Convex Sets

Lecture 05
 Optimization Techniques, IE 601

Industrial Engineering and Operations Research
Indian Institute of Technology Bombay

August 09, 2019

Combining Vectors

Given vectors a^{1}, \ldots, a^{k} in \mathbb{E}^{n}, a vector b defined as

$$
b=\sum_{j=1}^{k} \lambda_{j} a^{j}
$$

is said to be a linear combination of a^{1}, \ldots, a^{k}. Further, b is

- a positive combination of a^{1}, \ldots, a^{k}, if $\lambda_{1}, \ldots, \lambda_{k} \geq 0$,
- an affine combination of a^{1}, \ldots, a^{k}, if $\sum_{j=1}^{k} \lambda_{k}=1$,
- a convex combination of a^{1}, \ldots, a^{k}, if $\sum_{j=1}^{k} \lambda_{k}=1, \lambda_{1}, \ldots, \lambda_{k} \geq 0$,
- Can you check by solving a system of equations whether a given b is a linear combination of given vectors a^{1}, \ldots, a^{k} ?
- Can you also check if it is their affine combination?
- How about positive and convex combinations?

Question

Let $a^{1}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\top}, a^{2}=\left[\begin{array}{ll}2 & 1\end{array}\right]^{\top}$. Draw all vectors which are
(1) linear combinations of a^{1}, a^{2}
(2) positive combinations of a^{1}, a^{2}
(3) affine combinations of a^{1}, a^{2}
(9) convex combinations of a^{1}, a^{2}

Convex Sets

- A set X in \mathbb{E}^{n} is a convex set if given any two points $x^{1}, x^{2} \in X$, their all convex combinations also lie in X
- Line joining x^{1}, x^{2} should lie in X for any two points x^{1}, x^{2} in X.
- $\lambda x^{1}+(1-\lambda) x^{2} \in X$ for each $\lambda \geq 0$.

A nonconvex set

A convex set

- If we move in a given direction starting from a point in a convex set and hit the boundary, then there can not be any more feasible points further in the direction.
- Quite useful when we are searching for good points

Extreme Points

- A point x in a convex set, X, is its extreme point if it can not be represented as a convex combination of any other (distinct from itself) points of X. It is equivalent to saying, there are no points x^{1}, x^{2} in X such that $x=\lambda x^{1}+(1-\lambda) x^{2}, x \neq x^{1}, x \neq x^{2}, \lambda \in[0,1]$.
- A nonempty convex set may have no extreme points, a finite number of extreme points, countably infinite, or uncountably infinite number of extreme points.
- Can you draw some examples of each the above cases?

Hyperplanes

- Given a vector p in \mathbb{E}^{n} and a scalar k, the set $\left\{x: p^{\top} x=k\right\}$ is called a hyperplane.
- Every point on a hyperplane must satisfy the linear equation $p x=k$.
- There can not be n linearly independent points on a hyperplane. (why?)
- There are $(n-1)$ linearly independent points on every hyperplane. Can you find such points?
- Conversely, there is a unique hyperplane passing through $(n-1)$ linearly independent points.
- Let x^{1}, x^{2} be any two points in $\left\{x: p^{\top} x=k\right\}$, then $p^{\top}\left(x^{1}-x^{2}\right)=0 . p$ is thus normal or orthogonal to the hyperplane, and so is $-p$.
- Can you show that every hyperplane is a convex set?

Halfspaces

- Every hyperplane $\left\{x: p^{\top} x=k\right\}$ divides E^{n} into two half-spaces:

$$
\left\{x: p^{\top} x \leq k\right\}, \text { and }\left\{x: p^{\top} x \geq k\right\} .
$$

- The intersection of the above two half-spaces is the hyperplane that generated it.
- Every half-space has n linearly independent points in it. Can you find one such set?
- Can you show that every halfspace is a convex set?
- How many extreme points does it have?

Rays

- A ray is a set of the form $\left\{x \in \mathbb{E}^{n}: x=x^{0}+\lambda d, \lambda \geq 0\right\}$, where x^{0}, d are given vectors in \mathbb{E}^{n}.
- It is a one dimensional set.
- x^{0} is called the vertex, and d the direction of the ray.
- Can you show that it is a convex set?
- How many extreme points does it have?
- If we scale d by multiplying by a positive scalar, do we get a different set?

Recession Direction

- A nonzero vector d in \mathbb{E}^{n} is a recession direction of a convex set X if for each x^{0} in X, the ray $\left\{x \in \mathbb{E}^{n}: x^{0}+\lambda d, \lambda \geq 0\right\}$ is contained in X.
- A convex set may have zero, finite or infinite number of recession directions.
- If d^{1}, d^{2} are recession directions of a convex set X, then $\lambda_{1} d^{1}+\lambda_{2} d^{2}$, $\lambda_{1}, \lambda_{2}>0$, is also a recession direction.
- If a convex set X contains a ray starting at a point x^{0} in X, then X also contains rays starting at every point in X along the same direction.

