IE 601, Optimization Techniques

Assignment 01, August 15, 2019
Due Wednesday, August 21, 2019 in class

Note: There are 5 questions on 1 page(s). Submit a report written in your own words. Write your name and roll number clearly on the report.

1. Convert the following linear program into standard form:

$$
\begin{aligned}
\min _{x} 4 x_{1}+x_{2}-3 x_{3} & +x_{4}+x_{5} \\
\text { s.t. } 3 x_{1}+x_{2} & \leq 4, \\
x_{1}+x_{2}+x_{3} & \geq-18, \\
x_{4}+100 x_{5} & =67, \\
2 \leq 5 x_{2}+x_{3}-4 x_{4} & \leq 10, \\
-20 \leq x_{1} & \leq 50, \\
x_{2} & \leq 0, \\
2 \leq x_{3} & \leq 20, \\
0 \leq x_{4} & \leq 1 .
\end{aligned}
$$

2. For each of the following sets, explain whether it is convex or not.
(a) $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}: f(x) \leq y\right\}$, where f is a given convex function
(b) $\left\{x \in \mathbb{R}^{4}: \sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}} \leq x_{4}, x \geq 0\right\}$
(c) $\left\{x \in \mathbb{R}^{4}: x_{1} x_{2}+x_{3} x_{4} \geq 1, x \geq 0\right\}$
3. Exercise 2.39 [BJS, 2nd Ed.]
4. Find all extreme points and extreme rays of the set $\left\{x \in \mathbb{R}^{4}: 3 x_{1}+2 x_{2}+x_{3}+4 x_{4} \geq 12, x_{1}-x_{2} \geq 1, x \geq 0\right\}$
5. Consider a polyhedral region, P in \mathbb{E}^{n} defined by the following constraints

$$
\begin{array}{r}
\sum_{i=1}^{n} x_{i j}=1, \quad j=1, \ldots, n \\
\sum_{j=1}^{n} x_{i j}=1, \quad i=1, \ldots, n \\
0 \leq x_{i j} \leq 1, \quad i=1, \ldots, n, j=1, \ldots, n \tag{3}
\end{array}
$$

Show that each constraint defined by (1) and (2) is redundant individually. How many of them can be removed without affecting the polyhedral region P ?

