Writing Linear Optimization Problems

Lecture 02

Optimization Techniques, IE 601

Industrial Engineering and Operations Research Indian Institute of Technology Bombay

July 31, 2019

Linear Optimization

- Sections 1.1 and 1.2 of [BJS]
- Linear Optimization is also called Linear Programming (LP)
- Can be written in different forms - all equivalent to each other
- Provide different perspectives and insights
- 'Among all feasible vectors, find one that minimizes the objective function'
- Not all vectors are allowed - there are linear constraints
- Objective function is linear

General Form

$$
\begin{gathered}
\min _{x} c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
\text { subject to: } g_{1} \geq a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \geq b_{1} \\
g_{2} \geq a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geq b_{2} \\
\vdots \\
\vdots \quad \vdots \quad \vdots \\
g_{m} \geq a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b_{m} \\
u_{1} \geq x_{1} \geq l_{1} \\
\vdots \\
\quad \vdots \\
u_{n}
\end{gathered}
$$

- where $c_{1}, c_{2}, \ldots c_{n}, g_{1}, \ldots, g_{m}, b_{1}, \ldots, b_{m}, l_{1}, \ldots, l_{n}, u_{1}, \ldots, u_{n}$, $a_{11}, \ldots, a_{m n}$, are inputs (parameters).
- Output is the optimal value which is a scalar, and
- the optimal solution which is a vector $\left(x^{*}\right)$.

Properties of the General Form

- A vector that satisfies all constraints is called a feasible solution to the problem
- An optimal solution must be feasible, and
- no other feasible solution should have value lower than its value
- The number of constraints, m and variables, n must be finite
- Some of the u_{j} and g_{i} can be ∞
- Some of the l_{j} and b_{i} can be $-\infty$
- The constraints $u_{j} \geq x_{j} \geq l_{j}$ are also called bound constraints
- For computations, all inputs can be assumed to be rational
- Strict inequalities (< and $>$) are not allowed (why?)

Example
The model

$$
\begin{aligned}
\min _{x}-4 x_{1}+x_{2} & \\
\text { subject to: } 2 x_{1}+x_{2} & \leq 10, \\
-x_{1}+2 x_{2} & \leq 10, \\
0 \leq x_{1} & \leq 4, \\
-x_{1}+x_{2} & \geq-3, \\
0 & \leq x_{2} .
\end{aligned}
$$

is same as the following model in general form:

$$
\begin{aligned}
\min _{x}-4 x_{1}+x_{2} & \\
\text { subject to: } 10 & \geq 2 x_{1}+x_{2} \geq-\infty \\
10 & \geq-x_{1}+2 x_{2} \geq-\infty \\
\infty & \geq-x_{1}+x_{2} \geq-3 \\
4 & \geq x_{1} \geq 0 \\
\infty & \geq x_{2} \geq 0
\end{aligned}
$$

Standard Form

$$
\begin{aligned}
\min _{x} c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} & \\
\text { subject to: } a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} & =b_{2} \\
\vdots \quad \vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} & =b_{m} \\
x_{1} & \geq 0 \\
\vdots & \vdots \vdots \\
x_{n} & \geq 0
\end{aligned}
$$

- where $c_{1}, c_{2}, \ldots c_{n}, b_{1}, \ldots, b_{m}, a_{11}, \ldots, a_{m n}$, are inputs (parameters).
- It has the properties of the general form described earlier.
- Easier to analyze and develop intuition

Standard Form

The model

$$
\begin{aligned}
\min _{x}-4 x_{1}+x_{2} & \\
\text { subject to: } 2 x_{1}+x_{2} & \leq 10 \\
-x_{1}+2 x_{2} & \leq 10 \\
0 \leq x_{1} & \leq 4 \\
-x_{1}+x_{2} & \geq-3 \\
0 & \leq x_{2}
\end{aligned}
$$

is equivalent, but not the same, as the following model in standard form:

$$
\min _{x}-4 x_{1}+x_{2}
$$

subject to: $2 x_{1}+x_{2}+x_{3}=10$,

$$
\begin{aligned}
-x_{1}+2 x_{2}+x_{4} & =10 \\
x_{1}+x_{5} & =4 \\
-x_{1}+x_{2}-x_{6} & =-3 \\
x_{1}, \ldots, x_{6} & \geq 0
\end{aligned}
$$

Canonical Form

$$
\begin{aligned}
& \min _{x} c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
& \text { subject to: } a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \geq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geq b_{2} \\
& \vdots \quad \vdots \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \geq b_{m} \\
& x_{1} \geq 0 \\
& \vdots \vdots \\
& x_{n} \geq 0
\end{aligned}
$$

- where $c_{1}, c_{2}, \ldots c_{n}, b_{1}, \ldots, b_{m}, a_{11}, \ldots, a_{m n}$, are inputs (parameters).
- It has the properties of the general form described earlier.
- Nice geometric interpretation and intuitive appeal

Commonly Used Transformations

- $f(x)=g(x) \Longleftrightarrow f(x) \leq g(x), f(x) \geq g(x)$
- $\min _{x} f(x) \Longleftrightarrow-\max _{x}-f(x)$
- $f(x) \leq g(x) \Longleftrightarrow-f(x) \geq-g(x)$
- $f(x) \leq g(x) \Longleftrightarrow f(x)+s=g(x), s \geq 0$
- Transforming a standard form or canonical form to general form of LP is straightforward.
- Every LP in general form can be transformed into an equivalent LP in standard form.
- One can develop an algorithm for any one form - it will work for all others.
- Differences in theoretical properties arise, one must be careful in analysis.

Vector Notation

General Form

$$
\begin{gathered}
\min _{x} c^{\top} x \\
\text { subject to: } g \geq A x \geq b, \\
u \geq x \geq l
\end{gathered}
$$

Standard Form

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
\text { subject to: } A x & =b, \\
x & \geq 0,
\end{aligned}
$$

Canonical Form

$$
\begin{aligned}
\min _{x} c^{\top} x & \\
\text { subject to: } A x & \geq b, \\
x & \geq 0,
\end{aligned}
$$

where A is an $m \times n$ matrix, b, g are vectors of size m and c, l, u of size n.

