Convex Sets

Lecture 05 Optimization Techniques, IE 601

Industrial Engineering and Operations Research Indian Institute of Technology Bombay

August 09, 2019

Combining Vectors

Given vectors a^1, \ldots, a^k in \mathbb{E}^n , a vector *b* defined as

$$b = \sum_{j=1}^k \lambda_j a^j$$

is said to be a linear combination of a^1, \ldots, a^k . Further, b is

- a positive combination of a^1, \ldots, a^k , if $\lambda_1, \ldots, \lambda_k \ge 0$,
- an affine combination of a^1, \ldots, a^k , if $\sum_{j=1}^k \lambda_k = 1$,
- a convex combination of a^1, \ldots, a^k , if $\sum_{j=1}^k \lambda_k = 1, \lambda_1, \ldots, \lambda_k \ge 0$,
- Can you check by solving a system of equations whether a given b is a linear combination of given vectors a^1, \ldots, a^k ?
- Can you also check if it is their affine combination?
- How about positive and convex combinations?

Question

Let $a^1 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$, $a^2 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$. Draw all vectors which are

- linear combinations of a^1, a^2
- 2 positive combinations of a^1, a^2
- (a) affine combinations of a^1, a^2
- \bigcirc convex combinations of a^1, a^2

Convex Sets

- A set X in Eⁿ is a convex set if given any two points x¹, x² ∈ X, their all convex combinations also lie in X
- Line joining x^1, x^2 should lie in X for any two points x^1, x^2 in X.
- $\lambda x^1 + (1 \lambda)x^2 \in X$ for each $\lambda \ge 0$.

- If we move in a given direction starting from a point in a convex set and hit the boundary, then there can not be any more feasible points further in the direction.
- Quite useful when we are searching for good points

Extreme Points

- A point x in a convex set, X, is its extreme point if it can not be represented as a convex combination of any other (distinct from itself) points of X. It is equivalent to saying, there are no points x¹, x² in X such that x = λx¹ + (1 − λ)x², x ≠ x¹, x ≠ x², λ ∈ [0, 1].
- A nonempty convex set may have no extreme points, a finite number of extreme points, countably infinite, or uncountably infinite number of extreme points.
- Can you draw some examples of each the above cases?

Hyperplanes

- Given a vector p in \mathbb{E}^n and a scalar k, the set $\{x : p^{\mathsf{T}}x = k\}$ is called a hyperplane.
- Every point on a hyperplane must satisfy the linear equation px = k.
- There can not be *n* linearly independent points on a hyperplane. (why?)
- There are (n 1) linearly independent points on every hyperplane. Can you find such points?
- Conversely, there is a unique hyperplane passing through (n 1) linearly independent points.
- Let x^1, x^2 be any two points in $\{x : p^{\mathsf{T}}x = k\}$, then $p^{\mathsf{T}}(x^1 x^2) = 0$. *p* is thus normal or orthogonal to the hyperplane, and so is -p.
- Can you show that every hyperplane is a convex set?

Halfspaces

• Every hyperplane $\{x : p^{\mathsf{T}}x = k\}$ divides E^n into two half-spaces:

 $\{x : p^{\mathsf{T}}x \le k\}, \text{ and } \{x : p^{\mathsf{T}}x \ge k\}.$

- The intersection of the above two half-spaces is the hyperplane that generated it.
- Every half-space has *n* linearly independent points in it. Can you find one such set?
- Can you show that every halfspace is a convex set?
- How many extreme points does it have?

Rays

- A ray is a set of the form $\{x \in \mathbb{E}^n : x = x^0 + \lambda d, \lambda \ge 0\}$, where x^0, d are given vectors in \mathbb{E}^n .
- It is a one dimensional set.
- x^0 is called the vertex, and *d* the direction of the ray.
- Can you show that it is a convex set?
- How many extreme points does it have?
- If we scale *d* by multiplying by a positive scalar, do we get a different set?

Recession Direction

- A nonzero vector d in \mathbb{E}^n is a recession direction of a convex set X if for each x^0 in X, the ray $\{x \in \mathbb{E}^n : x^0 + \lambda d, \lambda \ge 0\}$ is contained in X.
- A convex set may have zero, finite or infinite number of recession directions.
- If d^1, d^2 are recession directions of a convex set *X*, then $\lambda_1 d^1 + \lambda_2 d^2$, $\lambda_1, \lambda_2 > 0$, is also a recession direction.
- If a convex set *X* contains a ray starting at a point *x*⁰ in *X*, then *X* also contains rays starting at every point in *X* along the same direction.

