

Decentralized supply chain formation using an incentive compatible mechanism

N. Hemachandra

IE&OR, IIT Bombay

Joint work with Prof Y Narahari and Nikesh Srivastava

Symposium on "Optimization in Supply Chains"

IIT Bombay, Oct 27, 2007

Decentralized supply chain

Outline

An example

Mean-Variance allocation based supply chain formation

A mechanism design framework

Dominant Strategy Incentive Compatible solution (DSIC) Bayesian Incentive Compatible solution (BIC)

A numerical example

A two echelon supply chain

Decentralized supply chain

N. Hemachandra (IE&OR, IIT Bombay)

An example	Mean-Variance allocation	A mechanism design framework OO O	A numerical example

An example

- Procurement manager chooses a vendor. Similarly, logistics manager.
- Vendors give quotes as:

Service Provider	μ (days)	σ (days)	Cost
Provider 1	3	0.5	2500
Provider 2	3	0.75	1500
Provider 3	3	1.0	1250
Provider 4	4	1.0	1000
Provider 5	4	1.25	750
Provider 6	5	1.50	500

Table: Delivery quality and costs offered by six logistics providers to the distribution manager

An example	Mean-Variance allocation	A mechanism design framework OO O	A numerical example

- Procurement and distribution managers give cost curves to supply chain manager
- Supply chain manager seeks a cost-optimal combination that meets QoS levels
- Echelon managers seek to maximize profits of their units (perhaps, independent)
- Quoted cost curves need not be actual ones
- Can have a strategic play, inducing a game

An example	Mean-Variance allocation	A mechanism design framework OO O	A numerical example

- Supply chain manager (Central Design Authority) lacks actual information that echelon managers have
- Aim: Cost-optimal chain formation with incomplete (decentralized) information that should satisfy specified QoS levels
- We stick to a single echelon framework
- A two-step procedure:
 - 1. Design an incentive compatible protocol (mechanism) to elicit true costs
 - 2. Solve an appropriate constrained optimization problem with these values

An example	Mean-Variance allocation	A mechanism design framework	A numerical example
		00 0	

Mean variance allocation problem

- Let *n*-echelons in a linear network have delivery times X_i, Independent normal rvs; means μ_i and standard deviation σ_i
- ► End-to-end delivery time, Y is normal with mean $\mu = \sum_{i=1}^{n} \mu_i$ and standard deviation $\sigma = \sum_{i=1}^{n} \sigma_i$
- Suppose τ is target date and T is tolerance allowed; CDA aims for a delivery within τ ± T days
- ▶ Supply chain process capability indices, *C_p* and *C_{pk}* are:

$$C_{p} = \frac{U-L}{6\sigma} = \frac{T}{3\sigma}$$

$$C_{pk} = \frac{\min(U-\mu,\mu-L)}{3\sigma}$$

CDA knows these:

- 1. The delivery window $(\tau T, \tau + T)$
- 2. Lower bounds of C_p and C_{pk} as $C_p \ge p$ and $C_{pk} \ge q$.
- 3. Lower bounds $\underline{\mu_i}$ and $\underline{\sigma_i}$ on the mean μ_i and standard deviation σ_i , respectively, of stage *i* (*i* = 1, ..., *n*). Similarly, upper bounds $\overline{\mu_i}$ and $\overline{\sigma_i}$.
- Delivery cost function b_i(μ_i, σ_i) per unit order submitted by the manager of echelon *i*.

Mean variance problem is

minimize $\sum_{i=1}^{n} b_i(\mu_i, \sigma_i)$ $C_p \ge p$ $C_{pk} \ge q$ $\tau = T \le \sum_{i=1}^{n} \mu_i \le \tau + T$

$$\tau - T \leq \sum_{1} \mu_{i} \leq \tau + T$$
$$\mu_{i} \leq \mu_{i} \leq \overline{\mu_{i}}; \quad \underline{\sigma_{i}} \leq \sigma_{i} \leq \overline{\sigma_{i}}; \quad i \in N$$

N. Hemachandra (IE&OR, IIT Bombay)

• • • • • • • • • • • •

Decentralized supply chain

subject to:

Informal example

- In an (English) auction the winner just needs to bid incrementally more than the second highest bidder
- However, auctioneer can not know winner's willingness to pay (true valuation)
- Suppose auctioneer conducts sealed bid second price auction (Vickery auctions)
- Here, winner gets the item at the bid-price of second highest bidder
- Under some more conditions winner will now give true valuation
- Can be interpreted as a Mechanism where the auctioneer is paying an incentive to winner, the difference between highest bid and second highest bid

Mechanism Design

Assumption: cost curves for *ith* echelon are:

$$c_i(\mu_i,\sigma_i) = a_{i0} + a_{i1}\mu_i + a_{i2}\sigma_i + a_{i3}\mu_i\sigma_i + a_{i4}\sigma_i^2$$

- Private information of *ith* manager is 5-tuple of coefficients (*a_{i0}*, *a_{i1}*, *a_{i2}*, *a_{i3}*, *a_{i4}*).
- Echelon managers report $b_1(.), \ldots, b_n(.)$ as

$$b_i(\mu_i,\sigma_i) = \hat{a}_{i0} + \hat{a}_{i1}\mu_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i3}\mu_i\sigma_i + \hat{a}_{i4}\sigma_i^2; \quad i = 1,\ldots,n$$

An example		Mean-Variance allocation	A mechanism design framework OO O	A numerical example
► / a ► (a	A Me agair CDA agen	chanism Design model g nst incentives. is viewed as a social plar ts.	ives true values of these conner and echelon manager	osts s as
Notat	tion =	$\{0, 1, \dots, n\}$, the set of players 0 corresponds to the CDA while 1	, , <i>n</i> correspond to the echelon ma	nagers
θ_i	=	$(a_{i0}, a_{i1}, a_{i2}, a_{i3}, a_{i4})$ is the private	e information (type) of player i	
$\hat{ heta}_i$	=	$(\hat{a}_{i0},\hat{a}_{i1},\hat{a}_{i2},\hat{a}_{i3},\hat{a}_{i4})$ is the report	ed type of player <i>i</i>	
Ci	=	True cost function (actual type) of $c_i(\mu_i, \sigma_i) = a_{i0} + a_{i1}\mu_i + a_{i2}\sigma_i + a_{i1}\mu_i + a_{i2}\sigma_i + a_{i2}\sigma_i + a_{i1}\sigma_i + a_{i2}\sigma_i + a_{i1}\sigma_i + a_{i2}\sigma_i + a_{i1}\sigma_i + a_{i2}\sigma_i + a_{$	player <i>i</i> ; $a_{i3}\mu_i\sigma_i + a_{i4}\sigma_i^2$	
b _i	=	Reported cost function (reported the $b_i(\mu_i, \sigma_i) = \hat{a}_{i0} + \hat{a}_{i1}\mu_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i1}\mu_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i1}\mu_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i2}\sigma_i + \hat{a}_{i1}\mu_i + \hat{a}_{i2}\sigma_i +$	ype) of player $i;$ $\hat{a}_{i3}\mu_i\sigma_i+\hat{a}_{i4}\sigma_i^2$	
Θ_i	=	Set of all possible types of player	i	
Θ	=	$\Theta_0 \times \Theta_1 \times \Theta_2 \times \ldots \times \Theta_n; \ \theta =$	$(heta_0, heta_1,\ldots, heta_n)\in\Theta$	
Θ_{-i}	=	$\Theta_0 imes \ldots imes \Theta_{i-1} imes \Theta_{i+1} imes \ldots imes$	$\langle \Theta_n; \theta_{-i} = (\theta_0, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots, \theta_{i-1}, \theta_{i+1}, \ldots)$	$\theta_n) \in \Theta_{-i}$

Decentralized supply chain

N. Hemachandra (IE&OR, IIT Bombay)

Assumptions

- 1. $\Theta_0 = \{\theta_0\}$; that is type set of CDA is a singleton. Needed for Dominant strategy incentive compatible mechanism but not for weaker Bayesian incentive compatible mechanism.
- **2**. $\mu_i \in [\mu_i, \overline{\mu}_i], i = 0, 1, \cdots, n$
- **3**. $\sigma_i \in [\underline{\sigma_i}, \overline{\sigma_i}]$
- 4. Actual costs are

$$\mathbf{c}_{i}(\mu_{i},\sigma_{i}) = \mathbf{a}_{i0} + \mathbf{a}_{i1}\mu_{i} + \mathbf{a}_{i2}\sigma_{i} + \mathbf{a}_{i3}\mu_{i}\sigma_{i} + \mathbf{a}_{i4}\sigma_{i}^{2} \quad \forall \mu_{i} \in [\underline{\mu_{i}}, \overline{\mu}_{i}] \quad \forall \sigma_{i} \in [\underline{\sigma_{i}}, \overline{\sigma_{i}}]$$

5. Coefficients *a*_{*i*0}, *a*_{*i*1}, *a*_{*i*2}, *a*_{*i*3}, and *a*_{*i*4} come from some given intervals:

$$a_{ij} \in \left[\underline{a}_{ij}, \overline{a}_{ij}\right]$$
 for $j = 0, 1, 2, 3, 4$.

6. These give type sets: Θ_i as

$$[\underline{a}_{i0}, \overline{a}_{i0}] \times [\underline{a}_{i1}, \overline{a}_{i1}] \times [\underline{a}_{i2}, \overline{a}_{i2}] \times [\underline{a}_{i3}, \overline{a}_{i3}] \times [\underline{a}_{i4}, \overline{a}_{i4}]$$

 Θ is a compact set in \mathbb{R}^5 .

- Outcome set X:
 - Vector $\mathbf{x} = (\mathbf{k}, \mathbf{I}_0, \mathbf{I}_1, \cdots, \mathbf{I}_n)$ where
 - ► $k = (\mu_0, \sigma_0, \mu_1, \sigma_1, \cdots, \mu_n, \sigma_n)$ is called allocation (project choice) vector and
 - ▶ I_0, I_1, \dots, I_n are money transfers (payments) to CDA, manager 1,
- μ_i and σ_i are the assigned mean and standard deviation to the echelon *i*. Also,

$$\mu_0 = \mu_1 + \ldots + \mu_n$$

$$\sigma_0^2 = \sigma_1^2 + \ldots + \sigma_n^2$$

For i = 1, ..., n, I_i is the total budget sanctioned by the CDA for the manager of echelon *i*.

 I_0 is the total budget available with the CDA.

The set of feasible outcomes is

$$X = \left\{ (\mu_i, \sigma_i, I_i)_{i=0,1,\dots,n} | \mu_i \in [\underline{\mu_i}, \overline{\mu_i}] \quad \sigma_i \in [\underline{\sigma_i}, \overline{\sigma_i}], I_i \in \mathbb{R} \right\}$$

The set of project allocations $\{k\}$ s is *K* (and is compact).

Valuations:

Let the value of allocation k for player i be $v_i(k, \theta_i)$ when the type set is θ_i . Define,

$$\begin{aligned} \mathbf{v}_i(\mu_0,\sigma_0,\mu_1,\sigma_1,\ldots,\mu_n,\sigma_n;\theta_i) &= -\mathbf{c}_i(\mu_i,\sigma_i) \\ &= -(\mathbf{a}_{i0} + \mathbf{a}_{i1}\mu_i + \mathbf{a}_{i2}\sigma_i + \mathbf{a}_{i3}\mu_i\sigma_i + \mathbf{a}_{i4}\sigma_i^2) \end{aligned}$$

Players' Utility: The *ith* player's utility u_i(·) : X × Θ_i to ℝ is taken as

$$u_i(k, I_0, I_1, \ldots, I_n; \theta_i) = v_i(k, \theta_i) + I_i + E_i$$

where E_i is an initial endowment with player *i* (i = 0, 1, ..., n) and could be taken as zeroes.

This gives the quasi-linear mechanism design framework.

Social Choice function f(·) : Θ to ℝ: We take this as

$$f(\theta) = (\mu_i(\theta), \sigma_i(\theta), I_i(\theta))_{i=0,1,...,n}, \ \forall \ \theta \in \Theta$$

Ex-post Efficiency

A SCF f(·) is called ex-post efficient if∀θ ∈ Θ, the outcome f(θ) is such that there does not exist any x ∈ X such that

 $u_i(\mathbf{x}, \theta_i) \geq u_i(f(\theta), \theta_i) \quad \forall i \in N$

 $u_i(\mathbf{x}, \theta_i) > u_i(f(\theta), \theta_i)$ for some $i \in N$

- In an ex-post efficient supply chain formation, payoffs are such Pareto optimal—utility of a player is improved at the expense of at least one other players' utility.
- Fact: In a quasi-linear environment, ex-post efficiency is equivalent to simultaneously having Allocative efficiency (AE) and Budget balance (BB).

Allocative efficiency (AE)

A SCF f(.) = (k(.), l₀(.), l₁(.), ..., l_n(.)) is AE over all the echelon managers if ∀θ ∈ Θ, k(.) satisfies

 $\sum_{i=1}^{n} v_i(k(\theta), \theta_i) \ge \sum_{i=1}^{n} v_i(k, \theta_i) \ \forall k \in K$

- ► Each allocation k ∈ K maximizes the total valuations of echelon managers.
- Since, valuation of CDA is sum of valuations of managers, we then have

 $\sum_{i=0}^{n} v_i(k(\theta), \theta_i) \ge \sum_{i=0}^{n} v_i(k, \theta_i) \ \forall k \in K$

Now, SCF is AE over all players in the game.

Such an allocation can be obtained by solution of MVA problem:

 $f(\theta) = (\mu_i^*(\theta), \sigma_i^*(\theta), I_i(\theta))_{i=0,1,\dots,n}, \ \forall \ \theta \in \Theta$

where $(\mu_i^*(\theta), \sigma_i^*(\theta))_{i=0,1,...,n}$ is the solution of the earlier MVA problem.

Budget Balance (BB)

A SCF f(.) = (k(.), I₀(.), I₁(.), ..., Iₙ(.)) is said to be budget balanced if ∀θ ∈ Θ, we have

$$\sum_{i=0}^n I_i(\theta) = 0$$

 Supply chain is then formed with no deficit or surplus by distributing budget among all players.

Aim: A formation that is AE, BB that also induces truth revelation from echelon managers.

Dominant Strategy Incentive Compatible solution (DSIC)

Dominant Strategy Incentive Compatible Mechanism (DSIC)

- (μ_i^{*}(θ), σ_i^{*}(θ))_{i=0,1,...,n} make SCF f(θ) is allocatively efficient We choose budgets (I_i(θ))_{i=0,1,...,n} so that it is also possible to have the SCF f(.) dominant strategy incentive compatible *i.e.* echelon managers will report true values.
- Fact Groves mechanism are both AE and DSIC.

$$l_i(\theta) = \alpha_i(\theta_{-i}) - \sum_{j \neq i} b_j(\mu_i^*(\theta), \sigma_i^*(\theta)) \ \forall \ \theta \in \Theta$$

where $(\mu_0^*(\theta), \ldots, \mu_n^*(\theta), \sigma_0^*(\theta), \ldots, \sigma_n^*(\theta))$ is the optimal solution of the MVA problem.

For i = 0, 1, 2, ..., n, $\alpha_i(\theta_{-i})$ is any arbitrary function from Θ_{-i} to \mathbb{R} .

- Fact AE, BB and DSIC may not be simultaneously possible if cost functions are sufficiently rich.
- Fact Above is possible if one agent's type set is singleton.
- Choose α_i 's so that $\sum_{i=0}^{n} I_i(\theta) = 0 \quad \forall \ \theta \in \Theta$. Take,

$$\alpha_j(\theta_{-j}) = \begin{cases} \alpha_j(\theta_{-j}) &: j \neq i \\ -\sum_{r \neq i} \alpha_r(\theta_{-r}) - (n) \sum_{r=0}^n v_r(k^*(\theta), \theta_r) &: j = i \end{cases}$$

- To summarize:
 - Cost-optimal solution that also meets QoS requirements (via AE)
 - Has Budget balance (BB)
 - Induces truth revelation by echelon managers (DSIC)
- Ensures that each manager's action is optimal irrespective of what others do
- Payments tend to be high

Bayesian Incentive Compatible solution (BIC)

- Assume that type sets are statistically independent.
- The dAGVA theorem (d'Aspremont and Gérard-Varet and Arrow) suggests the payments to be

$$I_{i}(\theta_{i},\theta_{-i}) = \beta_{i}(\theta_{-i}) + E_{\tilde{\theta}_{-i}}[\sum_{j\neq i} v_{j}(k^{*}(\theta_{i},\tilde{\theta}_{-i}),\tilde{\theta}_{j})]$$

where $\beta_i : \Theta_{-i} \to \mathbb{R}$ is any arbitrary function.

- Can now choose to ensure Budget balance (BB).
- The type set of CDA need not be singleton
- Numerical examples show that BIC payments are lower than those of DSIC.

An example	Mean-Variance allocation	A mechanism design framework	A numerical example
		00	

(Data is skipped)

Echelon i	Payments for	Payments for	Echelon i	Payments for	Payments for
	SCF-DSIC	SCF-BIC		SCF-DSIC	SCF-BIC
1	207.00	80.00	1	207.00	159.50
2	219.80	83.00	2	219.80	166.00
3	160.80	68.30	3	160.80	136.50

Table: Each agent believes that other agents equally like to be truthful or untruthful Table: Each agent believes that each other agent is completely truthful

References

M.D. Whinston A. Mas-Colell and J.R. Green. *Microeconomic Theory*. Oxford University Press, New York, 1995.

- D. Garg and Y. Narahari. Foundations of mechanism design. Technical report, Department of Computer Science and Automation, Indian Institute of Science, November 2006.
- Y. Narahari, N. Hemachandra and N. K. Srivastava. Incentive compatible mechanisms for decentralized supply chain formation. (Under revision).

