IE 601, Optimization Techniques

Assignment 06, October 28, 2019
Due Monday, November 04

Note: There are 6 questions on 1 page(s). Submit a report written in your own words. Write your name and roll number clearly on the report.

1. Show that the matrix $u u^{\top}$, where u is a vector in \mathbb{R}^{n} has rank 1 .
2. Consider the expressions for updating B^{k+1} and H^{k+1} in a BFGS iteration. Assuming B is the inverse of H, check whether B^{k+1} is an inverse of H^{k+1}. Also check whether BFGS update in H^{k+1} is a rank-2 update. Check also whether the update in B^{k+1} is of rank-2.
3. Draw the contours of the function $5 x_{1}^{2}-2 x_{1}+4 x_{1} x_{2}+x_{2}^{2}$. Find a non-optimal point where the steepest descent and Newton directions are the same. Find another point where they are different.
4. Starting at the point $\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$, solve the above problem using BFGS. You may use exact line search to find the step length.
5. Transform the above problem into a sum of squares of the two affine functions f_{1} and f_{2} of x. Substitute $y_{1}=f_{1}$ and $y_{2}=f_{2}$. Note that we are making an affine transformation $y=A x+b$. If we minimize $y_{1}^{2}+y_{2}^{2}$, is it 'equivalent' to minimizing f ? Compare the directions of steepest descent and Newton's method (only first iteration) for this problem to those of the above problem. Use the starting point $x=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$.
6. Exercise 3.11 [Fletcher]
