Vectors and Matrices

Lecture 04 Optimization Techniques, IE 601

Industrial Engineering and Operations Research Indian Institute of Technology Bombay

August 02, 2019

Vectors

- Recall definition and basic properties of vectors in Euclidean space (\mathbb{E}^n)
- A vector b ∈ Eⁿ is a linear combination of vectors a¹,..., a^k in Eⁿ if we can find scalars λ₁,..., λ_k such that

$$b = \sum_{j=1}^k \lambda_j a$$

• Vectors a^1, \ldots, a^k are linearly independent if none of them can be written as a linear combination of other vectors, i.e., the system

$$\sum_{j=1}^k \lambda_j a^j = 0,$$

has a unique solution $\lambda_j = 0, j = 1, \ldots, k$.

Basis

- Vectors a^1, \ldots, a^k from \mathbb{E}^n span \mathbb{E}^n if every vector b in \mathbb{E}^n can be written as a linear combination of a^1, \ldots, a^k .
- e.g. the vectors $[0\ 1\ 1]^T, [1\ 0\ 1]^T, [1\ 1\ 0]^T, [1\ 1\ 1]^T$ span \mathbb{E}^3
- Vectors a^1, \ldots, a^k from \mathbb{E}^n form a basis of \mathbb{E}^n if
 - $\bigcirc a^1,\ldots,a^k$ span \mathbb{E}^n , and
 - **2** No other subset of $\{a^1, \ldots, a^k\}$ spans \mathbb{E}^n .
- The vectors $[0 \ 1 \ 1]^T$, $[1 \ 0 \ 1]^T$, $[1 \ 1 \ 0]^T$, $[1 \ 1 \ 1]^T$ do not constitute a basis of \mathbb{E}^3

Useful Results

- A set of vectors is a basis of \mathbb{E}^n if any only if it has exactly *n* linearly independent vectors.
- Let a^1, \ldots, a^k be a basis of E^n and b be any vector of \mathbb{E}^n . Then

$$b = \sum_{j=1}^k \lambda_j a^j,$$

where λ is unique.

- In the above system, b can replace the vector a^j to yield a new basis if and only if λ_j ≠ 0.
- Can you argue why?

Matrices

- Recall definition and basic properties of a matrix
- Elementary row operations on a matrix:
 - **)** Row *i* of the matrix is multiplied by a nonzero scalar, say $k \neq 0$
 - 2 Row *i* of the matrix is replaced by the sum of row *i* and a multiple k of row j
 - Rows i and j are interchanged
- These are useful when solving a system of equations or inverting a matrix
- Each elementary operation is equivalent to pre-multiplying the matrix by a square matrix
- e.g. multiplying 2nd row of a matrix A is same as:

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & k & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} A$$

• Can you find the multipliers for other two cases?

Matrices and Systems of Equations

- Rank of matrix is the maximum number of linearly independent columns of *A*
- It is also the maximum number of linearly independent rows of A
- Given a matrix square matrix of size m × m, A, its inverse A⁻¹ exists iff det(A) ≠ 0
- *A* is invertible iff rank(A) = m
- *A* is invertible iff Ax = b has a unique solution for every *b*
- If A^{-1} exists, it can be obtained by elementary row operations on *A*.
- Equivalently, A^{-1} is a product of several matrices each of which corresponds to the three operations
- Can you recall the relation between solving Ax = b and finding A^{-1} ?

