Introduction to the Course

Lecture 01
Optimization Techniques
IE 601

Industrial Engineering and Operations Research Indian Institute of Technology Bombay

July 29, 2019

About the Course

Main Theme

- Algorithms for linear and nonlinear constrained optimization
- Analysis for understanding
- correctness of these algorithms
- main difficulties they face
- speed at which they converge

Audience

- Core course of IE MTech, MSc and PhD students
- Elective for others

Prerequisites

- Prior exposure to optimization modeling, basic algorithms etc
- Comfort with mathematical writing and notation

About the Course

- Grading scheme, references, topics etc are listed in 'About the Course' on Moodle and Course Webpage
- Moodle will be used for grading and emails only
- Lecture slides, assignments etc will be available on the Course Webpage

The Following Topics will not be Covered

- Applications of optimization
- Modeling and using software to solve models
- Optimization under uncertainty
- Discrete/combinatorial optimization
- Heuristic methods

About the Course

Miscellaneous

- Tutorial in Slot 13A (Monday 7pm-8pm)
- Room to be announced
- Tutorial may be used for make up classes
- Two text-books: highly recommended that you obtain them - available and inexpensive

Introduction to Optimization

Optimization is

- Widely used in engineering, business, policy, games and entertainment
- a generic term
- We will focus on special types of mathematical optimization problems and their solution techniques
- Sometimes hard (so the theory is not well understood, and the ideas are easy)
- Sometimes easy (but the theory is so well developed, it requires hard work to understand)
- My favorite topic
- Something I am quite bad at

Introduction to Optimization

Can you solve the problem:

$$
\min _{x_{1}} \sin \left(x_{1}\right)+\cos \left(x_{1}\right)
$$

How about

$$
\min _{x_{1}} \sin \left(x_{1}\right)+\cos \left(x_{1}\right)+\log \left(1+x_{1}^{2}\right) ?
$$

- Even problems in one variable do not have closed form solutions
- Numerical techniques or algorithms based on search are required

Introduction to Optimization

What is the solution to this linear optimization problem? And how would you explain it to others?

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{4}} 3 x_{1}+5 x_{2}-7 x_{3}-x_{4} \\
\text { subject to: } x_{1}+x_{2}+x_{3}+x_{4}=1 .
\end{array}
$$

Now consider

$$
\begin{array}{r}
\min _{x \in \mathbb{R}^{4}} 3 x_{1}+5 x_{2}-7 x_{3}-x_{4} \\
\text { subject to: } x_{1}+x_{2}+x_{3}+x_{4}=1, \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 .
\end{array}
$$

Can you prove (explain why) the minimum value is -7 ?

