Vectors and Matrices

Lecture 04
Optimization Techniques, IE 601

Industrial Engineering and Operations Research
Indian Institute of Technology Bombay

August 02, 2019

Vectors

- Recall definition and basic properties of vectors in Euclidean space $\left(\mathbb{E}^{n}\right)$
- A vector $b \in \mathbb{E}^{n}$ is a linear combination of vectors a^{1}, \ldots, a^{k} in \mathbb{E}^{n} if we can find scalars $\lambda_{1}, \ldots, \lambda_{k}$ such that

$$
b=\sum_{j=1}^{k} \lambda_{j} a^{j}
$$

- Vectors a^{1}, \ldots, a^{k} are linearly independent if none of them can be written as a linear combination of other vectors, i.e., the system

$$
\sum_{j=1}^{k} \lambda_{j} a^{j}=0
$$

has a unique solution $\lambda_{j}=0, j=1, \ldots, k$.

Basis

- Vectors a^{1}, \ldots, a^{k} from \mathbb{E}^{n} span \mathbb{E}^{n} if every vector b in \mathbb{E}^{n} can be written as a linear combination of a^{1}, \ldots, a^{k}.
- e.g. the vectors $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T},\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T},\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ span \mathbb{E}^{3}
- Vectors a^{1}, \ldots, a^{k} from \mathbb{E}^{n} form a basis of \mathbb{E}^{n} if
(3) a^{1}, \ldots, a^{k} span \mathbb{E}^{n}, and
(2) No other subset of $\left\{a^{1}, \ldots, a^{k}\right\}$ spans \mathbb{E}^{n}.
- The vectors $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]^{T},\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T},\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T},\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ do not constitute a basis of \mathbb{E}^{3}

Useful Results

- A set of vectors is a basis of \mathbb{E}^{n} if any only if it has exactly n linearly independent vectors.
- Let a^{1}, \ldots, a^{k} be a basis of E^{n} and b be any vector of \mathbb{E}^{n}. Then

$$
b=\sum_{j=1}^{k} \lambda_{j} a^{j}
$$

where λ is unique.

- In the above system, b can replace the vector a^{j} to yield a new basis if and only if $\lambda_{j} \neq 0$.
- Can you argue why?

Matrices

- Recall definition and basic properties of a matrix
- Elementary row operations on a matrix:
(3) Row i of the matrix is multiplied by a nonzero scalar, say $k \neq 0$
(2) Row i of the matrix is replaced by the sum of row i and a multiple k of row j
(3) Rows i and j are interchanged
- These are useful when solving a system of equations or inverting a matrix
- Each elementary operation is equivalent to pre-multiplying the matrix by a square matrix
- e.g. multiplying 2 nd row of a matrix A is same as:

$$
\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & k & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right] A
$$

- Can you find the multipliers for other two cases?

Matrices and Systems of Equations

- Rank of matrix is the maximum number of linearly independent columns of A
- It is also the maximum number of linearly independent rows of A
- Given a matrix square matrix of size $m \times m, A$, its inverse A^{-1} exists iff $\operatorname{det}(A) \neq 0$
- A is invertible iff $\operatorname{rank}(A)=m$
- A is invertible iff $A x=b$ has a unique solution for every b
- If A^{-1} exists, it can be obtained by elementary row operations on A.
- Equivalently, A^{-1} is a product of several matrices each of which corresponds to the three operations
- Can you recall the relation between solving $A x=b$ and finding A^{-1} ?

