
n(
√
n+
√

2)
for n = 2.

Also, c∗MSE =
1

n+ 2
=

1

4
. Thus, the optimal MSE estimator and the min max

estimator for variance when mean is known are same when sample size is 2.

(ii) Case: µ unknown

min
c

max
B2

c ,Vc

(S2
c ) = σ4 min

c
max{[(n− 1)c− 1]2, 2(n− 1)c2}.

B2
c ≥ Vc

⇔ [(n− 1)c− 1]2 ≥ 2(n− 1)c2

⇔ (n2 − 4n+ 3)c2 − 2(n− 1)c+ 1 ≥ 0

The roots of the above quadratic equation are:

c =
(
√
n− 1)±

√
2

(
√
n− 1)(n− 3)

.

As in the previous case, we compare the variance values at these two roots to choose
the coefficient of the minmax estimator. Say the two roots are c1 and c2, then

Vc1 = 2(n− 1)c21 =
2(n+ 1− 2

√
2(n− 1))

(n− 3)2
,

Vc2 = 2(n− 1)c22 =
2(n+ 1 + 2

√
2(n− 1))

(n− 3)2
.

Comparing the numerators we can say that Vc1 < Vc2 for all n ≥ 2 except n = 3.
Hence,

c∗mm =
(
√
n− 1)−

√
2

(
√
n− 1)(n− 3)

=
1

(
√
n− 1)(

√
n− 1 +

√
2)
, for n 6= 3. (19)

Special case: n = 3

B2
c ≥ Vc

⇔ 1− 4c ≥ 0

⇒ c∗mm =
1

4
.

Again, this is same as that given by c∗mm =
(
√
n− 1)−

√
2

(
√
n− 1)(n− 3)

=
1

(
√
n− 1)(

√
n− 1 +

√
2)

for n = 3. Also, c∗MSE =
1

n+ 1
=

1

4
.
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2.3.1 min max estimator as a fixed point

The min max estimator for a given sample size, n, can be obtained as the fixed point of
a function, f(c).

(i) For µ known case, the function f is

f(c) =
nc− 1√

2n
.

One can observe that, for a min max estimator, squared bias and variance values
are equal and obtain f from here.

B2
c = Vc

⇒ 2nc2 = (nc− 1)2

⇒ c =
nc− 1√

2n
.

(ii) For µ unknown case, the desired function can be similarly obtained as

f̃(c) =
(n− 1)c− 1√

2(n− 1)
.

2.3.2 Graphical Illustration

The min max estimator for σ2 is obtained by looking for the intersection point of the
curve with a line whose slope is +1 and passes through origin of the graph since this line
will have equal values for squared bias and variance.

Figure 3 shows the min max estimator for a few sample sizes when µ is known. Note
that, there may be more than one (ideally, two) intersection points of the curve with the
line. We pick the one that is closest to the origin, since it corresponds to the minimum
value amongst all the estimators with equal squared bias and variance values. Similarly,
we have plotted the mimmax estimator for σ2 when µ is unknown in the Figure 4.

3 Comparison of the estimators

Since we have more than one estimator for our parameter σ2, we would like to test their
performance on different grounds. For comparison of these estimators, we look at some
popular criteria such as Mean Squared Error (MSE). Although MSE is a good enough
criterion, it does not take into account the individual contributions of squared bias and
variance components. So we devise some other benchmarks for comparison such as ratio
of squared bias to the MSE of an estimator, which identifies relative contribution of
squared bias towards the MSE, and Pareto efficiency, which treats the comparison as a
multi-criteria optimization problem.

3.1 Comparison based on MSE

The first measure that we use to compare these estimators is the MSE of each estimator.
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(a) Sample size n = 2 (b) Sample size n = 11

(c) Sample size n = 12 (d) Sample size n = 13

Figure 3: Optimal MSE, classical and min max estimator of σ2 with known µ

3.1.1 Case: µ known

(i) Optimal MSE estimator
(
S
2

c∗MSE

)
MSE(S

2

c∗MSE
) = σ4[(n2 + 2n)c∗2MSE − 2nc∗MSE + 1]

= σ4

[
(n2 + 2n)

1

(n+ 2)2
− 2n

n+ 2
+ 1

]
=

2σ4

n+ 2
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(a) Sample size n = 2 (b) Sample size n = 3

(c) Sample size n = 8 (d) Sample size n = 12

Figure 4: Optimal MSE, classical and min max estimator of σ2 with unknown µ

(ii) min max estimator
(
S
2

c∗mm

)
MSE(S

2

c∗mm
) = σ4[(n2 + 2n)c∗2mm − 2nc∗mm + 1]

= σ4

[
(n2 + 2n)

1

n(
√
n+
√

2)2
− 2n
√
n(
√
n+
√

2)
+ 1

]
=

4σ4

(
√
n+
√

2)2
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(iii) Classical unbiased estimator (σ̂2)

MSE(σ̂2) = σ4[(n2 + 2n)
1

n2
− 2n

1

n
+ 1]

=
2σ4

n

Comparison Results:

(a) Clearly,
1

n+ 2
<

1

n
∀n = 1, 2, . . .

∴ MSE
(
S
2

c∗MSE

)
< MSE(σ̂2) for n = 2, 3, . . ..

(b) Consider, n+ 2 and
(
√
n+
√

2)2

2
, i.e., 2n+ 4 and n+ 2 + 2

√
2n.

Now, 2n+ 4 ≥ n+ 2 + 2
√

2n

⇒ n+ 2 ≥ 2
√

2n

which is true for n = 2, 3, . . .

∴ MSE
(
S
2

c∗MSE

)
≤ MSE(S

2

c∗mm
) for n = 2, 3, . . ..

(c) Next consider, n and
(
√
n+
√

2)2

2
, i.e., 2n and n+ 2 + 2

√
2n.

Now, 2n ≥ n+ 2 + 2
√

2n

⇒ n− 2 ≥ 2
√

2n (20)

which holds true only for n = 12, 13, . . .
For n ∈ {2, . . . , 11}, n− 2 < 2

√
2n. Thus,

MSE(S
2

c∗mm
) < MSE(σ̂2) ∀n ∈ {2, . . . , 11},

and MSE(S
2

c∗mm
) > MSE(σ̂2) ∀n = 12, 13, . . .

Note that the inequality holds strictly in this case, because there is no integral value
of n such that (20) holds with equality.

3.1.2 Case: µ unknown

(i) Optimal MSE estimator
(
S2
c∗MSE

)
MSE(S2

c∗MSE
) = σ4[(n2 − 1)c∗2MSE − 2(n− 1)c∗MSE + 1]

=
2σ4

n+ 1

(ii) min max estimator
(
S2
c∗mm

)
MSE(S2

c∗mm
) = [(n2 − 1)c∗2mm − 2(n− 1)c∗mm + 1]

=
4σ4

(
√
n− 1 +

√
2)2

=
4σ4

n+ 1 + 2
√

2(n− 1)
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(iii) Classical unbiased estimator (S2)

MSE(S2) = Var(S2) (∵ S2 is unbiased)

=
2(n− 1)σ4

(n− 1)2

=
2σ4

n− 1

(iv) Classical biased estimator (s2)

MSE(s2) = σ4[(n2 − 1)
1

n2
− 2(n− 1)

1

n
+ 1]

=
(2n− 1)σ4

n2

Comparison Results:

(a) Clearly,
1

n+ 1
<

1

n− 1
∀n = 2, 3, . . .

∴ MSE
(
S2
c∗MSE

)
< MSE(S2) for n = 2, 3, . . ..

(b)
1

n2
<

1

(n− 1)2
∀n = 2, 3, . . .

∴ MSE (s2) < MSE(S2) for n = 2, 3, . . ..

(c) n− 1 > 0 ∀n = 2, 3, . . .

⇒ 2n2 + n− 1 > 2n2

⇒ (2n− 1)(n+ 1) > 2n2

⇒ (2n− 1)

n2
>

2

n+ 1

⇒ MSE(s2) > MSE
(
S2
c∗MSE

)
Thus, MSE(S2) > MSE(s2) > MSE

(
S2
c∗MSE

)
for n = 2, 3, . . ..

(d) To compare MSE
(
S2
c∗mm

)
and MSE

(
S2
c∗MSE

)
, lets assume

MSE
(
S2
c∗mm

)
≤ MSE

(
S2
c∗MSE

)
⇒ 4σ4

n+ 1 + 2
√

2(n− 1)
≤ 2σ4

n+ 1

⇒ 2

n+ 1 + 2
√

2(n− 1)
≤ 1

n+ 1

⇒ n+ 1 ≤ 2
√

2(n− 1)

⇒ (n+ 1)2 ≤ 8(n− 1) (∵ n+ 1 > 0, 2
√

2(n− 1) > 0, hence squaring preserves the inequality)

⇒ n2 − 6n+ 9 ≤ 0

⇒ (n− 3)2 ≤ 0
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which is contradictory for all n = 2, . . . except for n = 3 where equality holds.

∴ MSE
(
S2
c∗mm

)
≥ MSE

(
S2
c∗MSE

)
for n = 2, 3, . . ..

(e) For comparing MSE
(
S2
c∗mm

)
and MSE (s2), lets assume

MSE
(
S2
c∗mm

)
≥ MSE

(
s2
)

⇒ 4σ4

n+ 1 + 2
√

2(n− 1)
≥ (2n− 1)σ4

n2

⇒ 4n2 ≥ (2n− 1)(n+ 1 + 2
√

2(n− 1))

⇒ 2n2 − 4n
√

2(n− 1)− n+ 2
√

2(n− 1) + 1 ≥ 0

By explicit computation, the above is true for n ∈ {7, 8, . . .},
while for n ∈ {2, . . . , 6}, 2n2 − 4n

√
2(n− 1)− n+ 2

√
2(n− 1) + 1 ≤ 0

Thus, MSE(S2
c∗mm

) < MSE(s2) ∀n ∈ {2, . . . , 6},
and MSE(S2

c∗mm
) > MSE(s2) ∀n = 7, 8, . . .

(f) Now comparing MSE(S2
c∗mm

) and MSE(S2), we assume

MSE(S2
c∗mm

) < MSE(S2)

⇒ 4σ4

n+ 1 + 2
√

2(n− 1)
<

2σ4

n− 1

⇒ 2

n+ 1 + 2
√

2(n− 1)
<

1

n− 1

⇒ 2(n− 1) < n+ 1 + 2
√

2(n− 1)

⇒ n− 3 < 2
√

2(n− 1) (21)

which holds true only for n ∈ {2, . . . , 12}. The inequality reverses for n = 13, 14, . . .

Thus, MSE(S2
c∗mm

) < MSE(S2) ∀n ∈ {2, . . . , 12},
and MSE(S2

c∗mm
) > MSE(S2) ∀n = 13, 14, . . .

Note that the inequality holds strictly in this case, because there is no integral value
of n such that (21) holds with equality.

3.2 Ratio of squared bias to MSE

While MSE is a good way of simultaneously capturing both accuracy and precision of an
estimator, it can not capture the relative contributions of square of bias and variance.
One simple way to capture this is to consider the percentage of square of bias in MSE.
So, for an estimator T , we consider a quantity fc, the ratio of square of the bias of the
estimator T to its MSE, defined as:

fc(S
2
c ) =

B2
c

MSE(S2
c )

(22)

In general, fc : (0,∞)→ [0, 1]. For the above class of estimators that we are considering,
we have fc : (0,∞) → [0, 1) (we do not consider c = 0, as such an estimator gives
inadmissable estimate of zero for the variance σ2).
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3.2.1 Case: µ known

For a sample of size n, fc(.) for a general estimator is

fc(S
2

c) =
(nc− 1)2

(nc− 1)2 + 2nc2
(23)

The ratios for the estimators of interest are listed below:

(i) fc(S
2

c∗mm
) = 0.5

(ii) fc(S
2

c∗MSE
) =

(
−2

n+ 2

)2

÷ 2

(n+ 2)
=

2

n+ 2

(iii) fc(σ
2) = 0

3.2.2 Case: µ unknown

For a sample of size n, fc(.) for a general estimator is

fc(S
2
c ) =

((n− 1)c− 1)2

((n− 1)c− 1)2 + 2(n− 1)c2
(24)

The ratios for the estimators of interest are listed below:

(i) fc(S
2
c∗mm

) = 0.5

(ii) fc(S
2
c∗MSE

) =

(
−2

n+ 1

)2

÷ 2

(n+ 1)
=

2

n+ 1

(iii) fc(s
2) =

(
−1

n

)2

÷ 2n− 1

n2
=

1

2n− 1

(iv) fc(S
2) = 0

Estimators with fc close to 0 or 1 have either square of the bias or variance dominating
the other. Notice that the ratio fc is constant for minmax estimator and UMVUE. But
for the optimal MSE estimator (and the classical estimator in the µ unknown case), the
ratio is a decreasing function of sample size n and is bounded on both sides by the ratios
for minmax and UMVUE.

3.3 Pareto efficient estimators

We now treat the squared bias-variance aspects of the linear estimators as a multi-criteria
problem and plot the Pareto frontier in squared bias and variance space. We first show
below that all the estimators that we have considered in the previous sections, are Pareto
optimal. Then we identify the Pareto frontier.
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3.3.1 Pareto optimality of the above estimators

We show below that the UMVUE, optimal MSE and minmax estimators are Pareto
optimal on the squared bias versus variance frontier.

minmax estimator: For a given sample size, n, consider the minmax estimator with
squared bias, B2

c∗mm
and variance, Vc∗mm

; where B2
c∗mm

= Vc∗mm
. Any estimator with

(squared bias, variance) = (a, a), a < B2
c∗mm

cannot lie on the curve of squared
bias versus variance, by definition and uniqueness of minmax estimator. Therefore,
consider an estimator with (B2

c , Vc). Let B2
c < B2

c∗mm
, then Vc has to be greater

than Vc∗mm
, otherwise it contradicts the fact that (B2

c∗mm
, Vc∗mm

) is minmax estimator.
Similarly, if Vc < Vc∗mm

, then B2
c will have to be more than B2

c∗mm
to preserve the

definition of (B2
c∗mm

, Vc∗mm
). Thus, one cannot reduce both squared bias and variance

of the minmax estimator, by considering any other estimator in the considered class,
parametrized by the coefficient, c. Therefore, minmax estimator is a Pareto point.

Optimal MSE estimator: When n is fixed, there cannot be an estimator with (B2
c , Vc)

such that (B2
c + Vc) < (B2

c∗MSE
+ Vc∗MSE

) since (B2
c∗MSE

, Vc∗MSE
) denotes the optimal

MSE estimator. As the optimal MSE estimator is unique, consider an estimator
(B2

c , Vc) with (B2
c + Vc) > (B2

c∗MSE
+ Vc∗MSE

). Suppose B2
c < B2

c∗MSE
. This implies that

Vc > Vc∗MSE
. On the other hand, if for this estimator, Vc < Vc∗MSE

, then B2
c > B2

c∗MSE

to preserve the optimality of (B2
c∗MSE

, Vc∗MSE
). Hence, the optimal MSE estimator is

also a Pareto point.

Uniformly Minimum Variance Unbiased Estimator (UMVUE): UMVUE is char-
acterized by (0, Vc∗UMVUE

), since by definition its bias has to be zero. Since UMVUE
is unique, we cannot have an estimator (B2

c , Vc) with B2
c = 0 and Vc < Vc∗UMVUE

for
a given n. However if we insist on reduced variance, i.e., Vc < Vc∗UMVUE

, then B2
c

for this estimator has to be positive, by definition of UMVUE. Thus, UMVUE is
another Pareto point on the squared bias versus variance curve for a fixed n.

3.3.2 Pareto frontier

For a given sample size, n, all the estimators with coefficient c lying on the lower arm
of the squared bias versus variance plot are Pareto estimators (refer to Figure 3 and 4).
This can be argued as follows:

Consider the µ known case. Let the sample size, n, be fixed. Then the bias and variance
of an estimator for σ2 with coefficient c are,

Bc = nc− 1 (25)

Vc = 2nc2 (26)

From the above two equations, bias and variance of an estimator can be related as:

Vc = 2n

(
Bc + 1

n

)2

⇒ Vc =
2

n
B2

c +
4

n
Bc +

2

n
(27)
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Comparing the above equation with the general form of a conic section

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

we see that it satisfies the following restriction:

B2 − 4AC = 0.

Hence the equation (27) represents a parabola with Bc and Vc as the variables.

Note that, B2
c itself is a parabola in variable c, with vertex at c = 1

n
. Hence, B2

c decreases
as c varies over (0, 1

n
] and increases over ( 1

n
,∞). On the other hand, Vc, which is also a

parabola in c with vertex at c = 0, increases monotonically over (0,∞). Therefore, on the
interval (0, 1

n
], the values of B2

c and Vc cannot be increased simultaneously. Thus, this
arm of the parabola represents the class of Pareto optimal estimators for σ2.

Similarly for the µ unknown case, when the sample size n is fixed, the bias and variance
of an estimator with coefficient c are:

Bc = (n− 1)c− 1

Vc = 2(n− 1)c2

As in the µ known case, it can be established in the µ unknown case also that Bc and
Vc for the estimators trace a parabola. Also, B2

c is a parabola in variable c, with vertex
at c = 1

n−1 as well as Vc is a parabola in c with vertex at c = 0. Thus, B2
c decreases

monotonically on c ∈ (0, 1
n−1 ], whereas Vc is ever increasing on this interval. Hence, the

estimators with coefficients c ∈ (0, 1
n−1 ] are Pareto optimal since we cannot simultane-

ously improve their squared bias and variance.

In fact, it can be seen from Figures 3 and 4 that the optimal MSE estimator, minmax
estimator, UMVUE and MLE – all lie on this Pareto frontier, since their coefficients
belong to the specified interval that captures the Pareto optimal estimators. The c∗MSE, S

2

and s2 estimators are sandwiched between minmax estimator and UMVUE estimators
in the variance vs squared bias plot. Another observation is that the c∗MSE, S

2 (and s2,
when mean of the data is also to be estimated) cluster near the UMVUE estimator in
the variance vs squared-bias plot showing that the variance is a predominant component
in the MSE of these estimators. This is also brought out in the fc measure of these
estimators.

4 Comparison of MSE and fc values of different es-

timators as functions of n

We have summarized in Table 1 the values of squared bias, variance, MSE and fc for
different estimators under both the cases in Table 1. It can be easily observed that the
MSE values of the considered estimators are O( 1

n
) since the bias can be 0 or O( 1

n2 ) and
the variance is O( 1

n
).

18



Considering the µ known case, from the Figure 3, we see that for a fixed sample size,
n, optimal MSE estimator has the lowest MSE value in the graphs; while among the
remaining two estimators, min max estimator performs better for small sample sizes
(n ∈ {2, . . . , 11}), whereas σ̂2 performs better for n ∈ {12, 13, . . .} in terms of MSE
values. Parallel results can be observed in Figure 4 for the case of unknown µ.

Figure 5 plots the squared bias, variance and MSE values for the considered estimators
of σ2 for a range of sample sizes under both the cases: µ known and µ unknown. Figure
6 compares the ratio of the squared bias to the MSE value of the mentioned estimators
for a range of sample sizes under both the cases: µ known and µ unknown.

(a) when µ is known (b) when µ is unknown

Figure 5: Comparison of MSE values for the estimators of σ2

(a) when µ is known (b) when µ is unknown

Figure 6: Comparison of ratios fc for the estimators of σ2
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5 Discussion

In both the cases (µ known and µ unknown), the distribution of the estimators was
known[Casella and Berger, 2002] to be chi-squared distribution (with n and n − 1 de-
grees of freedom for µ known and µ unknown cases, respectively) and hence computation
of bias, variacne and MSE was easy. We proposed a minmax estimator by using min max
criterion over squared bias and variance of the estimator. We saw that, though the op-
timal MSE estimator always had the minimum MSE value for a given sample size; the
min max estimator performed better than the classical estimator(s) on the MSE value for
small sample sizes. That all these estimators are Pareto optimal shows that the improve-
ment in one of the two competing risks, the variance and squared bias, comes only at the
cost of increase of the other risk in these estimators.

Our first conclusion is that as sample size increases, i.e., in the context of ‘Big Data’,
these estimators are nearly same when MSE as a measure of quality of an estimator.
When the measure of quality of an estimator is the fraction of squared bias in MSE of
an estimator, it is not more than half (for minmax estimator) and zero for UMVUE esti-
mators. Our finding that all these estimators are Pareto optimal in the space of squared
bias and variance of estimators complies with the above conclusion by pointing out that
for these estimators an attempt to decrease the squared bias (variance) leads to increase
in variance (squared bias).

Note that our observations and analysis were restricted to above class of estimators. As a
part of further investigation, one aspect could be to identify a ‘better’ class of estimators.
Another aspect is to consider non-normal data. Similar ideas could be used for estimating
the parameters of a linear regression model.

Appendix

We elaborate on some of the points we mentioned in the beginning of the chapter about
the sample size, n and the range of the coefficient, c.

1. All the estimators from the class that we have defined, will take value zero if we
have n = 0 or 1. Therefore, the sample should have at least two data points, i.e.,
n ≥ 2.

2. One can look for the ‘best’ estimator for µ in the class of estimators denoted by

Td = d
n∑

i=1

Xi, d ≥ 0.

But the search for an optimal estimator in this class leads to an unrealizable es-
timator since the coefficient, c∗MSE, of this estimator itself depends on µ and σ2

values. So, the classical unbiased estimator, X, for µ is used to define the class of
estimators for σ2 when µ is unknown.

3. It should be noted that our class of estimators,

S2
c = c

n∑
i=1

(Xi −X)2,
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consists of estimators with coefficients, c > 0. The case c = 0 can be safely ignored,
since our optimal estimators for different risk criteria can be obtained from the open
interval c ∈ (0,∞), as shown below.
When c = 0, the estimator (S2

0) becomes a constant estimator taking value zero,
under both the cases: µ known and µ unknown. The bias, variance and MSE values
(in σ4 units) for such an estimator are:

B0 = −1 and V0 = 0,

⇒ MSE(S2
0) = B2

0 + V0 = 1 (28)

and max{B2
0 , V0} = max{1, 0} = 1. (29)

We will now show that in both the cases when µ known or unknown, we have at
least one ‘better’ estimator.

• Case: µ known For a general estimator, S
2

c , using (8) and (9), we have:

⇒ MSE(S
2

c) = (nc− 1)2 + 2nc2

and max{B2
c , Vc} = max{(nc− 1)2, 2nc2}.

Given n, consider c = 1
2n

. Then

MSE(S
2

c) =

(
1

4
+

1

2n

)
≤ 1

2
∀n ≥ 2 (30)

and max{B2
c , Vc} = max

{
1

4
,

1

2n

}
≤ 1

4
∀n ≥ 2. (31)

Comparing (28) with (30) and (29) with (31), we can see that the estimator
with c = 1

2n
is better than that with c = 0 on MSE value and minmax criterion.

• Case: µ unknown As in the above case, for c = 1
2(n−1) , using (10) and (11)

MSE(S2
c ) =

(
1

4
+

1

2(n− 1)

)
≤ 3

4
∀n ≥ 2 (32)

and max{B2
c , Vc} = max

{
1

4
,

1

2(n− 1)

}
≤ 1

2
∀n ≥ 2. (33)

Comparing (28) with (32) and (29) with (33), we can see that the estimator
with c = 1

2(n−1) is better than that with c = 0.

Note that all the above computations and comparisons are in σ4 units.
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