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Abstract
Supply chain networks are representation of interaction among different entities. 
Usually these entities are facilities which can be represented as nodes in a network 
and the flow of material between them can be represented as flow on arcs (paths) 
connecting them. These flows can be facilitated via multiple modes available to 
transport material from one facility to another. We discuss a multi-modal supply 
chain distribution problem where the aim is to minimize sum of transportation cost 
on various modes between facilities, inventory, backlog and lost sales costs over a 
time-horizon. The problem can be represented as a time-space network of nodes 
and arcs. Each node defines the state of a facility at a given time-period and the 
arcs between these nodes are either transportation, inventory or backlog carrying 
arcs. The time-horizon consists of discrete time-periods and the flows on transporta-
tion arcs are required to be an integer multiple of predefined lot sizes as in vehicle 
capacities, batch sizes, etc. Apart from this, there are certain business rules which 
are posed on transportation modes incoming to a facility or posed on the suppli-
ers of a facility are to be followed. The problem stated above is first modeled as a 
Mixed Integer Linear Program (MILP) and solved using a MILP solver. We propose 
integer rounding heuristics to get a feasible solution to the problem. We report in 
our results that these heuristics can be used to generate an integer feasible solution 
quickly. Using this feasible solution as an MIP start in solver helps us in reaching 
optimal solution in lesser time.
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1 Introduction

A supply chain [2] consists of a set of entities involved in fulfilling customer 
demand for products and/or services. These entities could be manufacturers, 
warehouses, retailers, transporters, customers, etc. They are connected with each 
other for exchange of material and information. The objective of supply chain as a 
function is to fulfil the end customer demand at the right time and at an affordable 
cost. Various costs such as manufacturing, procurement, transportation, inven-
tory, etc. are incurred to achieve this objective. An efficient supply chain attempts 
to operate at optimal level of these costs so as to gain maximum benefit possible 
for the entities involved.

Logistics (also referred as transportation) [15], an important function of a 
supply-chain involves the planning of movements of materials/goods from source 
(suppliers, factories, warehouses, etc.) to point of consumption either directly 
or via intermediate stops facilitated using different modes of transport. This is 
required to ensure that the materials are delivered timely in required quantities 
so that the resources using them are well utilized and the consumers demand-
ing them are satisfied. An efficient transportation plan impacts not only the trans-
portation costs but also inventory costs, costs due to late deliveries and cost of 
the material being transported. To face uncertainties and shortages, organiza-
tions introduce multiple echelons in their supply chains such as warehouses, dis-
tributions centers which hold inventory and act as a buffer against the shock of 
uncertainties and shortages. Also, supply chain may be multi-echelon inherently 
because there might not be a direct path for a source and destination pair.

Logistics planning can be manual or be done by tools that rely on either some 
heuristics, mathematical models, or exact algorithms. Manual planning often 
relies on the business acumen of the planner and is convenient if the data required 
in planning is humanly manageable. It is not robust to frequent changes in data 
and re-planning or doing what-if scenarios could be tedious. Heuristics is an 
approach where first the objective and requirements to be fulfilled by the plan are 
well identified and the plan is generated to satisfy these requirements by defining 
a process or series of steps to make a plan. The heuristics used for planning can 
be ad hoc to the problem or based on popular approaches like Genetic Algorithm 
[8], Tabu Search [7], Simulated Annealing [17] among others. Heuristics can be 
quite effective in generating good plans within less computational time, but face 
difficulty of ensuring that the plan is optimal.

The planning can also be done by abstracting the problem as a mathemati-
cal model that that fits some general mathematical paradigm that can be solved 
by available solvers for them or by developing an exact algorithm. Using such 
an approach can guarantee an optimal or near optimal plan with an estimate 
of how far the plan is from optimality. Some examples of mathematical model 
categories are Linear Programs(LP), Nonlinear Programs(NLP), Mixed Integer 
Programs(MILP), Mixed Integer Nonlinear Programs(MINLP). If plan is mod-
elled as a Linear Program (LP), then the planning can be done in polynomial 
time. It seldom happens that the model is LP and generally, the planning involves 
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some discrete choices of decision variables to be made which makes the plan-
ning problem fall under the category of Mixed Integer Linear Program (MILP) or 
Mixed Integer Non Linear Programs (MINLP) which are NP-hard.

In this article, we discuss a multi-modal supply chain distribution problem in 
multi-echelon network where the aim is to minimize sum of transportation cost on 
various modes between facilities, inventory, backlog and lost sales costs over a time-
horizon. The problem can be represented as a time-space network of nodes and arcs. 
Each node defines the state of a facility at a given time-period and the arcs between 
these nodes are either transportation, inventory or backlog carrying arcs. The time-
horizon consists of discrete time-periods and the flows on transportation arcs are 
required to be an integer multiple of predefined lot sizes as in vehicle capacities, 
batch sizes, etc. Apart from this, there are certain business rules which are posed on 
transportation modes incoming to a facility or posed on the suppliers of a facility.

First, we model the problem as a MILP [3] and solve it using a MILP solver [4]. 
We propose integer rounding heuristics to get a feasible solution to the problem. 
While MILP solvers have several heuristics developed for general purpose problems 
[1], they sometimes can not gain insights from the special structure of the model like 
we do here. We report in our results that these heuristics can be used to generate a 
feasible solution quickly. Using this feasible solution as an MIP start (initial solu-
tion) in solver helps us in reaching optimal solution in lesser time. When the solu-
tion given by integer rounding heuristics is used as a starting point for the solver, 
it helps the solver to reach optimal solution or solution with reduced gap from the 
optimal solution in lesser time.

Section 2 provides the literature survey of multi-modal supply chain planning in 
various domains and methods used for planning. The multi-modal supply chain dis-
tribution problem under consideration and MILP model is explained in sect. 3. Sec-
tion 4 shows how the model can be visualised as a network. Section 5 discusses the 
proposed rounding heuristics to generate a feasible solution for the problem. Sec-
tion 6 discusses the results of computational experiments conducted and conclusions 
drawn from them.

2  Literature review

Multi-modal supply chain problems are defined as problems where there are multi-
ple modes connecting two facilities such as rail, road, ocean, etc. or the route from 
one facility to another is reached after a sequence of modes of transport and we 
select a mode to transport commodities subjected to constraints such as arc capaci-
ties, cost of transportation, availability, etc. Udomwannakhet et al. [16] provides a 
review on multi-modal transportation models.

Haghani and Oh [10] presents a MILP model to address multi-commodity, multi-
modal logistics with time horizon in disaster management and proposes two heuris-
tics algorithms. A common characteristic of their model and ours is the availability 
of multiple modes, linear cost structure, deterministic supply/demands. We differ 
on the fronts of number of commodities (one in our case), consideration of trans-
fer times of modes at facilities (not considered here) and additional business rules. 
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In terms of objective, they have considered vehicular and commodity transporta-
tion costs separately in addition to inventory/backlog costs and mode transfer costs. 
The flows in the network under consideration are supply/demand carryover, trans-
portation via a mode from one facility to another and transfer of material from one 
mode to another at a facility. The two algorithms discussed by them, one is based 
on decomposition of the problem and Lagrangian relaxation and other is a fix-and-
run heuristic. The complicating constraints are the constraints binding vehicular and 
commodity flows due to multi-commodity aspect of the problem. The relaxation of 
these constraints reveals a block structure and the problem is decomposed into two 
sub-problems. In the fix-and-run heuristic, they iterate over time-periods in the time-
horizon and fix values of variable to rounded integer pertaining to a time and solve 
LP relaxation. After solving a series of LPs, they are able to get an integer feasible 
solution for the MILP model. The heuristics we propose take inspiration from the 
fix-and-run heuristic.

Crainic and Rousseau [5] addresses multi-modal, multi-commodity problem in 
freight transportation for service network design, traffic routing and determination 
of terminal policies presenting a general modeling framework using a network opti-
mization model to reduce delays and operating costs. They propose a column gen-
eration algorithm for their model.

Crainic et al. [6] developed an optimization model for multi-mode, multi-product 
network which has the network assignment method implemented in an interactive-
graphic system for the strategic analysis and planning of freight transportation sys-
tem. Guelat et al. [9] have presented a Gauss-Seidel Linear Approximation (GSLA) 
algorithm implemented for a multi-commodity, multi-mode nonlinear assignment 
problem.

In regards to integrality constraints on transportation flows, Li et al.[12] has given 
a DP algorithm for a single facility problem where incoming orders are multiple of 
a particular batch-size and the objective is to minimize cost of inventory, backlogs 
and production. Here the production cost is analogous to transportation cost in our 
problem. The major differences for the problem they address to ours is that in our 
problem there are multiple facilities, lot-sizes on various modes and we do not allow 
for indefinite backlogs.

Rabbani et al. [14] provides a solution to Supply Chain Network Design (SCND) 
planning for a multi-echelon network using an MIP model and a graph-theoretic 
heuristic. Rabbani et al. [13] presents MIP model for a multi-modal transportation 
problem in waste collection and a genetic algorithm (GA) for the same. Hanafi et al. 
[11] provides a solution for food supply chain industry using MIP model.

3  MILP model

3.1  Problem statement

We consider the following operational problem in logistics for a multi-echelon 
supply chain over multiple time periods and model it as a MILP. A space network 
of stock keeping facilities such as factories, warehouses, distribution centers, 
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retailers, etc. is given. Goods produced in the supply chain must be transported 
from the upstream facilities to those downstream in the chain. Transportation 
decisions in such networks generally are: (a) How much quantity should be sent 
from one facility to the other (b) and when should this transportation take place. 
By finding good solutions to these questions, one can save costs of transport-
ing goods and also of storing inventory. One would ideally like to supply goods 
from the nearest upstream facility to a given downstream facility. However, the 
required goods may not be available at the desired time or the upstream facility 
may have limited capacity, and so one may have to source the goods from other 
distant facilities at a higher cost. One can potentially store quantities of mate-
rial to overcome shortages in later time periods, but storing inventory also incurs 
cost. By carefully planning the flow of goods, we can minimize the sum total of 
these costs.

Exogenous demand for goods, either deterministic or uncertain, must be met on 
time. The supply chain has to bear the cost if the demand in not met (lost sales) 
or met later than expected (backlogged). We assume an exogenous demand can be 
backlogged until a certain predefined time-period (maximum lateness) after which 
the demand is considered as a lost sale. Cost of lost sales and back-logging are also 
included in the model objective. Supply constraints exist on supply facilities which 
states that a finite supply is available at every time-period on a supply facility.

Sometimes, it is possible to transport goods through more than one mode of 
transportation. A mode may be cheaper and may transport large quantities in 
bulk, but it may also be slower than other modes. Often the transportation modes 
between two facilities have integer lot sizing constraints - i.e. if the quantity of 
flow is non-zero, then it must be an integer multiple of a specified quantity(lot 
size). Additional business rules may specify that some proportionality con-
straints be met on the choice of transport mode on a given facility, for example, 
a particular facility may specify that it sources a certain percentage of goods via 
each mode in every time period. Similarly, a facility may have constraints which 
require it to source certain quantity of materials through specific upstream suppli-
ers only. These constraints are part of our model.

Discrete time horizons are considered over which decisions are to be made. It 
decides how much quantity must be transported over each mode between all pairs 
of facilities over the planning horizon. We observe that the model becomes large 
and intractable as the number of time periods increase. In order to overcome this 
difficulty, we adjust the granularity of the details of our model. The farther the 
time period from the time of modeling, more is the uncertainty in the demand and 
cost parameters of the model. Hence, we assume the plan for the first N periods 
should be more detailed than the rest of time-horizon. We achieve this simplifica-
tion by relaxing the lot-sizing restrictions of periods beyond N.

3.2  Assumptions

The following assumptions are made before we model the problem. 
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1. The exogenous demands and supply at facilities are known for the entire time-
horizon.

2. Inventory holding and backlog costs are considered linear at each facility.
3. Backlogs are allowed upto maximum lateness ( Si ) at facility i. After Si time-

periods have elapsed, the unsatisfied demand becomes lost sales.
4. Backlog costs are provided as inputs. Demands not satisfied within maximum 

lateness period are considered as lost sales. Hence lost sales cost depends on 
maximum lateness and backlog costs.

5. There is only one commodity that is being transported or stored.
6. Perishability of the item is not considered. It is permitted to carry an item in 

inventory till the end of the time-horizon.
7. If material arrives at a facility at time t via mode m, it can be made available for 

departure at time t via mode m′ ; i.e. the transfer of material at a facility from one 
mode to another can occur on the same day.

3.3  Model

To formulate the model, we first introduce the following notation:
Inputs and sets:

N  = set of facilities = {1,..,|N|}
M  = set of transportation modes = {1,..,|M|}
T  = set of time-periods = {1,..,|T|}
K  = set of time-buckets = {1,..,|K|}
Tk = kth bucket of time-periods ⊆ {1,..,|T| }      k ∈ K⋃
k∈K

Tk = T

⋂
k∈K

Tk = ∅

�+(i) = set of facilities for which facility i is a supplier
�−(i) = set of facilities for which facility i is a customer
Si = maximum lateness allowable at facility i.
Hi,t = inventory holding cost per unit item at facility i to be carried from t to t + 1

Bi,t = backlog cost per unit item at facility i to be carried from t + 1 to t
LSCi,t = lost sales cost per unit item at facility i at time t
Cm
i,j

 = transportation cost per unit item per unit time from facility i to facility j 
using mode m
Di,t = demand/supply at facility i at time t
Lm
i,j

 = time required for transportation from facility i to facility j using mode m
Am
i,j

 = lot size whose integer multiples are to be transported from facility i to facil-
ity j using mode m
Qm

max,i
 = upper limit on proportion of transportation flow to enter facility i via 

mode m over a time-bucket
Qm

min,i
 = lower limit on proportion of transportation flow to enter facility i via 

mode m over a time-bucket
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R
j

max,i
 = upper limit on proportion of transportaion flow to enter facility i from facil-

ity j over a time bucket
R
j

min,i
 = lower limit on proportion of transportaion flow to enter facility i from facil-

ity j over a time bucket
N = number of initial critical days
Emax = Maximum of { Si ∶ i ∈ N  } ∪ { Lm

i,j
∶ m ∈ M, i ∈ N, j ∈ �+(i)}

Decision Variables:

xi,t = inventory at facility i that is carried from time t to t + 1

yi,t = backlog at facility i that is carried from time t + 1 to t
f m
i,j,t

 = integer multiplier for transportation from facility i to j using mode m reaching 
at time t
lsi,t = lost sales occurring at facility i at time t

Formulation:
Objective:

Constraints: Flow balance constraints

Integrality and non-negativity constraints

Fixing variables

(OB)

minimize
∑

i∈N

∑

t∈T

Hi,t × xi,t +
∑

i∈N

∑

t∈T

Bi,t × yi,t +
∑

i∈N

∑

t∈T

LSCi,t × lsi,t

+
∑

m∈M

∑

i∈N

∑

j∈�+(i)

∑

t∈T∪{|T|+1,..,|T|+Emax}

Lm
i,j
× Cm

i,j
× Am

i,j
× f m

i,j,t

(FB-I)yi,1 + lsi,1 = xi,1 + Di,1 +
∑

m∈M

∑

j∈�+(i)

Am
i,j
× f m

i,j,1+Lm
i,j

∀i ∈ N

(FB-II)

xi,t−1 +
∑

m∈M

∑

j∈�−(i)

Am
j,i
× f m

j,i,t
+ yi,t + lsi,t

= xi,t +
∑

m∈M

∑

j∈�+(i)

Am
i,j
× f m

i,j,t+Lm
i,j

+ yi,t−1 + Di,t

∀i ∈ N, t ∈ {2, .., |T|}

(INT)f m
i,j,t

∈ ℤ
+∀i ∈ N, j ∈ �

+(i), t ∈ {1, ..,N},m ∈ M

(CONT)
f m
i,j,t

∈ ℝ
+∀i ∈ N, j ∈ �

+(i), t ∈ {N + 1, .., |T| + Emax},m ∈ M

xi,t, yi,t, lsi,t ∈ ℝ
+∀i ∈ N, t ∈ T

(FIX-f)f m
i,j,t

= 0∀i ∈ N, j ∈ �
+(i),m ∈ M, t ∈ {1, .., Lm

i,j
}
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In the above model, the objective OB is to minimize the sum of inventory holding 
costs, backlog costs, lost sales costs and transportation costs in the network. To 
ensure that the backlog at facility i(∀i ∈ N) at any time t(∀t ∈ T) is not carried for 
more than maximum lateness Si , we input lost sales costs such that 
Si × Bi,t < LSCi,t < (Si + 1) × Bi,t . The constraint FB-I and FB-II are the flow bal-
ancing constraints on facilities at first time-period and consecutive time-periods 
respectively. Constraints INT and CONT are integrality and non-negativity con-
straints. In constraint FIX-f, we fix the transportation flows reaching before time Lm

i,j
 

at any facility j from it’s source i via a mode m. The demand at facility i at time t 
( Di,t ) is used to represent exogenous supply as well as demand. For a supply facility 
Di,t will be a negative value and for a demand facility it will be a positive value as 
can be inferred from the flow constraints FB-I and FB-II. It can be noted that 
assumption 7 is built into constraints FB-I and FB-II as incoming and outgoing 
flows can be via different modes. If a facility i is a pure supply facility or a facility 
where no exogenous demand(Di,t ) occurs at any time-period t, then there cannot be 
any backlogs or lost sales possible at i as these backlogs and lost sales can be uti-
lized only to satisfy exogenous demands. This is given by constraint FIX-y and FIX-
ls. We refer to above model as FMIP.

In FMIP (if solved directly using a solver), at every node the flow constraints 
are always satisfied because incoming flows additional to demand can be carried 
as inventory and if incoming flows are less then exogenous demand then that can 
be balanced by backlogs or lost sales. Moreover there are no negative cost cycles. 
Hence, FMIP will always have at least one feasible solution.

3.4  Business rule pertaining to modes

The business proportionality constraints pertaining to modes can be expressed as 
BR-1a and BR-1b. It states that sum of incoming transportation flows to facility i 
from all of its suppliers summed over time-periods in a given time-bucket via a spe-
cific mode m is bounded by lower and upper limit on proportion of sum of flows 

(FIX-y)yi,t = 0∀i ∈ N, t ∈ TifDi,t ≤ 0

(FIX-ls)lsi,t = 0∀i ∈ N, t ∈ TifDi,t ≤ 0

(BR-1a)
Qm

min,i

(
∑

m�∈M

∑

j∈�−(i)

∑

t∈Tk

Am�

j,i
× f m

�

j,i,t

)
≤

∑

j∈�−(i)

∑

t∈Tk

Am
j,i
× f m

j,i,t

∀k ∈ K, i ∈ N,m ∈ M

(BR-1b)

∑

j∈�−(i)

∑

t∈Tk

Am
j,i
× f m

j,i,t
≤ Qm

max,i

(
∑

m�∈M

∑

j∈�−(i)

∑

t∈Tk

Am�

j,i
× f m

�

j,i,t

)

∀k ∈ K, i ∈ N,m ∈ M
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over all suppliers, time-periods in a given time-bucket and via all modes. When BR-
1a and BR-1b are added as constraints to FMIP, we refer to the model as MIP-BR1.

3.5  Business rule pertaining to sources

The business proportionality constraints pertaining to sources can be expressed as 
BR-2a and BR-2b. It states that sum of incoming transportation flows to facility i 
from all modes and summed over time-periods in a given time-bucket from a spe-
cific supplier j is bounded by lower and upper limit on proportion of sum of flows 
from all modes, suppliers and time-periods in a given time-bucket. When BR-2a and 
BR-2b are added as constraints to FMIP, we refer to the model as MIP-BR2.

When BR-1a, BR-1b, BR-2a and BR-2b are added as constraints to FMIP, we 
refer to the model as MIP-BR12.

4  Network representation

The problem discussed can be presented as time-space network G(N ×T,A) where 
N ×T  represents the set of nodes in the network and A  represents set of arcs con-
necting these nodes. The flows on arcs between the nodes are either transporta-
tion, inventory or backlogs. There are exogenous flows for supply, demand and lost 
sales. Figure 1 shows the various flows incoming and outgoing a typical node in the 
network.

A node in the graph denotes the pair (i, t), where i is a facility in the supply chain 
and t is the discrete time-period (e.g. a day). The node (i,  t) is connected to node 
(k, t + Lm

ik
) where the facility i is connected to k with an arc taking transportation 

time Lm
ik

 via mode m.
Figure 2 shows a snapshot of an example of G(N ×T,A) where there are four 

facilities and four time-periods for representation purpose.

5  Rounding heuristic

In this section we propose heuristics to get feasible solution to the problem. We 
make an attempt to get a feasible solution to MILPs: FMIP, MIP-BR1 , MIP-BR2 
and MIP-BR12.

(BR-2a)
R
j

min,i

(
∑

m∈M

∑

j�∈�−(i)

∑

t∈Tk

Am
j�,i

× f m
j�,i,t

)
≤

∑

m∈M

∑

t∈Tk

Am
j,i
× f m

j,i,t

∀k ∈ K, i ∈ N, j ∈ �
−(i)

(BR-2b)

∑

m∈M

∑

t∈Tk

Am
j,i
× f m

j,i,t
≤ R

j

max,i

(
∑

m∈M

∑

j�∈�−(i)

∑

t∈Tk

Am
j�,i

× f m
j�,i,t

)

∀k ∈ K, i ∈ N, j ∈ �
−(i)



 OPSEARCH

1 3

5.1  Rounding heuristic for FMIP

In this section we present two rounding heuristics to get a feasible solution to 
FMIP. We solve a sequence of LPs to get to an integer feasible solution of FMIP. 
First, we relax the constraints INT in FMIP. This gives us an initial LP model of 
network flow problem with flow balance constraints.

Fig. 1  Flows through a node in network

Fig. 2  Time-space network representation of an instance of the problem
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5.1.1  Heuristic‑I

In this heuristic we begin by solving the LP relaxation of FMIP and set 
� ← 1 +min(Lm

i,j
) because at this time-period first non-zero incoming transportation 

flow may occur at any facility. The solution of this LP is set as (x̂.ŷ, f̂ , l̂s)𝜏 where 
� = 1 +min(Lm

i,j
) . In this solution we look at all transportation flows f m

i,j,�
 i.e. flows 

reaching to facility j from facility i at time-period � via mode m since the earliest 
delivery of transportation flow occurs at this time-period. For each of these trans-
portation flows (variables) in LP solution, we round-up the decision value if there is 
sufficient inventory at source node of the transportation flow, otherwise we round-
down. After this fixing and adding them as constraints, we solve the modified LP 
again and increment � by 1. This process is repeated in iteration till � = N . Heuris-
tic-I is shown in Algorithm 1.

In an iteration � , the values in (f̂ )𝜏 (solution before rounding) are either fractional 
or integer. If the values in (f̂ )𝜏 are rounded up given there is sufficient inventory 
at the source node, we do not incur any additional backlogs at the target node and 
demands are satisfied better than previous solution at the target node. But if there is 
not sufficient inventory at the source node, then we have to round down the values 
in (f̂ )𝜏 as rounding up will violate the flow constraints FB-I and FB-II at the source 
node. 

5.1.2  Heuristic‑II

In this heuristic we begin by solving the LP relaxation of FMIP and set � ← 1 
because at this time-period first non-zero outgoing transportation flow may occur 
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from any facility. In the solution of this LP, (x̂.ŷ, f̂ , l̂s)𝜏 where � = 1 , we look at all 
transportation flows f m

i,j,�+Lm
i,j

 i.e. flows reaching to facility j from facility i at time-
period � + Lm

i,j
 via mode m. For each of these transportation flows (variables) in LP 

solution, we round-up the decision value if there is sufficient inventory at source of 
the transportation flow, otherwise we round-down. After this fixing of variables and 
adding them as constraints, we solve the modified LP again and increment � by 1. 
This process is repeated in iteration till � = N −min(Lm

i,j
) . Heuristic-II is shown in 

Algorithm 2.
The conditions required to be satisfied for rounding up/down of (f̂ )𝜏 are in steps 

(1.9,2.9). 

5.2  Rounding heuristic for MIP‑BR1, MIP‑BR2 and MIP‑BR12

Initially we relax the constraints INT in MIP-BR1, MIP-BR2 and MIP-BR12 to 
INT-RH We refer to these MILPs as RMIP-BR1, RMIP-BR2 and RMIP-BR12. The 
heuristics proposed here are quite similar to Algorithm 1 and Algorithm 2. The dif-
ference here is instead of solving a sequence of LPs, we are solving a sequence of 
MILPs with reduced number of integer variables.

The decision to keep variables given in INT-RH as integers is because once the 
f’s corresponding to time-periods {𝜃1, 𝜃2, 𝜃3, .., 𝜃|Tk|−1} ⊂ Tk of a time-bucket k are 
fixed as integers, the rounding step may not give a feasible solution because there 
are no future time-periods in that time-bucket where these flows can be adjusted 
by just solving the LP relaxation of the problem. Here our business rules restrict us 

(INT-RH)
f m
i,j,max(Tk)

∈ ℤ
+∀i ∈ N, j ∈ �

+(i),m ∈ M, k ∈ Kandmax(Tk) ≤ N
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from not to proceed with rounding step, hence these variables are declared as integer 
variables in the problem.

5.2.1  Heuristic‑III

In this heuristic we begin by solving RMIP-BRx and set � ← 1 +min(Lm
i,j
) because 

at this time-period first non-zero incoming transportation flow may occur at any 
facility. In the solution of the initial MILP (x̂.ŷ, f̂ , l̂s)𝜏 where � = 1 + min(Lm

i,j
) , we 

look at all transportation flows f m
i,j,�

 i.e. flows reaching to facility j at time-period � 
from facility i via mode m since the earliest delivery of transportation flow occurs at 
this time-period. For each of these variables in MILP solution, we round-up the 
decision value of these transportation flows (variables) if there is sufficient inventory 
at source of the transportation flow, otherwise we round-down. After this fixing and 
adding them as constraints, we solve the modified MILP and increment � by 1. This 
process is repeated in iteration till � = N . Heuristic-III is shown in Algorithm 3. 

5.2.2  Heuristic‑IV

In this heuristic we begin by solving RMIP-BRx and set � ← 1 because at this time-
period first non-zero outgoing transportation flow may occur from any facility. In 
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the solution of the initial MILP, (x̂.ŷ, f̂ , l̂s)𝜏 where � = 1 , we look at all transportation 
flows f m

i,j,�+Lm
i,j

 i.e. flows reaching facility j from facility i at time-period � + Lm
i,j

 using 
mode m. For each of these variables in MILP solution, we round-up the decision 
value if there is sufficient inventory at source of the transportation flow, otherwise 
we round-down. After this fixing and adding them as constraints, we solve the modi-
fied MILP again and increment � by 1. This process is repeated in iteration till 
� = N −min(Lm

i,j
) . This is shown in Algorithm 4. 

5.3  Impact of rounding heuristic

In rounding heuristics Algorithm 3 and Algorithm 4, the number of integer decision 
variables got reduced from O(|M| × |As| × N) in MIP-BR1, MIP-BR2 and MIP-
BR12 to O(|M| × |As| × k�) where k′ refers to index of the last time-bucket such that 
max(Tk� ) ≤ N in RMIP-BR1, RMIP-BR2 and RMIP-BR12. The effect on objective 
when (f̂ )𝜏 are rounded up and added as constraint to iteration � + 1 can be given as 
in equation 1. The effect on objective when fixing f’s to floor of previous iteration 
values is difficult to quantify as the reduced flow can be compensated either by flows 
from other modes which could have been set to ceiling, backlogs, or lost sales.
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6  Computational results

We discussed a MILP model in Sect.  3 to address the problem statement and 
heuristics to get a feasible solution. In this section we present our experimental 
results on data-sets for model solving and various heuristics discussed in sects. 
3 and 5 using CPLEX-12.6.1.0 on Intel(R) Xeon(R) CPU E5-2670 v2 2.50GHz 
with 128 GB memory. Data for instances(ds1,ds2,ds3,net_V,net_X) such as 
demands, supply, costs and lead-times considered were randomly generated for 
various number of facilities, modes and time-periods. Table 1 provides high-level 
properties of instances used in experiments. The echelon gives the number of 
nodes in a supply-chain echelon (e.g. echelon 1 can be considered as factories, 
echelon 2 as distribution centers/warehouses and so on). Section  6.1 gives the 
analysis of these results. The following approaches have been considered to solve 
the instances: 

1. The problem modeled as an MILP is solved on CPLEX-12.6.1.0 with time-limit 
as 1800 seconds and ‘mipgap’ set as 0.01. T_O_CPLEX

2. The problem is solved using heuristic (Heuristic-I for FMIP and Heuristic-III for 
MIP-BRx). T_H_CPLEX_I or T_H_CPLEX_III

3. The problem is solved using heuristic (Heuristic-II for FMIP and Heuristic-IV 
for MIP-BRx). T_H_CPLEX_II or T_H_CPLEX_IV

4. The solution provided by one of the heuristic is used as ‘MIP start’ in CPLEX-
12.6.1.0 for solving the model with time-limit set as 1800 seconds and ‘mipgap’ 
as 0.01. T_OI_CPLEX

(1)
Cost𝜏+1 =Cost𝜏 + (⌈f̂ m

j,i,𝜏
⌉ − f̂ m

j,i,𝜏
)𝜏 × Am

j,i
× Cm

j,i
× Lm

j,i

− [x̂j,𝜏−Lm
j,i
− (⌈f̂ m

j,i,𝜏
⌉ − f̂ m

j,i,𝜏
) × Am

j,i
]𝜏 × Hj,𝜏−Lm

j,i

Table 1  Data-set properties

ds1_a ds2_a ds3_a net_V net_X

Echelon 1 4 4 4 1 2
Echelon 2 4 4 4 2 3
Echelon 3 30 30 20 2 5
Echelon 4 0 0 151 0 0
|N| 38 38 179 5 10
|T| 61 61 61 50 50
|M| 2 2 2 2 2
|K| 2 2 2 5 5
N (30,40,50) (30,40,50) (30,40,50) (10,20,30,40) (10,20,30,40)



 OPSEARCH

1 3

In implementation of Heuristic-III (T_H_CPLEX_III) and Heuristic-IV 
(T_H_CPLEX_IV), for each iteration time-limit is set as 1000 seconds and 
‘mipgap’ as 0.01.

We represent analysis using the time required in each approach as well as the 
gap of solution found from best known bound if that method was independently 
used.

6.1  Analysis of results

Algorithm 1 to Algorithm 4 do not always find a feasible solution to the problem 
as shown by the following example ‘net_X’.

While solving FMIP model for net_X instance using Algorithm 1 at iteration 
� = 4 obtains in its solution x4,2 = 6 . When we go to next iteration � = 5 , we con-
sume 5 units from x4,2 to round up a value a transportation flow reaching at some 
facility at � = 5 thus making x4,2 = 1 . But before this step happens, one of the 
flows reaching at some other facility at time � = 5 is round down and adds 4 units 
of inventory at x4,3 making x4,3 = 4 . Thus at location 4, we end up needing x4,2 = 1 
and x4,3 = 4 in a situation where all other incoming and outgoing transportation 
flows are fixed. This leads to violation of flow-constraint at node (4,3) in this 
instance. Thus, we have a counter-example for Heuristic-I and Heuristic-III which 
follow similar approach for rounding that does not give a feasible solution.

Algorithm 2 overcomes this drawback of algorithm 1. Here we look at all out-
going flows at each iteration, hence the above issue is remedied as at an iteration 
there are no chances that any previous time period inventory flow will be modified.

As can be seen from Tables 2, 3, 4 and 5 one of the proposed algortihms always 
provided a feasible solution to instances in our experiments.

There cannot be any dominance relationship established between the Heu-
ristic-III and Heuristic-IV as we have cases where Algorithm  3 gave a feasible 
solution but 4 doesn’t and vice-versa. Based on our experiments we can say that 
Heuristic-II dominates Heuristic-I but we do not generalize this statement.

We have highlighted in bold the results where % gap for T_O_CPLEX differs 
from % gap for T_OI_CPLEX by more than 40%. This shows significance of 
heuristics proposed, as using heuristic solution as an MIP-start helped in achiev-
ing a solution within 1% gap from lower bound (LB) for 34 out of 68 instances 
within similar time-limits.

For 41 instances heuristics were able to give a solution within 3% gap from LP 
solution in less than 600 seconds. It is evident that for heuristics the % gap from 
LP solution is non-decreasing with increasing value of N for given data-sets.

It can be noted that as value of initial critical days (N), number of facilities 
( |N| ) increases, for same solution time limit the gap from optimality increases for 
T_O_CPLEX, while applying the heuristics to get an initial feasible solution and 
utilizing it as an MIP-start in solver gives significant improvements in optimal-
ity gap in less time. As for other parameters, it is not possible to comment on the 
impact of change in them on the time required to obtain a solution.
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6.2  Conclusion and further scope

In this section we presented our results for the MILP model and the heuristics pro-
posed. Using the heuristic to get a solution for FMIP model is useful as here we 
need to solve a sequence of LP problems. Rounding variables iteratively to solve the 
multi-modal supply chain MILP model exploiting its properties can be an effective 
approach to to get a good feasible solution within a time limit. This is an impor-
tant aspect for practitioners as the model is intended for tactical and operational 
purposes.

The model presented here accounts for backlogs and lost sales, which makes the 
model more realistic in use. The FMIP model can also provide a base for the case 
where there are multiple commodities. This can be done by adding an additional 
index and constraints binding the commodities (e.g. constraints similar to that in 3.4 
and 3.5).

Accommodating perishability and transfer times in the model would make the 
model more relevant for other applications where these aspects need to be consid-
ered. Additionally, devising an exact algorithm for the problem can also be pursued 
for further research.
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