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Abstract 

In the era of petascale supercomputing, the importance of load 

balancing is crucial. Although dynamic load balancing is 

widespread, it is increasingly difficult to implement effectively 

with thousands of processors or more, prompting a second look 

at static load-balancing techniques even though the optimal 

allocation of tasks to processors is an NP-hard problem. We 

propose heuristic static load-balancing algorithm, employing 

fitted benchmarking data, as an alternative to dynamic load 

balancing. The problem of allocating CPU cores to tasks is 

formulated as a mixed-integer nonlinear optimization problem, 

which is solved by using an optimization solver. On 163,840 

cores of Blue Gene/P, we achieved a parallel efficiency of 80% 

for an execution of the fragment molecular orbital method 

applied to model protein-ligand complexes quantum-

mechanically. The obtained allocation is shown to outperform 

dynamic load balancing by at least a factor of 2, thus 

motivating the use of this approach on other coarse-grained 

applications. 

Keywords: Dynamic load balancing, static load balancing, 

heuristic algorithm, quantum chemistry, GAMESS, fragment 
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complex 

I. INTRODUCTION 

Achieving an even load balance is a key issue in parallel 
computing. Moreover, the impact of load balancing on the 
overall algorithm efficiency stands to increase dramatically 
as we enter the petascale supercomputing era. By Amdahl’s 
law, the scalable component of the total wall time shrinks as 
the numbers of processors increases, while the load 
imbalance, together with the constant sequential component, 
acts to retard the scalability. Although parallelization of 
sequential code often requires rewriting the code, adopting 
an efficient load-balancing scheme can be a simple and 
effective way to boost scalability.  

Dynamic load balancing (DLB) and static load balancing 
(SLB) are two broad classes of load-balancing algorithms. 
Whereas SLB relies on previously obtained knowledge (for 
example benchmarking data), or consistent task sizes, DLB 

dynamically assigns jobs to processors during code 
execution. Many variations on SLB and DLB algorithms 
adapted for specific applications have been reported [1], each 
with its advantages and disadvantages. SLB is usually simple 
to implement and has negligible overhead, making it suitable 
for “fine-grained” parallelism consisting of many small 
tasks. However, if the application involves much larger tasks 
of diverse sizes, as is often the case with “coarse-grained” 
parallelism, DLB may be preferred. Since many applications 
naturally involve widely differing task sizes, DLB algorithms 
have become widespread. Indeed, as the number of available 
processors increases (for instance, when moving from a PC 
cluster environment to a large modern supercomputer,) many 
applications find it advantageous to allocate work in larger 
chunks in the interest of reducing overhead. 

In the shift from fine- to coarse-grained parallelism, DLB 
may seem to be the natural choice for load balancing. 
However, the DLB schemes suitable for a PC cluster often 
perform poorly on many thousands of processors, prompting 
the search for load-balancing paradigms that can handle 
diverse task sizes with minimal overhead. One possibility is 
to adapt SLB techniques to pre-allocate tasks more 
effectively by drawing on a deeper understanding of the 
application at hand. However, the optimal static mapping of 
jobs to more than two processors is, in general, an NP-hard 
problem [2, 3]. Nevertheless, such SLB methods have been 
successfully applied to a large number of applications [1]. 
The success of applying SLB often relies on predictive 
models that can also depend on the accuracy of input data 
from a benchmarking study; both factors can be 
systematically improved. Furthermore, if the calculation is 
iterative, the lack of a dynamic means of allocating tasks can 
be accounted for in SLB schemes by redistributing work 
between iterations. 

In this paper we examine parallel load-balancing schemes 
applied to a quantum chemistry method - the fragment 
molecular orbital (FMO) method implemented in the 
quantum chemistry code GAMESS [4, 5] - on the Blue 
Gene/P [6] supercomputer at Argonne National Laboratory. 
While FMO has been shown before to achieve superior 
scalability for fine-grained systems such as water clusters 
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[7], we aim to improve in this work the scalability and 
efficiency of coarse-grained systems, such as proteins. We 
analyze why currently used DLB is not an optimal load-
balancing scheme, and we propose a new, more reasonable 
SLB alternative.  

A key feature of our SLB method is the formulation of a 
mixed-integer nonlinear optimization (MINLP) problem to 
model the allocation of processing cores to tasks. The 
MINLP approach provides great flexibility in modeling the 
allocation problem realistically. Using nonlinear functions, 
we can capture complex relationships between running time 
and the number of processors. At the same time, we can 
impose integer restrictions on certain variables (e.g., number 
of processors). The solution to MINLP can then be directly 
used for load balancing in the GAMESS application. To 
solve the MINLP arising in our procedure, we use 
MINOTAUR [8], a freely available MINLP toolkit. It offers 
several algorithms for solving general MINLPs, and can be 
easily called from different interfaces. Our MINLP 
formulation requires a few parameters to accurately model 
the performance. These parameters are obtained by 
collecting benchmarking data about the application and 
solving a fitting problem. We describe these methods in 
Section IV. Our experiments demonstrate that both the fitting 
problem and the MINLP problem can be solved quickly on a 
single core, and the resulting allocations lead to significant 
savings in running time of the GAMESS application. 

The DLB and SLB comparison is done on the receptor-
ligand system – Aurora-A kinase and inhibitor shown in Fig. 
1 (A). We demonstrate the performance of our method on a 
large protein system (see Fig. 1 (C)) using all 40 racks 
(163,840 cores) on Argonne’s Blue Gene/P. 

II. FRAGMENT MOLECULAR ORBITAL METHOD 

Quantum-chemical based methods are, generally 
speaking, applicable to any molecular system, and there exist 
a variety of such methods for describing different kinds of 
phenomena and properties. On the other hand, their 
computational cost increases steeply with the system size. 
Even the simplest restricted Hartree-Fock (RHF) method 
scales approximately cubically with the system size. There is 
an ongoing effort to reduce the scaling of quantum-
mechanical (QM) methods [9, 10] and parallelize them 
efficiently [11-18]. See, for example, the linearly scaling 
method developed by Challacombe and Schwegler [19], and 
the adaptive multiresolution method developed by Harrison, 
et al. [20]. A different and more efficient approach is taken in 
fragment-based methods [21, 22], which divide the system 
into fragments. This approach has multiple advantages: it 
dramatically reduces computational cost, increases stability 
of calculations, and provides additional information on 
properties of fragments and their interactions. From the point 
of view of computing, fragmentation results in division of 
one large calculation into many small and nearly independent 
subtasks or loosely coupled ensemble calculations. As a 
result, fragmentation methods are efficient in performing 
quantum mechanical calculations on petascale 
supercomputers. 

One of the fragment-based methods is the FMO method 
[23], which has been interfaced with many QM methods and 
successfully applied to chemical systems such as proteins, 
DNA, silicon nanowires, and ionic liquids [24]. FMO has 
been implemented in GAMESS [25] and parallelized with 
the generalized distributed data interface (GDDI) [26-28]. 

In FMO, all fragments are computed in the embedding 
potential exerted by the whole system, so that all fragments 
are computed self-consistently until convergence of each 
fragment electronic state with respect to the embedding 
potential (which depends on the electronic state of all 
fragments) is achieved. Consequently, fragment pair 
calculations are performed in a fixed embedding potential 
determined at the preceding step. 

The basic FMO equation has the form 
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where F is the number of fragments and iE , ijE  are the 

energies of fragment (monomer)  i and fragment pair (dimer) 
ij, respectively. These energies are assembled according to 
Eq. (1) to give the total energy and other properties of the 
system. 

GDDI is a two-level parallelization scheme, which can be 
thought of as coarse-grained parallelism since all CPU cores 
are divided into a few groups. At the higher intergroup level 
the load balancing is accomplished by assigning fragments or 
fragment pairs to GDDI groups. At the lower intragroup 
level, the load balancing is accomplished by assigning some 
integral work load to individual CPU cores within a group. 
Various implementations of GDDI exist, of which the main 
ones are (1) UNIX socket based, whereby each CPU core 
runs GAMESS process and communicates over TCP/IP via 
sockets, and (2) MPI based, where MPI communicators are 
created for groups. This two-level parallelization has been 
successful in obtaining up to about 90% of the perfect 
scalability (i.e., 90-fold speedup on a 100-fold increase in the 
number of cores) [28] on PC clusters with 128 CPUs 
connected by a low-end network (FastEthernet). FMO/GDDI 
has subsequently been used on larger computer systems such 
as the AIST supercluster [29]. More recently, FMO/GDDI 
has been successfully run for large water clusters on 131,072 
CPU cores on Argonne’s Blue Gene/P [7].  

In this paper we apply FMO to two protein-ligand 
systems. All benchmarking and tuning of both DLB and 
HSLB schemes have been done on Aurora-A kinase with 
inhibitor phthalazinone shown on Fig. 1 (A). Aurora kinases 
are essential for cell proliferation and a major target in 
designing new anti-cancer drugs. The system is of moderate 
size: 155 fragments (154 amino acids and 1 ligand), with the 
total number of atoms equal to 2,604, computed at the RHF 
level of theory with the 6-31G* basis set. The production run 
was done for ovine COX-1 complexed with ibuprofen shown 
on Fig. 1 (B). The system consists of 17,767 atoms divided 
into 1,093 fragments. For this work, we used the distributed 
memory storage of fragment densities [7]. Various tasks, 



including the fragmentation of proteins, structure checking, 
the generation of GAMESS input for FMO calculations, and 
the visualization of results, were performed by the FMOtools 
suite of Python programs [30]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (A) A schematic view of the structure of Aurora-A kinase 
complexed with inhibitor – phthalazinone in cyan color (PDB code: 3P9J). 
(B) ball-and-stick representation of inhibitor. The system consists of 2,604 
atoms divided into 155 fragments. (C) a schematic view of the structure of 
prostaglandin H(2) synthase-1 (COX-1) in a complex with ibuprofen in cyan 
color (PDB code: 1EQG). (D) ball-and-stick representation of ibuprofen. 
The system consists of 17,767 atoms divided into 1,093 fragments. 

III. LOAD BALANCING IN FRAGMENT MOLECULAR 

ORBITAL METHOD 

In the FMO method, a system is first subdivided into 
fragments. The proteins considered in this paper are divided 

naturally into amino acid residue fragments (at the C 
atoms) using the FMOgen tool in the FMOtools package 
[30]). We assumed that their standard protonation state lies at 
pH 7. The key issue for load balancing is that amino acid 
residues vary in size from the smallest with 7 atoms 
(Glycine) to the largest with 24 atoms (Tryptophan). The 
accuracy of FMO [24] is determined by the fragmentation, 
and hence fragments should not be very small. In other 
words, the number and the size of fragments are determined 
by the underlying chemistry and should not be modified 
merely to improve the efficiency of parallelization. The 
number of fragments and their sizes are therefore considered 
fixed for the purposes of parallelizing the calculations. 

The size of a fragment greatly affects quantum chemistry 
calculations because the calculation cost tends to scale as a 
high power of the system size. For example, RHF scales as 
N

3
 and coupled-cluster with perturbative triples (CCSD(T)) 

scales as N
7
. Thus, for CCSD(T), doubling the size of a 

system increases its cost by a factor of 128. The electronic 
state of some fragments can be frozen [31]. Still more 
variation in task sizes can arise from having different levels 
of theory and basis set for different regions of the system, as 
in the multilayer FMO method [32]. As the methodology of 
FMO becomes increasingly sophisticated, the time to 

solution and scalability of individual fragment calculations 
become harder to model. An example of the variation in 
scalability of fragment calculations as a function of size is 
shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Scalability of FMO fragments in Aurora-A kinase and inhibitor 
system on Blue Gene/P. The smallest fragment (Gly amino acid residue) and 
the largest fragment (inhibitor) are represented by ○ and □, respectively. The 
data points were fitted and performance models for each fragment are 
shown. The cores represent the computational processes in GDDI. The scale 
of the x-axis is logarithmic. 

A primary factor in the cost of quantum chemical 
calculations is the number of basis-functions (which is 
roughly proportional to the number of atoms). For FMO 
specifically (assuming the simple RHF level), important 
factors also include (1) the number of self-consistent field 
(SCF) iterations needed to achieve convergence; (2) the 
fragment packing density, namely, the number of fragments 
close to a given fragment, which strongly affects the 
computational time for the embedding potential; and (3) the 
fragment packing density. The latter has a large impact on 
dimer calculations owing to the use of electrostatic 
approximations (described elsewhere [24]). Furthermore, 
factors (1)-(3) strongly interact. For instance, the fragment 
packing density affects the SCF convergence, which, in turn, 
also depends on the charge, spin state and the initial guess of 
the electron density. In addition, the scaling and parallel 
efficiency of the code are a complex function of these 
factors; for instance, the relative fraction of the number of 
sequential steps, such as matrix diagonalizations, is strongly 
affected by the choice of SCF convergence method, as well 
as by the number of SCF iterations (because the embedding 
potential is computed once before SCF). All these factors 
make the modeling of the functional dependence of the 
timing upon the fragment size a formidable task. 

Once a system is split into fragments, FMO calculations 
can be performed by using the algorithm shown in Fig. 3. A 
detailed discussion of the algorithm is given elsewhere [28]. 
Here, we describe it briefly. At the coarse-grained DLB 

 
 



level, fragments are assigned to groups of CPU cores. In 
conjunction with MPI, GDDI can generate processor groups 
as shown in Fig. 3, line 3 (MPI_COMM_SPLIT function). 
By default, FMO generates processor groups of uniform size. 
Each group performs single-point fragment calculations, 
assigned dynamically (see Fig. 3, line 7). The quantum 
chemical theory used throughout this paper is RHF. The 
output of such an RHF calculation is the fragment density in 
the Coulomb field of all fragments (Fig. 3, line 10). Since the 
new density changes the field, the process must be repeated 
until self-consistency is achieved. This process involves 
exchange of fragment densities among the groups by putting 
generated densities in DDI global array (DDI_put, Fig. 3, 
line 12). The fragment densities are accessed via DDI_get 
inside SCF(i) and SCF(i,j) in order to compute the 
embedding potential, lines 10 and 23, respectively. The 
iterative process is sometimes referred to as the “self-
consistent charge” (SCC) or “monomer SCF” step, 
corresponding to the first term of the energy expansion in 
equation (1) with RHF theory. In the final step (Fig. 3, lines 
17-26), fragment monomer densities are used to construct 
dimers from all pairs of monomers constituting a second 
round of larger RHF calculations. However, the “dimer” step 
is not iterated to self-consistency with respect to the 
embedding potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudo-code of FMO calculations for dynamic load balancing. 

For FMO, three types of load balancing have been 
attempted prior to this work, and we suggest an efficient 
modification of one of them, the static load balancing [28]. 
The alternative to SLB is DLB; in addition, there is semi-
dynamic load balancing (SDLB) [29]. In DLB, an efficient 
means to improve efficiency is the large-jobs-first strategy 
[28]. This strategy considerably reduces the synchronization 

lag at the end of calculations because the smallest tasks are 
done last. DLB, in our experience, performs satisfactorily 
when the ratio of the total number of cores to the number of 
fragments is not very high (roughly 16 for our case, but it 
may vary considerably). Using this ratio and recalling that 
the number of fragments is fixed, DLB may be applied on a 
protein with 400 residues with good results on up to roughly 
6,400 CPU cores. Adding more cores may result in a 
deterioration of the performance. The parallelization 
efficiency may drop because the calculations of small 
fragments cannot be efficiently parallelized on a large 
number of cores allocated under the equal partitioning 
scheme of DLB. An improvement of this DLB problem has 
been achieved with SDLB, in which a handful of the largest 
fragment calculations are performed using SLB, while the 
rest are done with DLB (after the CPU cores participating in 
SLB finish, they also join in the DLB calculations). 
However, such a strategy is useful mainly in cases where 
there are only a few large fragments and the total number of 
CPU cores is not high; otherwise the problems mentioned 
above cannot be avoided, an efficient solution is given by the 
heuristic static load balancing (HSLB) method proposed in 
Section IV. The main idea behind HSLB is to customize 
GDDI group sized to the fragment sizes. Since we solve an 
optimization problem heuristically, it can easily adapt to 
handle different number of CPUs and fragments. 

The number of processor groups used in FMO 
calculations can vary from one to the number of fragments. 
Fig. 4 depicts the impact of the group count on the scalability 
of FMO for a single SCC iteration of a system with 155 
fragments. In the case of a single GDDI group, each 
fragment calculation is executed on all CPU cores. Clearly, 
all but the largest fragments utilize the large processor count 
inefficiently, and the overall calculation has a low scalability. 
On the other hand, the 155-group calculation, in which there 
is a group for every fragment, exhibits improved scalability. 
The recommended grouping in FMO is based on having 
three fragments per group; this corresponds to 52 groups in 
this system. The difference in scalability and wall clock time 
for different group counts is explained in Figs 5 and 6. While 
the synchronization time shown is averaged over all GDDI 
groups, the efficiency is computed for each fragment 
separately and then averaged over all fragments. Thus, the 
efficiency Wi of fragment i as a function of the number of 
CPU cores is computed as 
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where 0n is the reference value of the number of CPU cores 

(1 in our case), n  is the actual number of CPU cores, and 

 0nTi  and  nTi  are the wall clock times to compute the 

energy of fragment i in FMO on 0n  and n  CPU cores, 

respectively. 

The data in Fig. 5 and Fig. 6 can be used to explain why 
the optimum group count is somewhere between 1 and 155. 
For example, the synchronization time tends to increase with 
the group count, starting at zero seconds in the case of a 
single group. However, computational efficiency also tends 

// Initialize variables 

1:  number_of_fragments=input(); 
2:  number_of_groups=number_of_fragments/3; 

3:  DDI_group=DDI_group_create(number_of_groups,DDI_world); 

// Monomer loop 
4:  do { 

5:      for (i=1; i<number_of_fragments; i++) { 

6:          DDI_scope(DDI_world); 
7:          mytask=dynamic_load_balancing(DDI_world); 

8:          if (mytask==i) { 

9:              DDI_scope(DDI_group); 
10:            fragment_density(i)=SCF(i); 

11:            DDI_scope(DDI_world); 

12:            DDI_put(fragment_density[i]); 

13:        } 

14:     } 

15:     DDI_sync(DDI_world); 
16: } while (fragment_density[]!=converged); 

// Dimer loop 

17: for (i=1; i<number_of_fragments; i++) { 
18:     for (j=1; j<i; j++) { 

19:         DDI_scope(DDI_world); 

20:         mytask=dynamic_load_balancing(DDI_world); 
21:        if (mytask==i,j) { 

22:            DDI_scope(DDI_group); 

23:            two_fragment_density(i,j)=SCF(i,j); 
24:         } 

25:     }    

26: } 
 



to increase with the group count as smaller groups encounter 
lower parallel overheads. Therefore, an optimal group-count 
can be obtained only by finding the right balance between 
the time spent in synchronization and that gained by 
parallelism. In addition, we must ensure that the variance in 
time taken by different fragments in minimized. These times 
in turn depend on hardware characteristics such as the 
number of cores, CPU type, and the network type of the 
system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Wall-clock time to finish a single FMO SCC iteration with 
different load balancing schemes. The dataset is for Aurora-A kinase and 
inhibitor system. The calculations are done at the RHF-D level of theory and 
6-31G* basis set on Blue Gene/P. The scale of the y-axis is logarithmic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Average synchronization time among fragments accumulated 
during the first FMO SCC iteration for different load balancing schemes on 
Blue Gene/P. The dataset is for Aurora-A kinase and inhibitor system. For 
DLB with one group, the synchronization time is equal to 0 seconds but 
because of the log scale it is shown as 1 second. The scale of the y-axis is 
logarithmic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Parallel efficiency averaged over fragments during the first FMO 
SCC iteration for different load balancing schemes on Blue Gene/P. The 
dataset is for Aurora-A kinase and inhibitor system. 

IV. HEURISTIC STATIC LOAD-BALANCING ALGORITHM  

Our heuristic static load-balancing method consists of 
four steps. First, we collect benchmarking data related to the 
compute time of fragments. Second, we solve for the optimal 
parameters by a least-squares method based on our chosen 
scalability model. Third, we solve an integer optimization 
problem in order to obtain an optimal allocation of cores. 
Fourth, we allocate the optimal number of cores obtained 
from the optimization to run FMO in static load-balancing 
mode.  

With a suitable model for the compute time, one can 
apply this four-step procedure to any other coarse-grained 
application. Before describing each of these steps for our 
application, we list in Table I the notation used to denote 
variables and parameters in our models. 

Table I. List of variables and parameters used in models described in Section 
IV. 

Symbol Description 

  Set of positive real numbers. 

F  Total number of tasks (fragments) among which we want 

to allocate available cores. 

N  Total number of cores available for allocation. 

in  Number of cores allocated for processing task- i . 

)( ii nT  Performance function that models the time taken to 

process task- i  by using in  number of cores. 

)( i
scal

i nT  Scalable component of the function )( ii nT . 

)( i
serial

i nT  “Serial” component of the function )( ii nT . 

 

 

 



)( i
nonlin

i nT  Component of the function )( ii nT  other than 

)( i
scal

i nT  and )( i
serial

i nT . 

iD  Total number of data points available for creating the 

performance function model for fragment i . 

iiii dcba ,,,  Parameters associated with the performance function, 

)( ii nT , of task- i . 

  Wall-clock time obtained from solving the allocation 

problem. 

ijy  Observed wall-clock time in the thj run of fragment 

i , ,,...,1 iDj   in the benchmarking stage. 

ijn  Number of cores allocated in the thj  run of fragment 

i , ,,...,1 iDj   in the benchmarking stage. 

A. Performance Model 

Choosing an appropriate performance model is one of the 
most important steps in designing a successful SLB 
algorithm. Over the years many performance models have 
been developed [33]. Many of parallel performance models 
begin by identifying sequential and parallel components of 
the execution time in accordance with Amdahl’s law. They 
try to capture the salient features of the calculation in terms 
of the key parameters of the problem. For the FMO 
application considered here, the key feature is the coarse-
grained parallelism, which can be captured by selecting 
mathematical models for the run time of each fragment 
independently. In this work, we use the nonlinear model 
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where )( ii nT  represents the wall-clock time to compute the 

thi  fragment as a function of in the number of processor 

cores allocated to process it. The three components of )( ii nT  

are described next. 

The quantity )( i
scal

i nT  represents the component of the 

wall-clock time with perfect (or linear) scalability. It is a 

monotonically decreasing function that asymptotically 

approaches zero. The quantity ),( i
serial

i nT  on the other 

hand, represents the time spent in the nonparallelized 

component of the application. It is independent of the 

number of cores in  and includes any purely serial part of 

code. From the mathematical point of view it is a constant 

that defines the minimum value of )( ii nT  

(ignoring )( i
nonlin

i nT ). As in  increases, serial
iT  is expected 

to dominate )( ii nT . 

The quantity )( i
nonlin

i nT  represents the component of the 

wall-clock time that is not described by either )( i
scal

i nT  or 

).( i
serial

i nT  It represents the time spent in code that is only 

partially parallelized or depends on in  in a way more 

complicated than the other two components. An example of 

a partially parallel component of our application is the 

diagonalization of the Fock matrix in the self-consistent 

field (SCF) method. Generally, )( i
nonlin

i nT may include time 

spent in activities such as initialization, communication, and 

synchronization. Our choice of the form of )( i
nonlin

i nT gives 

our model the ability to account for all these components 

without constraining it to be an increasing or decreasing 

function. The sign of the parameters  ib and  ic determines 

the shape of the function, and consequently every fragment 

may have a different shape of )( i
nonlin

i nT .  

The functional form of )( ii nT  seems to make sense both 

mathematically and from the viewpoint of Amdahl’s law. 
From the mathematical perspective, one component of 

)( ii nT  decreases, while another increases with in . The 

function may increase or decrease for different values of 

in depending on the dominating component for that number 

of cores. A graphical illustration of this function is given in 
Fig. 2. From the perspective of Amdahl’s law, in the absence 

of the complicating component ),( i
nonlin

i nT )( i
scal

i nT  

accounts for largest contribution when in  is small, while 

serial
iT  is the largest contribution to for large in . 

B. Fitting Data 

We estimate the parameters ,,, iii cba and id  used in Eq. 

(3) by fitting the values of wall-clock time of each fragment 
over the first SCC iteration for different CPU core groupings. 
In other words, we perform calculations of each fragment in 
the embedding potential, varying the number of cores per 
GDDI group. The timings are collected as a function of the 
number of cores per group, and we fit the coefficients. In the 
future we plan to examine the possibilities of using several 
SCC iterations for the fitting. 

For the thi  fragment, we obtain the best fit by solving 

the least squares problem 

,,,, subject to

,min

1

2

,,,






















iiii

D

j

i
c
iji

ij

i
ij

dcba

dcba

dnb
n

a
y

i

i

iiii  (4) 

where ijy is the observed value of time taken in solving for 

fragment j when ijn  cores are allocated to it. Di is the 

number of different GDDI groups sizes tried in the fitting 
procedure (in this paper, Di varied from 3 to 7, depending on 
the system). The objective function of the optimization 
problem (4) is in general not convex, and there may be 
several locally optimal solutions of the problem. Since 
nonlinear optimization algorithms are iterative, selecting a 
different starting point may lead the solver to a different local 
solution. We experimented with different starting solutions 
and observed that even though the parameter values may 
differ, the solution value of problem (4) did not vary 
significantly. More important was the observation that the 
differences in parameter values did not translate into 



significant differences in the optimal allocation of cores that 
we calculate in the next step. 

We have constrained the variables in our fitting problem 
Eq. (4) to be nonnegative even though doing so is not 
necessary mathematically. It makes sense for parameters a, 
b, and d to be positive because they represent values of time. 
It is less obvious what the constraints for c should be. In 

general, )( i
nonlin

i nT  can be increasing or decreasing, but we 

prefer a positive c because our application is highly scalable. 
The total time does not increase even when the number of 
cores used in production runs is much larger than that in trial 
runs for gathering data. Thus, a positive value of c ensures 
that our model has a better fit even when we extrapolate it to 
a large number of cores. 

The examples of fitted ,,, iii cba and id can be seen for 

the smallest and the largest fragments in Fig. 2. Since the 

values ijy are gathered from actual runs on the system, it is 

important to judiciously choose trial values of ijn  in the 

data-gathering stage. There is an obvious trade-off between 

the time taken to obtain ijy and the quality of the model. 

Since the solution procedure in GAMESS is iterative and the 
nature of work is similar for all iterations, we can model the 
functions using time observations for a single iteration only. 
It helps us save time without sacrificing accuracy. To obtain 

good estimates of ,,, iii cba and ,id we recommend sampling 

ijn from a large range of core counts: from a few to 

thousands for each fragment. In order to avoid over-fitting, 
the number of samples should be at least greater than four for 
each fragment. We used eight samples in our experiments. 
The number of samples should obviously increase with the 
level of noise in the application and the number of 
parameters to be estimated. 

In general, one should judiciously pick samples based on 
a priori knowledge of the tasks. Lacking such knowledge, 
we began by dividing the available cores equally among all 
groups. This approach proved satisfactory for systems with 
similar-sized fragments (along with a consistent theory and 
basis set). In the cases when, for example, a ligand is much 
larger than the largest amino acid, a more sophisticated 
allocation for sampling may needed. We also note that the 
recorded times do not include FMO initialization and 
intergroup synchronization time, but they do include all 
intragroup computation and communication including 
synchronization. 

Our procedure of first collecting data and then rerunning 
the full application from scratch can be improved in several 
ways. We use our simple procedure to demonstrate the 
effectiveness of using an optimal allocation of cores. Our 
procedure can be modified with little effort to reuse more 
information from the data collection stage for the solving 
stage.  

C. Formulating the Optimization Problem 

Once we have identified an appropriate performance 
model and obtained values of all parameters from the 

previous steps, we can formulate an optimization problem to 
find the optimal allocation of cores. The decision variables 

that we seek to optimize are the number of processors, ,in  to 

be allocated to each fragment }.,...1{ Fi The choice of 

objective that we seek to minimize or maximize depends on 
the preference of the user or the systems administrator. A 
user may want to minimize the total wall-clock time of the 
application, in which case the following min-max function is 
used 
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If on the other hand, a user wishes to minimize the total time 
spent in calculating, the objective function is just the sum of 
times used by each task, 

.)(min
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nT     (6) 

One can also seek to maximize the minimum time used by a 
task. Like the min-max criterion, the max-min criterion also 
seeks to obtain a fair distribution of cores by taking away 
allocations from the fastest tasks. It is written as 

).(minmax ii
in

nT     (7) 

The physical restrictions of the system can be modeled by 
adding constraints to the optimization problem; for example, 
the number of cores used in calculations cannot exceed the 
total number of available cores, N, 

.
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We can also have constraints based on user’s preferences, 
e.g. the user may wish to minimize the wall clock time with 
an additional constraint that the total core time must be 
below a threshold T: 
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Some constraints may be needed to make the model 
amenable for the solver. In particular, most solvers require 
the derivatives of objective and constraints to be continuous. 
The min-max objective function should be therefore be 
replaced by an objective of minimizing a new variable, say η, 
and additional constraints must be introduced to ensure η is 

no less than each )( inf . The full model is 

.,...,1 integer, ,0

,...,1,

 subject to
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  (10) 

We considered the three objective functions described above, 
together with constraints on the number of cores available in 
our models. After testing on a large number of different input 



combinations, we observed that the min-max function in Eq. 
5 outperforms the other objectives. It also makes sense from 
the viewpoint of minimizing the overall wall-clock time of 
the application. One comparison of the solutions from 
different formulations is shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

D. Solving the MINLP Model 

MINLP problems, of which the optimization problem Eq. 
(10) is a special case, are NP-hard in general. Certain 
specific classes of MINLP, such as the single constraint 
resource constrained problems with nonincreasing objective 
functions can be solved in polynomial time [34]. But they 
require customized algorithms. Hence we consider 
algorithms for general MINLPs only. The algorithms to 
solve general MINLPs are usually based on the branch-and-
bound method [35]. These methods are guaranteed to 
provide an optimal solution or show that none exists. In 
addition to the number of variables and constraints, the time 
required to solve these problems depends on the type of 
functions used in the objective and constraints. For instance, 
if all the nonlinear functions are convex, then a local solution 
of the continuous relaxation is also its global solution. 
Several specialized algorithms exploit this fact and other 
useful properties of convex functions [35-40]. On the other 
hand, if any function is not convex, then the continuous 
relaxation does not give a bound on the objective value. In 
this case, one needs to further relax the continuous problem 
by introducing new variables and modifying the constraints 
[41, 42]. 

We wrote our optimization problem in the AMPL [43] 
modeling language. AMPL enables users to write 
optimization model using simple mathematical notation. It 
also provides derivatives of nonlinear functions 
automatically, and it can be used with several different 
solvers. To solve the problem, we used the open-source 
solver toolkit MINOTAUR [8]. MINOTAUR offers different 
solvers based on the algorithms mentioned above and also 
offers advanced routines to reformulate MINLPs. It provides 
libraries that can be called from other C++ and FORTRAN 
codes and hence can be directly called without requiring 
AMPL. For solving our problem, we use the LP/NLP [36] 
solver implemented in MINOTAUR. Since the coefficients 

iii cba ,, are positive, the nonlinear functions are convex, and 

this algorithm finds a global solution of the problem. We 
briefly describe this algorithm next. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The LP/NLP algorithm is initialized by first creating a 
linear relaxation of the MINLP. Suppose we have a nonlinear 
constraint of the form 0)( xf , where f is a continuously 

differentiable convex function. A linear relaxation of the 
constraint is obtained by the linearization around any 

point kx , 

  .0)()(  kkTk xfxxxf   (11) 

In general, the more the number of linearization 
constraints obtained from distinct points, the closer is the 
relaxation to the original problem. However, a large number 
of constraints can slow the solver. In order to mitigate this 
problem, linearization-constraints derived from only a single 
point are added initially. This point is the obtained by solving 
the continuous nonlinear programming (NLP) problem. We 
later add linearization constraints for only those nonlinear 
constraints that are violated significantly by the solution. 

After the initial linear programming (LP) relaxation is 
created, it is added to a list of unsolved subproblems. The 
value of the incumbent solution of MINLP is initialized to 
infinity. In each step of the algorithm, we remove a 
subproblem from the list and solve the linear relaxation using 
an LP solver. If the solution value is greater than the 
incumbent, we discard this sub-problem because it does not 
contain any solution better than the incumbent. If the 

solution )ˆ(x  of the LP problem has fractional values, we 

create two new subproblems by branching. We choose an 

integer variable i  for which ix̂  is fractional. In one 

subproblem we add the constraint  ii xx ˆ . In the other, we 

add the constraint  ii xx ˆ . These two sub-problems are 

added to the list of unsolved subproblems. If x̂ satisfies 

integer constraints, we check whether it satisfies all the 
nonlinear constraints as well. If it is feasible, then we have an 

 
 

Figure 7: Allocation of different solvers: (A) minimizing total time, (B) maximizing minimum group time, (C) minimizing maximum group time. The height of 
each column represents time to compute one fragment, and the width of each column represents how many cores were assigned. The dataset is for the complex of 
Aurora-A kinase and its inhibitor, which was collected on 1024 cores of Blue Gene/P for FMO at the RHF/6-31G* level. 

 



 

incumbent solution. Otherwise, we add more linearization 

constraints around x̂ of the form shown in Eq. (10), and 

continue. The algorithm terminates when the list is empty.  

In MINOTAUR, the LP problems are solved by using the 
CLP solver [44], and NLP problems are solved by using 
filterSQP [45]. In the worst case, the algorithm may require 
solving an exponential (in the number of integer variables) 
number of LP and NLP problems, but in practice it takes 
much fewer. For the specific instances of our core-allocation 
problem, the solution time was always less than three 
minutes on a single core, which is insignificant compared 
with the running time of the parallel application. 

E. Summary of HSLB Algorithm 

Before presenting the results of our experiments, we 
summarize the four-step HSLB algorithm and discuss some 
ways of further improving it. 

(1) Gather Data: Perform a single SCC iteration for 
the given molecular system (protein-ligand complex) with 
FMO by executing GAMESS D times using a different total 
numbers of cores, with suitable choices for Di. Collect the 
running times yij for each fragment.  

(2) Fit: Next, solve F different least squares problems 
(4) to determine the coefficients ai, bi, ci, and di in Eq. (3) for 
each fragment i. 

(3) Solve: Determine the best allocation by solving the 
MINLP (10), and obtain the optimal values of size ni for each 
fragment i. 

(4) Execute: Execute the complete FMO run with 
GAMESS, using the determined group sizes in step (3). 

This algorithm, being of a general nature, can be 
improved in several ways for a given application. The data 
gathering step (1) can be avoided altogether if reliable 
benchmarks are already available, for example, from 
previous experiments. Steps (2) and (3) can be solved by 
calling a MINLP solver directly from the application, thus 
avoiding the use of AMPL. The least-squares problem can be 
solved with a MINLP solver by just calling its nonlinear 
solver once. After it is solved, the MINLP solver can then 
solve the MINLP of step (3). More improvements are 
possible if the HSLB procedure is called more than once to 
reallocate the cores after a few iterations of the complete run. 
The running time of all iterations can be stored, a better fit be 
obtained, and the MINLP re-solved to obtained better 
allocation based on the new data. 

In this work, we applied HSLB only to the monomer step 
in FMO, which is iterative and requires running each 
monomer calculation typically 20-25 times. We used DLB 
for the dimer step, which involves computing each dimer 
once; and thus the benefits of an optimized allocation in 
HSLB do not merit its application given the need to do 
preliminary data gathering. However, in the future it is 
conceivable to construct a good guess for an optimum node 
allocation in dimers based on the monomer data, which 
would accelerate the dimer step as well. The load balancing 
in dimers is also less severe than in monomers, because the 

number of dimers, for which quantum-mechanical 
calculations are performed, is typically 3-4 times the number 
of fragments F (other dimers that are spatially well separated 
are computed with a very fast electrostatic approximation) 
[24]. 

V. RESULTS AND DISCUSSION 

The performance of HSLB is compared (see Fig. 1 (A) 
and (B)) to that of DLB with different numbers of groups for 
the system of Aurora kinase and inhibitor phthalazinone. 
This system has 155 fragments. Fig. 4 shows that the HSLB 
scheme outperforms the DLB schemes by at least a factor of 
two in the wall-clock time. We also found that some DLB 
schemes have scalability similar to HSLB. We also make 
other observations about the performance of HSLB. Fig. 5 
shows that HSLB has the lowest synchronization time even 
on thousands of processors. Since the synchronization time 
becomes important when a large number of CPU cores are 
used, HSLB should be preferred for such systems. The 
HSLB algorithm also shows excellent efficiency, greater 
than 90% on large numbers of cores, as shown in Fig. 6. As 
the number of cores increases, we anticipated that the 
scalability and efficiency of HSLB might deteriorate. To 
quantify this deterioration, we tested the performance of 
HSLB for larger processor counts using a larger problem: 
COX-1 complexed with ibuprofen (see Fig. 1 (C) and (D)); a 
total of 1093 fragments and 17,767 atoms. Fig. 8 shows that 
the COX-1 calculation achieves 80% efficiency averaged 
over all fragments for the SCC iterations in FMO on 163,840 
cores  at the RHF, 6-31G* level of theory.  The  single-point  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Ideal and observed scalability curves based on wall-clock time for 
the first FMO SCC iteration on Blue Gene/P for COX-1 complexed with 
ibuprofen. All calculations are done in a “dual” mode that restricts processes 
to 2 MPI tasks per node.  Efficiency averaged over all the fragments is 
shown for each run. 

energy calculation takes only ~54 minutes. The quality of 
results obtained at this computational level strongly suggests 
that significantly higher processor counts can be efficiently 
utilized for larger problems. 

While HSLB outperforms DLB, it still exhibits a small 
decline in scalability and efficiency for high processor counts 



for both the Aurora kinase and COX-1 calculations. This 
decline may be due to sequential steps in the fragment SCF 
and the fluctuations in the synchronization time caused by 
runtime operating system tasks, shared network issues, 
hardware failure, deficiencies of performance model or 
benchmarking data, and so forth. It is commonly understood 
that for these reasons, synchronization becomes more 
problematic as the number of processors increases. Although 
these fluctuations do not appear in Fig. 5 (because only 
averaged values are shown), use of a low level of theory 
(RHF, 6-31G*) here has helped uncover the limitations of 
the HSLB approach by raising the significance of the 
synchronization time (if density functional theory (DFT) is 
used, one can expect a better parallel efficiency because of a 
high scaling of the DFT specific grid integration). From the 
data, the operating limits of HSLB on Blue Gene/P would 
appear to be anywhere from three cores per task up to the 
point where random computational noise (at hundreds of 
thousands of cores) hampers the ability to predict the time to 
solution for tasks. Another issue impacting the performance 
of HSLB is that the iteration time is not a constant but tends 
to decrease because successive SCC iterations typically 
require fewer micro-iterations to converge the density. 
Moreover, even this behavior is not monotonic across the 
calculation because different fragments converge at different 
rates. Although our test runs did not suffer from these 
problems, a general solution is to apply HSLB adaptively. 
We can fit scalability curves, obtain the nonlinear equations 
and solve for the optimal allocation for all SCC iterations, as 
described in Section IV. To this end, we have interfaced 
MINOTAUR directly with GAMESS on Blue Gene/P. It 
enables us to directly optimize without making system calls 
to execute the AMPL model. We have not included results 
for adaptive HSLB here because our goal is to present the 
fundamental HSLB concept. That said, adaptive HSLB 
offers a promising direction for future development because 
it combines the efficiency of HSLB with the adaptability of 
DLB. 

VI. CONCLUSIONS 

The method development in this paper is an evolution of 
the parallelization of a complex quantum-mechanical 
program GAMESS [4, 5] over dozens of CPU cores in DDI 
introduced in 2000 [26], extended to hundreds with GDDI in 
2004 [28] as demonstrated on a powerful supercomputer of 
that time (in 2005 [29]). The manual variation of the group 
size in GDDI to optimize its performance used in a 
Supercomputing-2005 paper [29] inspired the present work, 
which we have conducted based on advanced mathematical 
methods guaranteeing the best allocation for a given number 
of cores and a molecular system. Although for fine-grained 
systems (water clusters) the previously developed load 
balancing has performed well up to about 130,000 CPU 
cores [7], coarse-grained systems (proteins) cannot be treated 
with high efficiency on modern petascale computers in the 
same way. 

We have shown that the present HSLB approach is at 
least two times faster than the previous DLB method and 
achieves a parallel efficiency of about 0.9 on petascale core-

counts, that is, hundreds of thousands of cores. Thus, from 
the user-perspective, HSLB is enabling FMO to handle 
automatically very large problems with diverse fragment 
sizes. Many interesting cases fall into the latter category. For 
example, in the study of photosynthesis, the reaction center 
[29, 46] features the chlorophyll special pair, which is large 
and difficult to fragment for the chemical reasons (significant 
electron delocalization across the planar system). Another 
common situation is found in drug design, where the drug 
molecules often have 50-100 atoms with extended 
conjugation. Such large fragments typically coexist with 
many small ones, such as explicit water molecules having 
only three atoms per fragment. Where DLB based on 
uniform group sizes would be unable to utilize many cores 
effectively for such systems, by fitting the GDDI group sizes 
to the fragments HSLB can efficiently utilize CPU core 
counts in the 100,000-range with negligible overhead. In this 
sense, HSLB is similar in spirit to the use of “preliminary” 
benchmarks in previous work to guess the optimum group 
sizes [29]. 

Our current era of petascale computing already has an 
eye on the coming exascale era, and the development of 
software capable of efficiently utilizing many thousands or 
millions of CPU cores is a topic of great interest. FMO 
accelerated by HSLB on petascale and exascale computers 
can become a powerful tool for drug and material design 
[24], realizing the high potential held by quantum-
mechanical methods on massively parallel computers. 

The coarse-grained optimization algorithm described 
here is not limited to FMO. Many coarse-grained 
applications can benefit from the present approach. For 
instance, many other fragment-based methods can be 
similarly parallelized. As the number of cores increases, the 
issues of minimizing the synchronization time while 
retaining a high efficiency will put load balancing schemes to 
a highly stressful test. We believe that for coarse-grained 
applications our HSLB algorithm is a promising and general 
approach. 
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