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Vectors

Recall definition and basic properties of vectors in Euclidean space (En)

A vector b ∈ En is a linear combination of vectors a1, . . . , ak in En if we
can find scalars λ1, . . . , λk such that

b =

k∑
j=1

λjaj

Vectors a1, . . . , ak are linearly independent if none of them can be written
as a linear combination of other vectors, i.e., the system

k∑
j=1

λjaj = 0,

has a unique solution λj = 0, j = 1, . . . , k.
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Basis

Vectors a1, . . . , ak from En span En if every vector b in En can be written
as a linear combination of a1, . . . , ak.

e.g. the vectors [0 1 1]T , [1 0 1]T , [1 1 0]T , [1 1 1]T span E3

Vectors a1, . . . , ak from En form a basis of En if
1 a1, . . . , ak span En, and
2 No other subset of {a1, . . . , ak} spans En.

The vectors [0 1 1]T , [1 0 1]T , [1 1 0]T , [1 1 1]T do not constitute a basis
of E3
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Useful Results

A set of vectors is a basis of En if any only if it has exactly n linearly
independent vectors.

Let a1, . . . , ak be a basis of En and b be any vector of En. Then

b =

k∑
j=1

λjaj,

where λ is unique.

In the above system, b can replace the vector aj to yield a new basis if and
only if λj 6= 0.

Can you argue why?
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Matrices
Recall definition and basic properties of a matrix
Elementary row operations on a matrix:

1 Row i of the matrix is multiplied by a nonzero scalar, say k 6= 0
2 Row i of the matrix is replaced by the sum of row i and a multiple k of row j
3 Rows i and j are interchanged

These are useful when solving a system of equations or inverting a matrix

Each elementary operation is equivalent to pre-multiplying the matrix by
a square matrix

e.g. multiplying 2nd row of a matrix A is same as:
1 0 . . . 0
0 k . . . 0
...

...
...

0 0 . . . 1

A

Can you find the multipliers for other two cases?
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Matrices and Systems of Equations

Rank of matrix is the maximum number of linearly independent columns
of A

It is also the maximum number of linearly independent rows of A

Given a matrix square matrix of size m× m, A, its inverse A−1 exists iff
det(A) 6= 0

A is invertible iff rank(A) = m

A is invertible iff Ax = b has a unique solution for every b

If A−1 exists, it can be obtained by elementary row operations on A.

Equivalently, A−1 is a product of several matrices each of which
corresponds to the three operations

Can you recall the relation between solving Ax = b and finding A−1?
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