Polyhedral Sets

Lecture 06
Optimization Techniques, IE 601

Industrial Engineering and Operations Research Indian Institute of Technology Bombay

August 14, 2019

Convex Cone

- A convex set C is a convex cone if it has the following property. If $x \in C$, then $\lambda x \in C$ for every $\lambda \geq 0$.
- Any vector in a cone can be scaled by a non-negative scalar to obtain another vector in the cone.
- Origin is always contained in a cone
- Is the set $\left\{x \in \mathbb{E}^{n}: A x=0, x \geq 0\right\}$ a convex cone?
- The set $\left\{x \in \mathbb{E}^{n}: x=\sum_{j=1}^{k} \lambda_{j} a^{j}, \lambda_{j} \geq 0, j=1, \ldots, k\right\}$ is a convex cone
- It is said to be generated by the vectors a^{1}, \ldots, a^{k}.

Polyhedron

- A polyhedron is an intersection of a finite number of half-spaces
- Every polyhedron can be described using a system of finitely many linear inequalities $A x \leq b$
- It is a convex set
- A polyhedron P is bounded if there exists a positive scalar k such that every point in P satisfies $\|x\| \leq k$.
- Can you prove: If P has a recession direction, then it is unbounded?
- ... and the converse: If P does not have any recession directions, then it is bounded?
- Feasible region of a linear program is a polyhedron.

Redundant Constraints

- Suppose a polyhedral region is described by constraints $A x \leq b$.
- A constraint, say $\sum_{j} a_{i j} x \leq b_{i}$ of this syste is redundant if the feasible region does not change on removing this constraint.
- If two or more redundant constraints are removed, the feasible region may change. (Think of an example)
- A redundant constraint can be identified by solving an LP (How?).

Polyhedral Cone

- A convex cone C is called a polyhedral cone if it is a polyhedron.
- Not all convex cones are polyhedral
- $C=\left\{x \in \mathbb{R}^{3}: \sqrt{x_{2}^{2}+x_{3}^{2}} \leq x_{1}, x_{1} \geq 0\right\}$, also called a second order cone or the icecream cone

- What are its recession directions?
- A cone generated by a finite number of points is a polyhedral cone (why?)

Active Constraints of a Polyhedral Set

- A constraint $\alpha x \leq \beta$ (or $=\beta$, or $\geq \beta$) is said to be active or binding or tight at a given point \hat{x} if $\alpha \hat{x}=\beta$.
- An equality constraint is active at all feasible points
- A point is said to be in the interior of a polyhedral set if no constraint is active at it.
- If a point is in the interior, we can take a small step in any direction and still be feasible.
- Same is not true if the point is not in the interior
- A point in the interior can not be an extreme point (why?)

Extreme Points of a Polyhedral Set

Result: Let \bar{x} be a point in a polyhedron $X=\left\{x \in \mathbb{E}^{n}: A x \geq b, x \geq 0\right\}$. Suppose one of the constraints (including the bound constraints), say $\alpha x \geq \beta$ is active at \bar{x}. Let $x^{1}, x^{2} \in X$ be two points so that \bar{x} is their convex combination. Then the constraint $\alpha x \leq \beta$ is also active at both x^{1} and x^{2}

- Can you prove the above result?
- A feasible point of polyhedral set X is called its corner or vertex if n linearly independent constraints of X are active at that point.
- Using the above result one can show that a feasible point of a polyhedron X is its vertex if and only if it is its extreme point.
- A polyhedral set may also have faces and edges (See book).

Extreme Directions of a Polyhedral Set

- Recall that for a polyhedral set $X=\left\{x \in \mathbb{E}^{n}: A x \leq b, x \geq 0\right\}$, a recession direction satisfies $A d \leq 0, d \geq 0$.
- The set of all recession directions is a cone
- It is called a recession cone
- Recession cone is a polyhedron (Why?)
- What are its extreme points?
- To find its extreme rays, one can add a 'normalization constraint' $\sum_{j} d_{j}=1$ to the cone of recession cones and find its extreme points.
- Why does the above method work?

