Pricing shared resources with QoS guarantees in some logistics models

Sudhir Kumar Sinha

Research Scholar IE&OR, IIT Bombay

Symposium on "Optimization in Supply Chains" IIT Bombay, Oct 27, 2007

< ロ > < 同 > < 回 > < 回 >

Pricing shared resources

Outline

Introduction (Operational Setting)

Optimization Problem

Solution Algorithm and Results

Pricing shared resources

Introduction

- A resource serving its existing customers (Primary customers) under certain service level agreement
- Service level is measured in terms of expected waiting time in the queue
- Agreement results in a steady arrival rate of primary customers
- But, the resource is under-utilized
- Resource owner would like to share the resource to interested new customers (Secondary Customers)

Example: Inland rail container movement in India

- In the recent past, managed by Container Corporation of India Ltd (Concor)
- Now, opened to other private/public sector players
- Interested companies have to
 - arrange rail-linked inland container depot (ICD)
 - procure flat wagons
- Building ICD require high infrastructural set up cost
 - Alternative is to share ICD resources with Concor
- Primary customer: Concor, Secondary customers: New firms

Admission control of secondary customer

Shared resource resembles a server serving a multi-class queue with heterogeneous service level expectation

Inclusion of secondary customer

- Increases traffic intensity
- Increases resource utilization
- Adversely affects effective service level offered to the primary customer

Ô

Need to control the secondary customer inflow!

Control mechanisms

- Assumption: Secondary customer demand depends on price charged and assured service level
- Control mechanisms
 - Pricing policy (Combination of price charged and service level offered)
 - Queue control parameter (Queue discipline) e.g. FCFS, static priority, dynamic priority

Issues

- 1. What should be the suitable pricing policy (a combination of price charged and service level offered) for the secondary customers?
- 2. What would be the optimal priority queue management policy?

< D > < P > < D > <</pre>

Delay dependent priority queue [Kleinrock:1964]

- Each class is assigned with a parameter b_p. A high priority class gets high b_p.
- Priority (instantaneous) increases with delay in queue.
 Specifically, priority at time *t* of a class *p* job that arrived at time *T_p*

$$q_p(t) = (t - T_p)b_p$$

- When server is free, it selects the job with highest instantaneous priority
- Tie is broken by FCFS rule

Key features (M/G/1 head-on-line delay dependent queue)

Expected waiting time for a class p job

$$W_{p} = \frac{\frac{W_{0}}{1-\rho} - \sum_{i=1}^{p-1} \rho_{i} W_{i} \left(1 - \frac{b_{i}}{b_{p}}\right)}{1 - \sum_{i=p+1}^{P} \rho_{i} \left(1 - \frac{b_{p}}{b_{i}}\right)}, \qquad p \in \{1, 2, \dots, P\}$$

where $\rho_i = \frac{\lambda_i}{\mu_i}$, $\rho = \sum_{\rho=1}^{P} \rho_i$, $W_0 = \sum_{\rho=1}^{P} \frac{\lambda_\rho}{2} \left(\sigma_{\rho}^2 + \frac{1}{\mu_{\rho}^2} \right)$ and $0 \le \rho < 1$

- Queue control parameter $\{b_p\}$ appears as ratios (b_p/b_{p+1})
- Waiting time is ordered. If $0 \le b_1 \le b_2 \le \ldots \le b_P$ then $W_1 \ge W_2 \ge \ldots \ge W_P$
- Queue control parameter $\{b_p\}$ can be adjusted to meet different performance requirements W_p/W_{p+1} for p = 1, 2, ..., P 1
- An appropriate choice of parameters replicate FCFS and static priority disciplines

Notation Input parameters

- λ_p : Mean arrival rate of primary customer's jobs
- S_p: Assured service level to primary customers
- $1/\mu$: Mean service time (irrespective of customer class)
- > σ^2 : Variance of service time (irrespective of customer class)

Decision variables

- θ: Price charged to secondary customer
- ► S_s: Assured service level to secondary customers
- λ_s : Mean arrival rate of secondary customer's jobs
- $\beta = b_s/b_p$: relative priority of the customers

Key points

• Effect of β on queue discipline

- $\beta = 0$: Static high priority to primary customer
- $0 < \beta < 1$: Delay dependent with high priority to primary customer
- $\beta = 1$: First come first serve
- $\beta > 1$: Delay dependent with high priority to secondary customer
- $\beta = \infty$: Static high priority to secondary customer
- Assumption: Potential mean arrival rate of the secondary customer's jobs

$$\Lambda_s(\theta, S_s) = a - b\theta - cS_s$$

where *a*, *b*, *c* > 0

Revenue maximization problem

Maximize revenue of the resource owner while maintaining assured service level to existing customers and system capability.

 $P0: \max_{\lambda_{s},\theta,S_{s},\beta}\theta\lambda_{s}$

Subjected to

$$egin{array}{rcl} W_{
ho}(\lambda_{
m s},eta) &\leq & S_{
ho} \ & S_{
m s} &\geq & W_{
m s}(\lambda_{
m s},eta) \ & \lambda_{
m s} &\leq & \mu-\lambda_{
ho} \ & \lambda_{
m s} &\leq & a-b heta-cS_{
m s} \ & \lambda_{
m s}, heta,S_{
m s},eta &\geq & 0 \end{array}$$

Primary cust. QoS constraint System capability constraint (QoS) System stability constraint Demand constraint Non-negativity constraint

Reduced revenue maximization problem

At optimality:

$$egin{aligned} \lambda_{ extsf{s}}^{*} &= extsf{a} - extsf{b} heta^{*} - extsf{c} extsf{S}_{ extsf{s}}^{*} \ & extsf{S}_{ extsf{s}}^{*} &= extsf{W}_{ extsf{s}}(\lambda_{ extsf{s}}^{*},eta^{*}) \end{aligned}$$

Resulting RM problem

$$P1: \max_{\lambda_{s},\beta} \frac{1}{b} \left[a\lambda_{s} - \lambda_{s}^{2} - c\lambda_{s}W_{s}(\lambda_{s},\beta) \right]$$

Subjected to

$$egin{aligned} \mathcal{W}_{m{
ho}}(\lambda_{m{s}},eta) &\leq \mathbf{S}_{m{
ho}}\ \lambda_{m{s}} &\leq \mu - \lambda_{m{
ho}}\ \lambda_{m{s}},eta &\geq \mathbf{0} \end{aligned}$$

- $S_s^* = W_s(\lambda_s^*, \beta^*)$ and $\theta^* = [a \lambda_s^* cS_s^*]/b$
- ▶ Optimal choices of λ_s and β remain insensitive to price sensitivity co-efficient *b* of the secondary customer.

Ø

Pricing shared resources

Expressions for W_p and W_s in current setting

$$W_{\rho}(\lambda_{s},\beta) = \frac{\lambda\psi\left[\mu - \lambda\left[1 - \beta\right]\right]}{\mu\left[\mu - \lambda\right]\left[\mu - \lambda_{\rho}\left[1 - \beta\right]\right]} \mathbf{1}_{\{\beta \le 1\}} + \frac{\lambda\psi}{\left[\mu - \lambda\right]\left[\mu - \lambda_{s}\left[1 - \frac{1}{\beta}\right]\right]} \mathbf{1}_{\{\beta > 1\}}$$

$$W_{s}(\lambda_{s},\beta) = \frac{\lambda\psi}{\left[\mu - \lambda\right]\left[\mu - \lambda_{p}\left[1 - \beta\right]\right]} \mathbf{1}_{\{\beta \leq 1\}} + \frac{\lambda\psi\left[\mu - \lambda\left[1 - \frac{1}{\beta}\right]\right]}{\mu\left[\mu - \lambda\right]\left[\mu - \lambda_{s}\left[1 - \frac{1}{\beta}\right]\right]} \mathbf{1}_{\{\beta > 1\}}$$

where $\lambda = \lambda_{\rho} + \lambda_s$, $\psi = \left[1 + \sigma^2 \mu^2\right] / 2$ and $\mathbf{1}_{\{.\}}$ is indicator function. Remark:

- W_p(λ_s, β) and W_s(λ_s, β) are increasing convex function of λ_s in the interval [0, μ λ_p).
- 2. $W_{\rho}(\lambda_{s},\beta)$ is an increasing concave function of β whereas $W_{s}(\lambda_{s},\beta)$ is a decreasing convex function of β .
- 3. $W_p(\lambda_s, \beta)$ is a quasi-convex function of β .
- 4. Hessian matrix $H[W_p(\lambda_s, \beta)]$ is indefinite.

Illustrative feasible region and objective function contours

Pricing shared resources

Solution algorithm

Based on exhaustive search of KKT point. Inputs: λ_p , μ , σ and S_p

- 1. Check either $S_p < \hat{S}_p \equiv \frac{\lambda_p \psi}{\mu [\mu \lambda_p]}$ or $\frac{a}{c} < \frac{2\mu \lambda_p}{[\mu \lambda_p]^2} \psi$, if yes Stop. No feasible solution is possible.
- Find the only possible real root of the cubic G̃(λ_s) in the interval [0, μ), say λ_s⁽¹⁾.

$$\tilde{G}(\lambda_{s}) = 2\mu\lambda_{s}^{3} - \left[a\mu + c\psi + 4\mu^{2}\right]\lambda_{s}^{2} + 2\mu\left[a\mu + c\psi + \mu^{2}\right]\lambda_{s} - \mu\left[a\mu^{2} - c\psi\lambda_{p}\right]$$

If $\lambda_s^{(1)} \in [0, \mu - \lambda_p)$ and $W_p(\lambda_s^{(1)}, \beta = \infty) < S_p$, then $\lambda_s^* = \lambda_s^{(1)}$ and $\beta^* = \infty$ is optimum. Stop

3. Find the only possible real root of the cubic $G(\lambda_s)$ in the interval $[0, \mu - \lambda_p)$, say $\lambda_s^{(2)}$.

$$G(\lambda_{s}) = 2\mu\lambda_{s}^{3} - [c\psi + \mu(a+4\phi_{0})]\lambda_{s}^{2} + 2\phi_{0}[c\psi + \mu(a+\phi_{0})]\lambda_{s} - a\mu\phi_{0}^{2} + c\psi\lambda_{p}(\mu+\phi_{0})]\lambda_{s} - b(\mu+\phi_{0})$$

where
$$\phi_0 = \mu - \lambda_p$$
. Calculate $I_\ell = \frac{\psi \lambda}{\mu[\mu - \lambda_p]}$ and $I_u = \frac{\psi \lambda}{[\mu - \lambda_s^{(2)}][\mu - \lambda]}$

Solution algorithm

- 4. Define intervals: Low=[\hat{S}_{ρ} , I_{ℓ}), Moderate =[I_{ℓ} , I_{u}] and High (I_{u} , a/c]
 - If $Sp \in Low$ then optimum $\lambda_s^* = \frac{\mu[\mu \lambda_p]S_p}{\psi} \lambda_p$ and $\beta^* = 0$
 - If $Sp \in Moderate$, then optimum $\lambda_s^* = \lambda_s^{(2)}$ and

$$\beta^{*} = \begin{cases} \frac{[\mu - \lambda][\mu S_{p}[\mu - \lambda_{p}] - \psi \lambda]}{\psi \lambda^{2} - \mu S_{p} \lambda_{p}[\mu - \lambda]} & \text{for } \frac{\psi \lambda}{\mu[\mu - \lambda_{p}]} \leq S_{p} \leq \frac{\psi \lambda}{\mu[\mu - \lambda]} \\ \\ \frac{S_{p} \lambda_{s}^{*}[\mu - \lambda]}{\psi \lambda - S_{p}[\mu - \lambda_{s}^{*}][\mu - \lambda]} & \text{for } \frac{\psi \lambda}{\mu[\mu - \lambda]} < S_{p} \leq \frac{\psi \lambda}{[\mu - \lambda_{s}^{*}][\mu - \lambda]} \end{cases}$$

► If $Sp \in High$ then optimum $\lambda_s^* = \frac{1}{2S_p} \left[s_p [2\mu - \lambda_p] + \psi - \sqrt{\left[S_p \lambda_p + \psi \right]^2 + 4\mu \psi S_p} \right]$ and $\beta^* = \infty$

Sudhir K. Sinha (IE&OR, IIT Bombay)

ヘロト ヘヨト ヘヨト ヘヨト

Numerical example

 $\lambda_p = 8, \ \mu = 10, \ \sigma = 0.1, \ a = 100, \ b = 0.2, c = 0.1$ $\hat{S}_p = 0.4, \ \lambda_s^{(2)} = 1.898, \ I_\ell = 0.4949, \ I_u = 11.97$

Sp	β^*	λ_s^*	θ^*	S _s *	Revenue*
0.41	0	0.2	497.86	2.28	99.57
0.42	0	0.4	496.69	2.62	198.68
0.45	0	1	492.75	4.5	492.75
0.4949	0	1.898	466.25	48.52	884.94
1	0.01	1.898	467.32	46.39	886.96
3	0.07	1.898	471.53	37.95	894.97
6	0.23	1.898	477.85	25.32	906.96
9.703	1	1.898	485.66	9.70	921.78
10	1.18	1.898	486.27	8.48	922.96
10	2.64	1.898	488.39	4.24	926.96
11.97	∞	1.898	490.46	0.122	930.87
13	∞	1.905	490.41	0.122	934.65
14	∞	1.912	490.37	0.123	937.82
15	∞	1.918	490.35	0.123	940.58

► *S_p* region is subdivided into intervals, viz: Low, Moderate, High, Very High.

• Either λ_s^* or β^* remains constant in within an interval

Sensitivity w.r.t. Sp

S _p - Interval	Sp	β^*	λ_s^*	θ^*	S _s *	Revenue*		
Low	Increase	Constant	Increase	Decrease	Increase	Increase		
		(0)	(linear)	(Concave)	(Convex)	(Concave)		
Moderate	Increase	Increase	Constant	Increase	Decrease	Increase		
		(Convex)		(Convex)	(Concave)	(Linear)		
High	Increase	Constant	Increase	Decrease	Increase	Increase		
		(∞)	(Concave)					
Very High	Unconstraint problem, Decision is independent of S_p							

Sudhir K. Sinha (IE&OR, IIT Bombay)

Pricing shared resources

Pricing shared resources

Thank You.

Pricing shared resources