Closed Loop Supply Chains Concept and Models

Jayendran Venkateswaran & D. Bijulal Industrial Engineering & Operations Research IIT Bombay

> Symposium on "Optimization in Supply Chains" 27th October 2007

AGENDA

- Closed Loop Supply Chain (CLSC)
 - What is CLSC?
 - Research Issues
- Collection & Inspection aspect
 - Problem description
 - Models
 - Observations
- CLSC Production-inventory aspect
 - System dynamics model
 - Observations
- Conclusions

Closed Loop Supply Chain

Holistic view of a combined forward supply chain & reverse supply chain

Why the interest in "closing-the-loop"?

Legislative motivation

- EU legislation on treatment of Waste from Electric and Electronic Equipment (WEEE)
 - End users must be able to return products.
 - Producers have to meet target levels of component, material and substance reuse and recycling.
 - Manufacturers must also finance the cost of collection, treatment, recovery, & environmentally sound disposal for all items returned.

Environmental motivation

• Enhance brand image \rightarrow Green Effect

Economic motivation

Engage in product recovery to reduce production costs!

Research Issues in CLSC

- Relatively new area of work
- Legal & environmental obligations vs. profit making
- Strategic Level Issues
 - Product design for after-life
 - Network structure
 - Tactical level Issues
 - Managing the reverse logistics \rightarrow Uncertainty in returns
 - Environmental impact \rightarrow 'Green image' effect on demand
 - Pricing and market segregation
 - **Operational level Issues**
 - Segregating returns into reuse, repair, remanufacturing and/or recycling
 - Scheduling common resources

Literature Review in CLSC (1)

- Krikke *et al.* (2003, IJPR) showed how concurrent product design & the process recovery options is rewarding
 Considered economic costs & environmental impact
- Savaskan et al. (2004, Mgt Sc) studied different reverse channel settings:
 - (1) Direct collection (2) Collect via retailer, (3) 3rd party
- Salema et al. (2007, EJOR) presents a general network design model with multi-products, capacity limits, uncertain demand/ return
- Biehl et al. (2007, C&OR) designed reverse logistic network for US carpet industry to reduce landfill
 - Uncertain returns, collection points, forecasting type

Literature Review in CLSC (2)

- Zikopoulos et al. (2007, EJOR) shows high quality returns improves CLSC system profitability
- Toktay et al. (2003) forecast future returns as probability distributions
 - Used for decision on collections to minimize CLSC costs
 - Georgiadis & Vlachos (2007, EJOR) examined the impact of environmental issues on long-term behavior of single product SC with returns.
 - 'Green image' effect on demand, obligation due to legislation, capacity effects on CLSC profits

Problems looked into

Modeling of Collection & Inspection Unit

- Consideration of quantity & quality of returns
- Explicit 'Use Life' of products
- Total CLSC costs

Modeling of production-inventory ordering dynamics considering product returns

Description of CLSC

- Single product with stochastic delays; (Make to stock)
- Returns only from goods sold
- Sold goods have a maximum life period after which they are disposed.
- Goods transferred at end of period; transport time ignored
- Repaired products are as good as new

Model of C & I unit

Key issue: Capturing Quantity & Quality of products returned

- Quantity amount returned in a period
- Quality suitability of returns for repairs, recycling or disposal.

Definition of life periods:

C & I – Quantity of Returns

Total Returns in period =

Σ (probability of returns from a past period * (collection periods) pool available for return in that period)

Probability of returns (PoR) modeled as a curve varying with respect to <u>used life</u> of product

C & I Quality of Returns

- From the quantity returned, the proportion sent for repairs, recycling and disposal
 - Probability of returns repairable (PoQ)
 - Probability of returns recyclable (PoK)
 - Probability of returns disposed = 1 PoQ PoK
 - Depends on the used life of product

Rest of the supply chain

- From C&I unit returns are pushed to Repair unit and Recycle unit, at end of each period
- From Repair unit repaired goods are pushed to finished goods storage, at end of each period
- From Recycle unit recycled goods are pushed to shop floor, at end of each period
 - Shop floor orders (Demand Recycle qty raw material inventory) with supplier, at end of each period
 - Instantaneous supply
- Demand at the start of period

Costs in the CLSC

- Production cost
- Cost of raw material from suppliers
- Inventory storage cost
- Shortage cost for unmet demand
- Raw material storage cost
- Inspection cost
 - Repair cost
 - Recycling cost
 - Disposal cost

- ightarrow 50 / unit
- ightarrow 100 / unit
- ightarrow 300 / unit
- ightarrow 500 / unit
- ightarrow 30 / unit
- ightarrow 10 / unit
- \rightarrow 100 / unit
- ightarrow 95 / unit
- ightarrow 50 / unit

Reverse SC

Simulation Model – Material flow

- Modeled using ArenaTM.
- Shop floor with stochastic delays (time/part)
- Inspection, Recycling, Repairing stochastic delays (time/part)
- Deterministic demand per period
- Run length = 30 periods

Verification of model

- With zero Demand
- Collection with fixed "max used life" returns

Experiments

Maximum life period = 10
Base case (No collections)
Total Cost = Rs. 733350

Sold goods have a maximum life period after which they are disposed.

Experiments – Fixed 'max used life'

Max used life = 4; Collection starts in 7th period

Collection happens in all periods

Experiments – Collection in few periods

- Decision variables:
 - Which periods are returns collected?
 - What should be the max used life for that period?
- Given
 - Probability of returns
 - Probability of returns repairable, recyclable
 - Demand pattern

Simulation-Optimization using OptQuestTM

Experiments – Collection in few periods

Results of simulation-optimization

Comparing with Base Case Collections just before expected shortage most beneficial

Designed Experiments

- Factors and levels
 - Probability of returns: Linear, Convex, Concave
 - Probability of Reuse and Recycle: Varying slope
 - Maximum life period: 6, 10, 15, 20 periods
- For each combination, best periods to collect in were determined
 - Key observations from results
 - Number of periods collections allowed: 2 ~ 4
 - Max used life: 2~7
 - Collections around period 9 and 17 (to counter shortages)

Observations & Conclusions

- Collections in few periods may provide more benefits than collections every period
- Shape of probability of returns not significant
- Low repairability + recyclability → more disposal, higher cost
- Several assumptions & sensitivity of parameters needs to be verified
 - Need to test with a more realistic scenario with landfill restrictions, multiple players, demand/ returns forecasting
- Can the idea be extended to time promotional events such as 'buy-back' schemes?

PRODUCTION INVENTORY DYNAMICS

Modeling of production-inventory ordering dynamics considering product returns

- System Dynamics tool is employed
 - Single player model at aggregated level
 Repairable returns feeds into end inventory
 - Recycled returns feeds into WIP

Modeling Basics: Stock & Flow diagram

Stocks or Level: Accumulate over time

- Characterizes the states of the system, provides inertia and memory, acts as a source of delay and create disequilibrium dynamics
- Flow or Rate: Causes Stocks to change over time
- Information: Helps define other instantaneous variables/ calculations

$$Stock(t) = Stock(0) + \int_0^t Inflow(\tau) d\tau - \int_0^t Outflow(\tau) d\tau$$

$$\frac{d}{dt}[Stock(t)] = Inflow(t) - Outflow(t)$$

SD Model

 Production_Release = Forecast + α(Desired_WIP – WIP) + β(Desired_INV - INV)
 Desired_WIP = Leadtime*Forecast
 Desired_INV = Forecast

SD Model – Adding returns

Results – Adding returns

SD Model with Returns - Improved

SD Model with Returns - Improved

- Production_Release = Forecast + α(Desired_WIP – WIP) + β(Desired_INV - INV) + γ(-RecycleINV) + δ(-RepairINV)
- Desired_WIP = Leadtime*Forecast ReturnsWIP
- Desired_INV = Forecast + ReturnsWIP

■ ReturnsWIP → WIP reduction due to use of recycled raw materials

Conclusions

- Need to distinguish between returns and demand
 Especially under steady demand scenario
- Danger of fluctuations in returns be misread as demand fluctuations
 - Leads to bullwhip effect!
- Questions
 - What happens in multiple echelon supply chains?
 - How to use returns information, esp. upstream members?
 - Can forecast of returns be included?
 - Green image' effect? etc