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A B S T R A C T   

We study a chemical tanker scheduling problem in which a multi-compartment chemical tanker picks up chemicals 
(within specific time windows) and delivers them to their destinations. Additional safety and ship balancing 
requirements related to the compartment storage need to be met. We refer to this problem as the single ship pick- 
up and delivery problem with pick-up time windows, tank allocations and changeovers (s-PDP-TWTAC). We propose a 
formulation for the s-PDP-TWTAC that is significantly smaller in size when compared to the existing approaches. 
Even though our formulation requires significantly lesser computational effort than others, it is still challenging 
to solve for large realistic networks. We propose a linear programming based neighbourhood search heuristic to 
find good solutions to these problems. We also describe an instance generator for creating random but realistic 
instances, and a library of instances that have been created for testing and benchmarking.   

1. Introduction 

We consider a scheduling problem that the tramp shipping industry 
faces. Tramp ships are analogous to a cab service (Christiansen et al., 
2004) as opposed to liner ships that can be viewed as a bus service. 
Tramp ships capable of transporting multiple non-mixable chemicals 
together are known as chemical tankers. Given a list of ports and po-
tential cargoes, the problem is one of finding a schedule of a chemical 
tanker. A schedule consists of a subset of ports to visit, the planned 
arrival times at each port, cargoes to be serviced by the ship at each of 
these ports, and the cargo weights assigned to each compartment of the 
ship. According to Brooks and Faust (2018), the maritime industry ac-
counts for about 80 % to 90 % of the total world merchandise trade by 
volume and 60 % of the total trade by value. Chemicals, including pe-
troleum products, constitute an essential class of merchandise. A United 
Nations (2019) report states that the maritime industry transports nearly 
200 million tons of chemicals annually. 

Our goal is to develop a mathematical model capable of generating a 
schedule based on important operational and tactical constraints for a 
single chemical tanker. Empirical computational results described later 
show that even the improved model is intractable for medium-sized 

benchmark instances. Consequently, a systematic study of the formu-
lation and solution techniques is required. Additionally, motivated by 
the unavailability of freely accessible data, we build an instance 
generator, and a library of instances, that may help in developing better 
models and solution techniques. 

The problem definition is adopted from Neo et al. (2006). At any 
given time, the chemical tanker operator may have a list of unassigned 
cargoes (chemicals). The unassigned cargoes have their respective origin 
and destination ports. Additionally, these cargoes need to be picked up 
within a specific time window (if not, the operator could risk losing 
customers). The chemical tanker moves from one port to another, 
transporting multiple chemicals simultaneously. While transporting 
these several chemicals concurrently, the operator has to adhere to the 
numerous restrictions related to the storage of chemicals in the com-
partments. The chemicals need to be well-distributed in the chemical 
tanker’s compartments to avoid imbalance during sailing. Finding 
profitable paths that satisfy the tactical and operational restrictions are 
essential for chemical tanker operators. We refer to this problem as the 
single ship pickup and delivery problem with pickup time windows, tank 
allocations and changeovers (s-PDP-TWTAC). 

A chemical tanker is generally much smaller (Wang et al., 2018) than 
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crude oil-carrying chemical tankers. Nonetheless, a chemical tanker is 
much more sophisticated and has a higher number of compartments. 
The number of compartments can typically vary from 10 to 55. Fig. 1 
depicts the Bow Cecil chemical tanker used by the Odfjell shipping 
company1. It also shows a planar network representation of the ship’s 
compartment structure. 

A higher number of compartments allows for more flexible cargo- 
compartment allocation plans. This flexibility, in turn, increases the 
complexity of the problem. The compartment walls of the chemical 
tanker are made of stainless steel, zinc or epoxy. The compartment 
material might restrict the possible cargoes that can be stored in the 
compartment. Additionally, safety regulations may restrict the type of 
chemicals that may be stored in adjacent compartments. Furthermore, 
unbalanced distribution of the cargo weight in various compartments 
may lead to instability of the tanker. All of these additional restrictions 
in conjunction with the chemical tanker scheduling and time window 
requirements makes our proposed model quite complex. 

This paper is structured as follows. Existing literature related to this 
problem is reviewed in Section 2. Section 3 describes the problem and 
modelling assumptions. Subsequently, we present our compact and 
revised formulation for the proposed single ship pick-up and delivery 
problem with pick-up time windows, tank allocations, and changeovers 
(s-PDP-TWTAC). Section 5 explains a linear relaxation-based heuristic 
for the s-PDP-TWTAC. Then, we describe an instance generator and a 
benchmark dataset for the s-PDP-TWTAC. We conclude by summarising 
the insights gained in this work and identifying some directions for 
future research. 

2. Literature survey 

Research in maritime transportation can be broadly classified into 
the liner shipping segment and the tramp shipping segment. One of the 
first maritime transportation review papers was published by Ronen 
(1983), Christiansen et al. (2004), Christiansen et al. (2004), Kjeldsen 

(2011), Kjeldsen (2011), Christiansen et al. (2013) and Brooks and Faust 
(2018) present excellent summaries of application of mathematical 
programming in both, liner as well as tramp shipping. Christiansen et al. 
(2007) specifically focuses on the evolution of scheduling problems in 
tramp shipping. Further, Christiansen et al. (2013) and Vilhelmsen et al. 
(2015) extensively review the research carried out in the field of tramp 
shipping since 1983. Together they review around 50 research papers, 
most of which have been published in the last decade. Our problem deals 
with the scheduling of chemical tankers, which is a special type of tramp 
ship. The literature primarily deals with two different variations of the 
problem of transporting bulk cargoes between their origins and desti-
nations, respectively. Depending on the application, problems are either 
modelled as an extension of the travelling salesman problem with 
pickups and deliveries (TSPPD) or the pick-up delivery problem with 
time-windows (PDPTW). Our formulation is an extension of the PDPTW. 

Extensions of the TSPPD optimise the intra-port movement of the 
chemical tankers and have time windows related to the loading/ 
unloading of cargoes. TSPPD based formulations assume that all the 
berths (analogous to ports) have to be visited. Additionally, all cargoes 
are either loaded or unloaded at their origins and destinations, respec-
tively. As output, the problem generates a sequence of berths to visit, 
and the arrival times at each berth. Unlike the second variation, the 
TSPPD based extensions also generate the sequence in which every 
cargo is either picked up or discharged. This makes the TSPPD based 
extensions different in comparison to the PDPTW based extensions. 

A recent study extending the TSPPD based formulations has been 
carried out by Elgesem et al. (2018). They consider stochastic waiting 
times at different terminals within the port. Additionally, they perform 
experiments to empirically prove that including uncertainty into their 
models directly affect the optimal route of the chemical tankers. How-
ever, unlike our problem, Elgesem et al. (2018) do not generate a cargo- 
compartment allocation plan as part of their problem output. 

Another study related to TSPPD based formulations is presented by 
Wang et al. (2018). There are some similarities between the problems 
presented in this paper, and the one presented by Wang et al. (2018). 
Similar to our problem, Wang et al. (2018) incorporate draft re-
quirements and compartment-related decisions into their problem 

Fig. 1. Bow Cecil – chemical tanker – Odfjell Ship Management.  

1 https://www.odfjell.com 

A. Ladage et al.                                                                                                                                                                                                                                 

https://www.odfjell.com


Computers and Operations Research 133 (2021) 105345

3

definition. The compartment-related decisions include compartment 
capacities, ship stability criteria, cargo-cargo and cargo-compartment 
incompatibility norms. However, our problem allows more feasible 
cargo-compartment allocations by permitting cago swaps between the 
compartments. Further, because their formulation is based on TSPPD, 
some higher level decisions like generating an optimal set of ports and 
cargoes are fixed. 

The second set of variations of the chemical tanker scheduling 
problems are an extension of the PDPTW (Sun et al., 2018) problem. 
These set of problems are defined over a set of ports (inter port), as 
opposed to a set of berths/terminals (intra port). In addition to gener-
ating a sequence of ports to visit, these set of problems also decide the 
subset of ports to visit, and the subset of cargoes to pick-up. Fagerholt 
and Christiansen (2000) propose a problem in dry bulk shipping by 
modifying the PDPTW formulation. They generate a feasible cargo- 
compartment allocation based on the capacities of the compartments. 
Yet, they do not consider tanker stability conditions and cargo-cargo 
incompatibilities. 

Jetlund and Karimi (2004), and more recently by Lin and Liu (2011), 
Cóccola et al. (2015) and Cóccola and Méndez (2015) modify the 
PDPTW to propose a multi-ship pick-up delivery problem with pickup 
time windows. Their formulations generate feasible schedules for a fleet 
of heterogeneous chemical tankers, which takes into account all the 
decisions shown in the first column of Table 1. Hennig et al. (2015) and 
Homsi et al. (2020) solve the multi-ship pick-up delivery problem with 
pickup time windows with an added complexity of splitting cargoes 
between chemical tankers. Furthermore, Homsi et al. (2020) also in-
cludes time-windows related to drop-offs. However, the second varia-
tions of problems discussed until now do not consider the compartment- 
related decisions (mentioned earlier). 

Neo et al. (2006) and Santos et al. (2020) have worked on PDPTW 
based formulations that incorporate the compartment-related decisions 
in their problem definition. The problem discussed by Santos et al. 
(2020) is one of transporting fertilisers (chemicals) from their origins to 
their destinations, respectively. Altough they include the compartment 
capacity into their problem, they do not consider the ship stability 
conditions, the incompatibility norms, the cargo distribution into mul-
tiple compartments, and the cargo swapping activity. Moreover, Santos 
et al. (2020) fix the cargoes that have to be picked up and they include 
soft time-windows as opposed to hard time-windows, considered by us. 

However, unlike us, they solve a multi-ship problem with split loads. 
The problem discussed in this paper was introduced by Neo et al. 

(2006). As per our knowledge, it is the only other paper that combines 
higher level decisions with all the aforementioned compartment-related 
decisions. Higher level decisions include generation of the route of the 
ship, determining the set of unassigned cargoes to service, and mini-
mising the time required to complete the voyage of the chemical tanker. 
Neo et al. (2006) establish the necessity to solve the combined problem 
by discussing a real-world case study. However, they do not validate 
their model using an extensive empirical study. Extending their work 
forward, we present a revised MILP formulation in Section 4.1. We 
model the changeover (cargo swaps) activity differently, which reduces 
the problem size and tightens the linear relaxation of the problem. 
Additionally, we model the changeover activity as a temporal activity in 
our model. We also generalise the definition of the pick-up time win-
dows. We present a detailed discussion of the differences between the 
original formulation presented by Neo et al. (2006), and our revised 
formulation in Section 4.2. 

Individually, the problem of generating a cargo-compartment plan 
based on the compartment-related decisions is complex. Hvattum et al. 
(2009) and Vilhelmsen et al. (2016) provide some insight into the 
problem complexity, and refer to the problem of generating cargo- 
compartment allocations as the Tank Allocation Problem (TAP). They 
introduce multiple variants of the TAP, and prove that the problem is 
NP-complete. Table 1 highlights the contributions in the literature as 
well as differentiates our problem from the rest. Having identified the 
gap in the literature, we present a brief description of our problem. 

3. Problem description 

The single ship pick-up and delivery problem with pick-up time 
windows, tank allocations and changeovers (s-PDP-TWTAC) models the 
scheduling of a chemical tanker on a network of ports. We consider a 
chemical tanker with a list of onboard chemicals (cargoes), which need 
to be transported to their destinations, respectively. At the same time, 
unassigned cargoes can be picked up by the chemical tanker. Our goal is 
to generate a schedule for the chemical tanker, which includes cargoes 
to be picked up, the ports to be visited, the sequence in which these ports 
are visited, the arrival times at each port, and a feasible cargo- 
compartment allocation. Our objective tries to maximise the difference 

Table 1 
Problem characteristics tackled by researchers working on problems similar to the s-PDP-TWTAC  

Decisions optimised 
by researchers 

Researchers tackling problems similar to the s-PDP-TWTAC 

Jetlund and Karimi (2004), Lin and Liu 
(2011), Cóccola et al. (2015), Cóccola 

and Méndez (2015) 

Hennig et al. 
(2015), Homsi 
et al. (2020) 

Hvattum et al. (2009), 
Vilhelmsen et al. 

(2016) 

Wang 
et al. 

(2018) 

Fagerholt and 
Christiansen (2000) 

Neo et al. (2006), 
series s-PDP-TWTAC 

(Our work) 

Single ship   ✓ ✓ ✓ ✓ 
Multiple ships ✓ ✓     
Port set ✓ ✓   ✓ ✓ 
Port sequence ✓ ✓  ✓ ✓ ✓ 
Cargo pick-ups and 

drop-offs 
✓ ✓   ✓ ✓ 

Cargo pick-up and 
drop off sequence 

✓ ✓  ✓ ✓ ✓ 

Pick-up time window ✓ ✓  ✓ ✓ ✓ 
Drop off time window  ✓   ✓  
Compartment 

capacity   
✓ ✓ ✓ ✓ 

Ship stability   ✓ ✓  ✓ 
Ship’s draft    ✓  ✓ 
Cargo split between 

ships  
✓     

Cargo-cargo 
compatibility   

✓ ✓  ✓ 

Cargo-compartment 
compatibility   

✓ ✓  ✓ 

Cargo swapping      ✓  
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between the revenue and four different costs. These costs include the 
time charter cost, the fuel cost incurred while travelling between ports, 
the fixed cost associated to a port call, and the cargo swapping cost 
incurred for every intra-compartment cargo swap. 

To make the problem tractable, the intra port activities have been 
simplified. During each port visit a constant administrative time in-
corporates activities such as waiting time for berth allocation, repairs, 
re-fueling, security clearances, immigration procedures, and delays 
related to custom inspections. We assume half the administrative time is 
spent on security checks, following which the cargo-compartment as-
signments are decided. We term this point as the cargo-compartment 
assignment point. At this point, we decide the pick-up cargoes and 
generate a cargo-compartment plan. The cargo-compartment assign-
ment point presented should lie within the pick-up time window of each 
of the cargoes. The pick-up time windows are specified in units of days 
(fractional days are allowed). Any cargo that is picked up has to be 
delivered within the time horizon. All the temporal inter-port and intra- 
port activities are performed sequentially, one after the other. 

Every chemical tanker has a maximum draft limit, which limits its 
cargo carrying capacity. Moreover, a chemical tanker has multiple 
compartments or cargo holds. Each compartment can store at most one 
cargo, but a cargo can be distributed into multiple compartments. A 
loaded cargo can be moved to a different compartment at an additional 
cost and time. This movement provides more flexibility in picking up 
new cargoes. The cargo-compartment allocation plan must also take into 
account the ship balancing requirements, and the compartment capac-
ities. As shown in Fig. 2, the cargoes have to be distributed within 
permissible limits of trim and heel. 

We also consider the cargo-cargo compatibility criteria, which re-
stricts the storage of certain chemicals in neighbouring compartments. 
Fig. 3 represents cargo-cargo compatibility for a set of cargoes through 
an illustrative graph. An edge in the graph means that the two cargoes 
can be stored in neighbouring compartments. Similarly, the cargo- 
compartment compatibility criteria restricts the cargo storage to a sub-
set of chemical tanker compartments. The cargo-compartment compat-
ibility can be represented by a bipartite graph, as shown in Fig. 4. 

We believe that the compartment-related decisions are essential 
while delivering chemicals using chemical tankers. A chemical tanker 
can have different compartment structures, which dictate the 
compartment-related decisions. If the compartment-related decisions 
are ignored, one cannot state with certainty that the schedule will be 
feasible for a given chemical tanker. 

We make the following assumptions in our model. These assump-
tions have been borrowed from Jetlund and Karimi (2004), Neo et al. 
(2006), Cóccola et al. (2015) and Cóccola and Méndez (2015). They are 
listed below.  

• We make a simplifying assumption to fix the maximum number of 
port calls (sailing legs). However, even in the industry, the scheduler 
is required to generate a schedule for a fixed number of port calls. As 
such, this is a reasonable assumption.  

• The chemical tanker may or may not pick-up all the unassigned 
cargoes at the port it visits.  

• Cargoes cannot be delivered partially.  
• The time for loading/unloading cargoes varies only with the total 

weight of the cargo.  
• All port arrival and departure administrative activities are assumed 

to take 0.25 days.  
• Four primary time-consuming activities, namely, traveling between 

ports, cargo loading, cargo unloading and cargo swapping are 
considered in our model. No two of these activities can be performed 
simultaneously.  

• Each compartment can carry only one cargo at any given time. The 
cargo can be split into multiple compartments of the chemical 
tanker. 

• Changeovers (rearranging) of loaded cargoes within the compart-
ments of the ship are allowed. A fixed penalty cost (changeover cost) 
and changeover time is incurred every time an existing cargo is 
replaced by a different cargo within a compartment. The changeover 
cost and time are also incurred when an empty compartment is filled 
with a new cargo. We assume that cargoes can be offloaded from the 
chemical tankers during re-assignment of these cargoes, and then 
loaded again.  

• Loaded cargoes can be re-assigned/swapped to compartments only at 
ports.  

• Due to safety factors and storage norms, cargoes can only be placed 
in specific compartments (cargo-compartment compatibility 
constraints).  

• Safety norms also impose certain restrictions on the placement of 
cargoes in neighbouring compartments, which we model as cargo- 
cargo compatibility constraints.  

• The average speed (nm/hour) of the chemical tanker is assumed 
constant.  

• Fuel consumption is assumed to vary linearly with the distance 
travelled independently of the load on the ship.  

• A port can only be visited once in the planning period. 

Further, with the help of an small example, we explain the problem 
and the importance of considering the compartment-related decisions. 
Fig. 5 helps us illustrate our example. At the start of the planning ho-
rizon, suppose that the chemical tanker is at Port 0 (Shanghai) and has a 
list of 7 ports that may be visited. We consider three different chemical 
tankers as shown in the bottom right corner of Fig. 5. Cargo C5 is on 
board the chemical tankers at time zero. Additionally, cargoes, C1 to C4, 
are the potential (unassigned) cargoes that are available at the ports. 
Attributes related to these cargoes, such as origin–destination ports, 
total volume, and pick-up time windows are displayed in Fig. 5. Fig. 5 
also depicts the simplified port activities that have been considered in 
our problem. 

Fig. 5 shows a sample schedule for chemical tanker 1. The cargo C1 is 
picked up by the chemical tanker. At Shanghai, cargo C5 is stored in 
compartments 2 and 4. At Port 1 (Hong Kong), the chemical tanker picks 
up cargo C1, which is stored in the third compartment. Finally, the 
voyage ends at Singapore where it delivers both the cargoes. However, 
due to the compartment structure and related constraints, the same 
schedule might become infeasible for chemical tanker 2 and 3. 

Consider the second chemical tanker, which has two compartments. 
Each compartment has a storage capacity of 750 tonnes. If we ignore the 
chemical tanker stability criteria, the entire cargo might be assigned to 
either compartment 2 or compartment 3. This would jeopardize the 
safety of the chemical tanker. Consequently, the cargo C5 is equally 
distributed in both the compartments of the chemical tanker 2 as shown 
in Fig. 5. Further on, if the cargo swapping is not allowed, the chemical 

Fig. 2. Ship balancing requirements: This figure illustrates the trim and heel 
movements of the ship, along with the possible cargo arrangments 
affecting them. 
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tanker would reach port Hong Kong completely full. As a result, the 
cargo C1 cannot be picked up, which makes the previous schedule 
infeasible for the second chemical tanker. 

Let us now consider the structure of the third chemical tanker, in 
which the central compartment is coated with Epoxy. Observe that if 
both cargo C1 and C5 are incompatible with epoxy coated compart-
ments, then the schedule generated for chemical tanker 1 becomes 
infeasible for chemical tanker 3. Finally, let us assume that cargo C1 and 
C5 are incompatible with each other. Meaning, both these cargoes 
cannot be stored in adjacent compartments. Then, the schedule pre-
sented in Fig. 5 becomes infeasible for chemical tanker 1. It is easy to 
observe that neglecting any of the above decisions might generate 
infeasible schedules for a chemical tanker. 

We summarise our problem as follows. Given a set of ports and a set 
of cargoes, we try to identify the optimal schedule of the chemical 
tanker. An optimal schedule is one that would transport the most 

profitable cargoes while adhering to the various problem constraints. 
Our objective maximises the revenue earned by transporting unassigned 
(potential) cargoes and minimises the port cost, fuel cost, time char-
tering cost, and the changeover (cargo swapping) cost. The entire set of 
feasible cargoes need not be delivered. However, all the cargoes loaded 
on the ship are required to be delivered before the end of the planning 
horizon. 

The primary decisions that affect the complexity of our problem are 
the finding of the set of ports to visit, the determining of the sequence in 
which these ports should be visited, the identification of the set of 
cargoes to transport, the assigning of the cargoes to compartments and 
the swapping of cargoes between compartments. The proposed problem 
is reducible to a Hamiltonian path problem by fixing all decisions except 
the routing of the ship. Thus, the problem is NP-hard. Our model can 
also be seen as a variation of the Pickup and Delivery Problem with Time 
Windows (PDPTW), (Jetlund and Karimi, 2004), which itself is an 

Fig. 3. Cargo-cargo compatibility graph: Instance (a) shows partial compatibility of cargoes while instance (b) shows complete compatibility of cargoes with 
each other. 

Fig. 4. Cargo-compartment compatibility graph: Direct connections between cargoes and compartment show compatibility while no connection reports 
incompatibility. 

A. Ladage et al.                                                                                                                                                                                                                                 



Computers and Operations Research 133 (2021) 105345

6

extension of the vehicle routing problem. The tramp scheduling problem 
without compartment-related decisions is structurally very similar to the 
PDPTW, as defined by Sun et al. (2018). However, unlike the PDPTW, 
the s-PDP-TWTAC does not require the vehicle to return to its starting 
location, and all cargoes need not be served. 

At every port, if the route of the chemical tanker and the cargoes to 
be transported are fixed, we are left with the decision of allocating 
cargoes to compartments. This sub-problem of cargo-compartment al-
locations is an extension of the generalised segregation storage problem 
(GSSP), which is also NP-complete (Barbucha, 2004). In the following 
section, we mathematically describe the various parameters and deci-
sion variables used in our formulation. We also present the mixed 
integer linear programming formulation used to model the problem 
explained in this section. 

4. An MILP formulation 

This section begins with a brief description of the revised (REV) 
formulation for the the single ship pick-up and delivery problem with pick-up 
time windows, tank allocations and changeovers (s-PDP-TWTAC). 
Following this, we present a MILP for the s-PDP-TWTAC. Finally, we 
conclude this section by stating some key improvements proposed in our 
MILP model. 

4.1. The revised formulation 

The s-PDP-TWTAC revised (REV) formulation is described as follows. 
Let K be the set of indices of the sailing legs, and NP be the set of feasible 
ports. The set of cargoes (NG) divided into on-board cargoes (NO) and 
unassigned cargoes (NU). NO are the cargoes that are on-board the 
chemical tanker at the beginning of the planning horizon. Unassigned 

Fig. 5. Toy size illustration of chemical tanker scheduling activities.  
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cargoes (NU) are the cargoes that can be potentially picked up to 
maximise the profit. The set NH is the set of chemical tanker 
compartments. 

Any cargo loaded on the ship has to be delivered. An unassigned 
cargo j ∈ NU can only be picked up within a specified time-window [TE

j ,

TL
j ]. A cargo j ∈ NG is defined by characteristics like revenue obtained 

(Rj), origin (PL
j ), destination (PD

j ), weight (Wj) and density (ρj). A 
compartment h ∈ NH is defined by compartment volume (Vh), and 
lateral (κh) and longitudinal (ιh) distance from the centre of the ship. 

The set NB
h defines the structure of the chemical tanker by listing the 

bordering compartments for every h ∈ NH. The sets NI
j and NX

h helps us 
define the cargo-cargo incompatibility and the cargo-compartment in-
compatibility, respectively. The set NI

j lists all the cargoes that cannot be 
stored beside the cargo j ∈ NG. The set NX

h includes cargoes that cannot 
be stored in compartment h ∈ NH. 

Given the starting port (PI) and the set NP, our model tries to find an 
optimal by maximising the difference in the revenue (Rj) and the four 

different costs; namely, the port cost (CP
p), the fuel cost (CF

pp′ ), the time 
chartered cost (CT) and the changeover cost (CS). The route of the ship is 
defined using decision variables like port arrival time (tk) and routing 

variable (zkpp′ ). The routing variable equals one if and only if the 
chemical tanker travels between ports p, p′ ∈ NP at the end of sailing leg 
k ∈ K. If the number of profitable port calls are less than the maximum 
number of sailing legs (—K—), then the chemical tanker is forced to 
enter a dummy port. Once the chemical tanker enters the dummy port, it 
stays there till the end of its voyage. The sequence in which the cargoes 
are serviced are modelled using variables lkj and ukj. The variables lkj and 
ukj record the sailing leg k ∈ K at the end of which a cargo is picked up 
and dropped off, respectively. 

The decision variable ckjh equals 1 if cargo j ∈ NG is stored in 
compartment h ∈ NH at the end of sailing leg k ∈ K. Moreover, if a cargo 
j ∈ NG is stored in compartment h ∈ NH then the variable wkjh gives the 
cargo weight stored in the compartment. Further, we keep track of the 
total changeovers by defining variables bkjh and rkjh. We formally define 
all the sets, decision variables and parameters in Section 4. 

Sets:  

Indices:   

Revised decision variables: 

p, p′, p′′ = Index for port,
k, k′ = Index for sailing leg (Index 0 indicates that the chemical tanker is at its starting port),

j = Index for cargo(j = 0signifies dummy cargo with no weight and no incompatibilities),
h, h′ = Index for compartment (cargo hold).

K = Set of indices of sailing legs, {0,…, |K|},

NP = Set of ports,
NG = Set of all cargoes/goods. Includes cargo 0, a dummy cargo for modelling,
NO = Set of cargoes already on − board the chemical tanker at time zero,NO⊂NG,

NU = Set of potential cargoes that can be picked up,NU⊂NG,

NI
j = Set of cargoes incompatible with cargoj ∈ NG,NI

j⊂N
G,

NH = Set of compartments (cargo holds)in the ship,
NB

h = Set of neighbouring
/

bordering compartments for compartmenth ∈ NH,NB
h⊂NH ,

NX
h = Set of cargoes that cannot be stored in compartmenth ∈ NH ,NX

h ⊂NG.

tk = Port arrival time of the chemical tanker at the destination of leg k ∈ K(Continuous),
zkpp′ = 1 if chemical tanker at the end of leg k ∈ K\

{
0
}

departed from port p ∈ NP and
arrived at p′ ∈ NP( Binary

)
,

lkj = 1 if the chemical tanker at the end of leg k ∈ Kloads cargo j ∈ NU ( Binary
)
,

ukj = 1 if the chemical tanker at the end of leg k ∈ Kunloads cargo j ∈ NU ( Binary
)
,

ckjh = 1 if the chemical tanker at the end of leg k ∈ Kcarries cargo j ∈ NGin compartment
h ∈ NH ( Binary

)
,

wkjh = Weight of cargo j ∈ NG assigned to compartment h ∈ NH of chemical tanker at end
of leg k ∈ K(Continuous),

bkjh = 1ifthechemicaltankerattheendoflegk ∈ Kreplacesanycargoj ∈ NG( otherthanitself
)

with cargo j ∈ NG\
{

0
}

in compartment h ∈ NH ( Binary
)
,

rkjh = 1 if chemical tanker at end of leg k ∈ K\
{

0
}

removes cargo j ∈ NG\
{

0
}

in compartment
h ∈ NH ( Binary

)
.
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Parameters:  

The objective function of our formulation is as follows:   

The first term calculates the total revenues generated by picking up a 
subset of unassigned cargoes. The second term calculates the fuel cost, 
which is a function of the route of the ship. The next term including CT , 
calculates the total cost of chartering the chemical tanker. CT is affected 

by all the temporal actions that the chemical tanker performs. Thus, 
total CT is calculated by combining the arrival time at the last port (t|K|), 

with the temporal port activities performed at the last port (TA and the 
total unloading time of all the cargoes discharged at the last port)). The 
total time spent at the port is zero if the last port visited is a dummy port. 
The succeeding term, calculates the total port cost CP, which is incurred 
for every port visited by the chemical tanker. Moreover, the changeover 
cost is calculated by summing up the total number of changeovers (bkjh). 

PI = Starting port of the ship,PI ∈ NP,

PL
j = Loading port for cargo j ∈ NU ,PL

j ∈ NP,

PD
j = Discharge port for cargo j ∈ NG,PD

j ∈ NP,
⃒
⃒NP
⃒
⃒ = Dummy Port,

⃒
⃒NP
⃒
⃒ ∈ NP,

Rj = Revenue that can be obtained if cargo j ∈ NGis transported by the chemical tanker,
CF

pp′ = Cost for travelling between ports p ∈ NPandp′ ∈ NP,

CP
p = Port cost incurred on visiting port p ∈ NP,

CT = Cost of time charter of the chemical tanker per day,
CS = Cost per changeover/swap including cleaning, labour, etc. related to swapping cargoes

within compartments. Also represents the cost incurred if a cargo j ∈ NG\
{

0
}

is filled in
an empty compartment,

Wj = Weight of the cargo j ∈ NG,

ρj = Density of the cargo j ∈ NG,

Vh = Volume of compartment h ∈ NH ,

TE
j = Earliest pick-up time for cargo j ∈ NU ,

TL
j = Latest pick-up time for cargo j ∈ NU ,

TP
j = Time required to pick-up cargo j ∈ NU ,

TD
j = Time required to discharge cargo j ∈ NG,

TT
pp′ = Travel time between port p ∈ NPandp′ ∈ NP,

TS = Time per changeover/swap,which includes the time taken to clean the compartment
and swap the cargoes within compartments. Also represents the cleaning time elapsed
if a cargo j ∈ NG\

{
0
}

is filled in an empty compartment,
TA

1 = Waiting time for berth allocation, security clearances, immigration procedure,
TA

2 = Time delays incurred due to repairs, bunkering, and customs inspections,
TA = Total administrative time, TA = TA

1 + TA
2 ,

κh = Lateral distance from compartment h ∈ NH to the centre of the chemical tanker,
ιh = Longitudinal distance from compartment h ∈ NH to the centre of the chemical tanker,
α = Maximum absolute permissible trim causing moment of the chemical tanker,
β = Maximum absolute permissible heel causing moment of the chemical tanker,

DC = Draft constant. The total allowable draft(in tonnes)for the chemical tanker (tonnes),
M = A suitably large number for modelling binary decisions.

Maximise
∑

j∈NU

(

RjWj

∑

k∈K\{|K|}

lkj

)

−
∑

p∈NP

∑

p′∈NP

(

CF
pp′
∑

k∈K\{0}

zkpp′

)

−

⎛

⎝CT

⎛

⎝t|K| + TA

⎛

⎝1 −
∑

p∈NP

z|K|p|NP|

⎞

⎠+
∑

p∈NP

∑

j∈NO

⎛

⎝TD
j z|K|pPD

j

⎞

⎠+
∑

j∈NU

⎛

⎝TD
j u|K|j

⎞

⎠

⎞

⎠

⎞

⎠

−
∑

p′∈NP

⎛

⎝CP
p′
∑

k∈K\{0}

∑

p∈NP

zkpp′

⎞

⎠ −

⎛

⎝CS
∑

k∈K

∑

j∈NG\{0}

∑

h∈NH

bkjh

⎞

⎠+
∑

j∈NO

RjWj − CP
PI (1)   
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Finally, the last two terms of the Eq. 1 calculate the revenue obtained 
from the onboard cargoes, and port cost (CP) related to visiting the 
immediate destination. As a result, the objective function (1) tries to 
increase the revenue earned by servicing the cargoes. Simultaneously, 
the objective function tries to reduce the travel cost, time chartered cost, 
port cost and changeover cost. 

∑

p∈NP

zkpp′ =
∑

p′ ′∈NP

z(k+1)p′p′ ′∀k ∈ K\

⎧
⎨

⎩
0, |K|

⎫
⎬

⎭
, p′ ∈ NP, (2)  

∑

k∈K\{0}

∑

p′∈NP

zkpp′ ⩽1∀p ∈ NP\

⎧
⎨

⎩
|NP|

⎫
⎬

⎭
, (3)  

∑

k∈K\{0}

∑

p∈NP

zkpp′⩽1∀p′ ∈ NP\

⎧
⎨

⎩
|NP|

⎫
⎬

⎭
, (4)  

∑

k∈K\{0}

∑

p∈NP

zkp,PD
j
= 1∀j ∈ NO\

⎧
⎨

⎩
PD
j = PI

⎫
⎬

⎭
, (5) 

Constraints (2) to (5) define the path of the ship. Constraint (2) en-
sures that the ship must leave every port it visits, except the last one. 
However, if the chemical tanker enters the dummy port 

⃒
⃒NP
⃒
⃒ it has to 

stay there for rest of the voyage. We enforce this during pre-processing 
by fixing all the routing variables (zk|NP|p′ , p

′ ∈ P\{
⃒
⃒NP
⃒
⃒}) to zero. These 

routing variables correspond to all the arcs originating from dummy port 
to all other ports. Constraints (3) and (4) together enforce the assump-
tion that a chemical tanker can visit any port at most once. Constraint (5) 
imposes the condition that discharge ports of each on-board cargo must 
be visited. Next we formulate constraints related to the pick-up and 
delivery of cargoes. 

l(k− 1)j⩽
∑

p∈NP

zkPLj p∀k ∈ K\

⎧
⎨

⎩
0

⎫
⎬

⎭
, j ∈ NU , (6)  

ukj⩽
∑

p∈NP

zkpPD
j
∀k ∈ K\

⎧
⎨

⎩
0

⎫
⎬

⎭
, j ∈ NU , (7)  

lkj⩽
∑

k′∈K\{k′⩽k+1}

uk′ j∀k ∈ K\

{

|K|

}

, j ∈ NU , (8)  

∑

k∈K
ukj =

∑

k∈K
lkj∀j ∈ NU , (9)  

ukj⩾ − 1+
∑

k′∈K

lk′ j +
∑

p∈NP

zkpPD
j
∀k ∈ K\

⎧
⎨

⎩
0

⎫
⎬

⎭
, j ∈ NU , (10) 

Constraints (6) and (7) ensure that the unassigned cargoes are picked 
up and dropped off at their corresponding loading and unloading ports. 
Constraint (8) states that an unassigned cargo can be dropped off only 
after pick-up. Constraints (9) and (10) ensure that an unassigned cargo 
can be discharged at the end of leg k if and only if it was picked up and its 
discharge point is visited at the end of leg k. Next, we model the con-
straints that deal with the temporal activities of the ship.  

tk⩾
(
TE
j − TA

1

)
lkj ∀k ∈ K\

{
|K|
}
, j ∈ NU , (11)  

tk⩽
(
TL
j − TA

1

)
lkj +M

(
1 − lkj

)
∀k ∈ K\

{
|K|
}
, j ∈ NU , (12)  

t(k+1)⩾tk+TA

⎛

⎝1−
∑

p∈NP

z(k+1)|NP|p

⎞

⎠+
∑

j∈NO

⎛

⎝TD
j

∑

p∈NP

z(k+1)PDj p

⎞

⎠+
∑

j∈NU

⎛

⎝TP
j lkj

⎞

⎠

+
∑

j∈NU

⎛

⎝TD
j ukj

⎞

⎠+TS
∑

j∈NG\{0}

∑

h∈NH

bkjh+
∑

p∈NP

∑

p′∈NP

⎛

⎝TT
pp′ z(k+1)pp′

⎞

⎠ ∀k∈K\

⎧
⎨

⎩

⃒
⃒K
⃒
⃒

⎫
⎬

⎭
,

(13) 

Constraint (11) enforces the condition that if a cargo is picked up 
then the cargo-assignment time (tk + TA

1 ) should be greater than the 
earliest pick-up time (TE

j ). Similarly, Constraint (12) states that if a cargo 
is picked up then the cargo-assignment time (tk + TA

1 ) should be less than 
the latest pick-up time (TL

j ). Constraint (13) makes sure that the port 
arrival time (tk+1) during the sailing leg (k+1) is greater than the addi-
tion of the port arrival time (tk) during leg k, the administrative time (TA) 
during leg k (if the present port is not the dummy port), all the loading 

Fig. 6. The figure represents all the chemical tanker activities and the new definition of pick-up time windows.  
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and unloading times for the cargoes picked up and dropped off during 
leg k, the cargo swapping time (TS) elapsed during leg k, and the travel 
time during leg (k + 1). The constraints for allocating cargoes to com-
partments are as follows: 

∑

h∈NH

c0jh⩾1∀j ∈ NO\

{

PD
j = PI

}

, (14)  

∑

h∈NH

c0jh⩾l0j∀j ∈ NU , (15)  

∑

h∈NH

ckjh⩾
∑

h∈NH

c(k− 1)jh⃒
⃒NH

⃒
⃒
−
∑

p∈NP

zkpPDj ∀k ∈ K\

⎧
⎨

⎩
0

⎫
⎬

⎭
, j ∈ NO\

⎧
⎨

⎩
PD
j = PI

⎫
⎬

⎭
, (16)  

∑

h∈NH

ckjh⩾
∑

h∈NH

c(k− 1)jh⃒
⃒NH

⃒
⃒
+ lkj − ukj∀k ∈ K\

{

0, |K|

}

, j ∈ NU , (17)  

∑

h∈NH

ckjh⩽|NH |
∑

k′∈K\{k′>k}

lk′ j∀k ∈ K, j ∈ NU , (18)  

∑

k′∈K\{k′<k}

∑

h∈NH

ck′ jh⩽|K||NH |

⎛

⎝1 −
∑

p∈NP

zkpPDj

⎞

⎠∀k ∈ K\

⎧
⎨

⎩
0

⎫
⎬

⎭
, j ∈ NG\

⎧
⎨

⎩
0

⎫
⎬

⎭
,

(19) 

Constraints (14) and (15) enforce the cargo allocations during leg 0. 
Constraint (14) makes sure that all the on-board cargoes are assigned to 
at least one compartment unless they are delivered at the immediate 
destination. In the same way, Constraint (15) makes sure that if an 
unassigned cargo is picked up during leg 0 then it is assigned to at least 
one compartment. The Constraints (16) and (17) together maintain the 
continuity of unassigned and on-board cargoes respectively. Constraints 
(16) and (17) are trivially satisfied if the cargoes are dropped off during 
the present leg. However, if the on-board cargoes remains loaded on the 
ship during the present leg, then the Constraint (16) makes sure that the 
cargo is assigned to at least one compartment. Similarly, Constraint (17) 
makes sure that the unassigned cargoes are assigned to at least one 
compartment till they are on the ship. Finally, Constraints (18) and (19) 
enforce the fact that cargoes cannot be assigned to compartments before 
they are picked up and after they are dropped off. Some additional cargo 
assignment constraints are as follows: 
∑

j∈NG

ckjh = 1∀k ∈ K, h ∈ NH , (20)  

c(k− 1)jh + bkjh = ckjh + rkjh∀k ∈ K\
{

0
}
, j ∈ NG\

{
0
}
, h ∈ NH , (21)  

b0jh = c0jhj ∈ NG\
{

0
}
, ∀h ∈ NH , (22)  

ckjh +
∑

j′∈NI
j

ckj′h′ ⩽1 ∀k ∈ K\

⎧
⎨

⎩
|K|

⎫
⎬

⎭
, j ∈ NG\

⎧
⎨

⎩
0

⎫
⎬

⎭
, h ∈ NH , h′ ∈ NB

h , (23) 

Constraint (20) makes sure that either the compartment is empty or 
it has exactly one cargo in it. Constraint (21) help us keep track of 
changeovers (cargo swapping) within every compartment during 
consecutive legs. Recall that if a compartment is empty we assume it has 
cargo 0. Constraint (21) and a negative objective function co-efficient 
makes sure that the variable bkjh equals 1 if a compartment is filled 
with different cargoes in succeeding sailing legs, or an empty compart-
ment is filled with new cargo. Moreover, the variable rkjh ensures that the 
variable bkjh takes on value 0, when c(k− 1)jh equals 1 and ckjh equals 0. 
Constraint (22) is a special case of Constraint (21). It tracks the number 
of changeovers at the end of sailing leg 0, which is equal to the number 
of filled compartments of the chemical tanker. Constraint (23) imposes 
the cargo-cargo compatibility criteria. The following constraints 

implement the cargo weight per compartment related restrictions. 

wkjh⩽Vhρjckjh∀k ∈ K\
{
|K|
}
, j ∈ NG\

{
0
}
, h ∈ NH , (24)  

∑

h∈NH

wkjh = Wj

∑

k′∈K\{k′>k}

(

lk′ j − uk′ j

)

∀k ∈ K\

{

|K|

}

, j ∈ NU , (25)  

∑

h∈NH

wkjh = Wj

⎛

⎝1 −
∑

k′∈K\{0,k′>k+1}

∑

p∈NP

zk′PD
j p

⎞

⎠∀k ∈ K\

⎧
⎨

⎩
|K|

⎫
⎬

⎭
, j ∈ NO, (26)  

∑

h∈NH

∑

j∈NG\{0}

wkjh⩽DC∀k ∈ K, (27)  

− α⩽
∑

h∈NH

∑

j∈NG\{0}

wkjhιh⩽α∀k ∈ K,
(28)  

− β⩽
∑

h∈NH

∑

j∈NG\{0}

wkjhκh⩽β∀k ∈ K, .
(29) 

Constraint (24) ensures that the weight of the cargo assigned to the 
compartment can be at most equal to the maximum capacity of the 
compartment. Constraint (25) makes sure that the total weight of the 
unassigned cargo distributed in various compartments is equal the total 
weight of that cargo between pick-up and delivery. Constraint (26) 
forces the same condition on the on-board cargoes. Constraint (27) 
makes sure that the total weight allocated to the chemical tanker is less 
than the draft constant. Constraint (28) and (29) are ensure that the 
maximum allowable trim and heel moments are not exceeded. 

4.2. Key differences between s-PDP-TWTAC formulations: existing vs. 
revised 

We now describe the key advantages of our model over other existing 
ones. First, several decision variables defined by Jetlund and Karimi, 
2004 and Neo et al., 2006 have been eliminated/fixed. Second, we 
capture the changeover (cargo swapping) activities in a new way, which 
reduces the complexity of the problem. Third, we propose a different 
approximation of the pick-up time windows for better modelling. Thus, 
our model is more realistic and at the same time, more tractable than the 
earlier ones. Next, we describe the improvements implemented by us. 

4.2.1. Eliminating/fixing of decision variables from the existing model 
A MILP solver performs advanced pre-processing automatically. 

However, they only look at the mathematical formulation, and have no 
knowledge about the application and the model. As a result, the solver 
sometimes can not do model level or application specific reformulations. 
We also see a substantial improvement in the running time with the 
proposed reformulations which shows that the solvers are unable to 
discover and deploy the proposed reformulation techniques. These 
modifications, even-though elementary, can be overlooked by the 
reader. Please refer to Section 4 for all the definitions. We eliminate the 
following decisions from the model. 

1. The port 0 (immediate destination) of the ship is given. Therefore, 
during leg 1, we eliminate all arcs not originating from port 0.  
• z1pp′ = 0 ∀p ∈ P\{PI},p′ ∈ P, 
2. If immediate destination of the ship is equal to the loading port of 
certain cargoes, then the cargo can only be picked up at the end of leg 
0. Consequently, the cargo pick-up variable for these cargoes is 
eliminated for legs greater than 0.  

• lkj = 0 ∀k ∈ K\{0}, j ∈ NU\{j
⃒
⃒
⃒PI ∕= PL

j }, 

3. The cargo-compartment incompatibility states that incompatible 
cargoes cannot be stored within certain compartments. This restric-
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tion can easily be enforced by eliminating following variables from 
the model.  
• ckjh,wkjh, bkjh, rkjh = 0 ∀k ∈ K, j ∈ NX

h ,h ∈ NH, 

4. At the end of the planning horizon all the cargoes need to be 
delivered. Thus, the following decisions can be fixed to zero.  
• l|K|j, u|K|j = 0 ∀j ∈ NU,  
• c|K|jh,w|K|jh, b|K|jh, r|K|jh = 0 ∀j ∈ NG,h ∈ NH, 
5. Eliminate all cargo-related decision variables if immediate desti-
nation of the ship is equal to the discharge port of these cargoes.  

• lkj = 0 ∀k ∈ K, j ∈ NU\{j
⃒
⃒
⃒PI ∕= PD

j },  

• ukj = 0 ∀k ∈ K\{0}, j ∈ NU\{j
⃒
⃒
⃒PI ∕= PD

j },  

• ckjh,wkjh, bkjh, rkjh = 0 ∀k ∈ K, j ∈ NG\{0, j
⃒
⃒
⃒PI ∕= PD

j },h ∈ NH, 

4.2.2. Remodelling of the changeover decision variables 
The formulation presented by Neo et al. (2006) captures the 

changeover activity using a four indexed decision variable. They define 
a changeover variable mkjj′h = 1 if at the end of leg k ∈ K cargo j ∈ NG is 
replaced with cargo j′ ∈ NG in compartment h ∈ NH. 

In contrast, we model the changeover activity using three indexed 
variables bkjh. The two indexed variables are an extension of the on/off 
variable idea that is presented in Schwindt et al., 2015. As a result, the 
changeover activity can be captured by a significantly reduced number 
of variables. Moreover, empirical tests (Section 7) indicate that our 
formulation yields tighter linear relaxations than the existing formula-
tion presented by Neo et al. (2006). 

4.2.3. Generalising the definition of the pick-up time windows 
The pick-up time windows, as defined by Jetlund and Karimi (2004), 

Neo et al. (2006) and Cóccola et al. (2015), had some practical limita-
tions. Their definition stated that if a cargo is being picked up, its latest 
pick-up time should be greater than the port arrival time plus half of the 
administrative time. Additionally, the definition also stated that the 
earliest pick-up time should be less than the port departure time minus 
half of the administrative time and loading time of that cargo. 

Jetlund and Karimi (2004), Neo et al. (2006) and Cóccola et al. 
(2015) present the following constraints for the pick-up time windows: 

tk+1⩾

(

TE
j + TA

2 + TP
j

)

lkj +
∑

p∈P

∑

p′∈P

TT
pp′ zkpp′ ∀k ∈ K\

{⃒
⃒K
⃒
⃒
}
, j ∈ NU ,

tk⩽
(
TL
j − TA

1

)
lkj +M

(
1 − lkj

)
∀k ∈ K\

{⃒
⃒K
⃒
⃒
}
, j ∈ NU .

We elaborate the need for our approximation with a small example 
and Fig. 6. Assume that we have three cargoes. Let cargo 2 and cargo 3 
have the same pick-up time-windows. The loading times for cargo 2 and 
cargo 3 are TP

2 and TP
3. If the existing definition of time windows is 

considered, then both cargo 2 and cargo 3 can be picked up. Further, the 
assumption that the cargoes are loaded consecutively would result in 
either one of the cargoes extending outside the pick-up time window. 
Such a situation might frequently occur in practical instances. As a 
result, we re-define the pick-up time-windows. According to the revised 
definition, cargo can be picked up only if the cargo-assignment point 
(Fig. 5) lies within the pick-up time window. Fig. 6 shows a comparison 
of both the definitions. This approximation captures more generalised 
real-world instances. 

Even-though the model presented in Section 4 is cleaner and smaller 
than the existing models, it is still difficult to solve even for medium- 
sized test instances. In order to find good feasible solutions faster, we 
propose a heuristic in the following section. 

5. A neighbourhood search based heuristic 

We propose a preliminary construction heuristic to find a good 

feasible solution. Our heuristic first solves a linear programming (LP) 
relaxation of the MILP. Solving an LP is usually much faster than MILP. If 
the LP relaxation is infeasible, MILP is also infeasible. Otherwise, we fix 
a large number of variables and solve a much smaller MILP. The heu-
ristic presented in this section is a modification of the Relaxation 
Enforced Neighbourhood Search (RENS) heuristic introduced by Berthold 
(2007), and the Relax and Fix (RaF) heuristic implemented by Rodrigues 
et al. (2016) and Santos et al. (2020). 

According to Santos et al. (2020), the RaF heuristic is effective on 
problems that can be divided into n sets of integer variables. For 
example, Rodrigues et al. (2016) define the sets of variables (to relax) 
based on time intervals. On the other hand, Santos et al. (2020) divide 
the variables based on heirarchy of decisions like routing variables, 
cargo assignment variables and so on. The n sets of variables are disjoint 
sets. In every iteration, the RaF heuristic solves the MIP formulation by 
relaxing a set of integer variables. Solutions generated in the previous 
iterations are provided as initial solution to the solver. According to 
Santos et al. (2020), some constraints are also relaxed for every iteration 
to reduce the problem complexity. However, as constraints are relaxed a 
heuristic is required to repair any infeasible solution that is generated on 
solving the sub-problems. 

There are some similarities between the RaF heuristic implementa-
tions and our heuristic because all of them solve a relaxation to provide 
insight for the overall problem. Additionally, similar to Santos et al. 
(2020), we divide the decision variables into different sets based on a 
heirarchy of decisions. Unlike Rodrigues et al. (2016) and Santos et al. 
(2020) we solve the linear programming (LP) relaxation, which relaxes 
all of the integer variables and includes all problem constraints. Addi-
tionally, instead of relaxing, we fix a subset of integer variables to reduce 
the complexity of the MIP formulation. 

Berthold (2007) also implement a heuristic which uses the LP 
relaxation to reduce the problem complexity of the MIP formulation. 
Based on the LP solution, the MIP is solved over this restricted feasible 
region to generate a local optimum. Consequently, we introduce an 
adaption of the RENS heuristic, which solves the revised formulation 
over a restricted feasible region. The feasible region is restricted by 
updating the bounds of a subset of integer variables based on the LP 
solution. 

Our bound update rule is derived from the structural analysis of the 
problem. Specifically, the update rule eliminates ports (except the 
dummy port (

⃒
⃒NP
⃒
⃒)) that are not visited by the chemical tanker in the LP 

optimal solution. Let (l,u, z, c,w,b, r) be the LP relaxation of the revised 
formulation presented in Section 4. Let, Ukpp′ = 1 be the upper bound on 
zkpp′ . Mathematically, the upper bounds are updated as follows: 

Bound update Rule: 

If
∑

k′∈K\{0}

∑

p′∈NP\{|NP|}

⎛

⎝zk′pp′ + zk′p′p

⎞

⎠ = 0,

Then
∑

k′∈K\{0}

∑

p′∈NP\{|NP|}

⎛

⎝Uk′pp′ + Uk′p′p

⎞

⎠ = 0 ∀p ∈ NP\

⎧
⎨

⎩
|NP|

⎫
⎬

⎭
.

Constraint (5) ensures that any feasible solution of the LP relaxation 
will always contain discharge ports of the onboard cargoes. As a result, 
the heuristic will terminate with at least one feasible solution if the 
optimal solution of the LP relaxation is found. 

Multiple reasons make this heuristic a viable option for our problem. 
The primary reason being that the formulation we propose in this paper 
has a tighter linear relaxation than the previous formulation presented 
in the literature. Since our LP relaxation is closer to the convex hull of 
MILP feasible region, its neighbourhood should provide a reasonable 
starting solution. 

A unique feature of our heuristic is the bound update rule that is 
based on the problem structure. As part of the structural analysis, we 
tried to fix various groups of decision variables. Once certain groups of 
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variables were fixed, we analysed their effect on parameters like the 
total solution time, the number of nodes explored, and the initial relative 
gap. We carried out certain experiments that fixed the ports to visit (not 
the order in which these ports should be visited), or the entire ship route 
was fixed, or the cargoes to be served were fixed. Restricting other de-
cision did not lead to a substantially simplified MILP. Out of the three 
decision sets, fixing either the cargoes or the ship’s route made the ship’s 
moment extremely restrictive in the temporal plane. Additionally, we 
observed that a significant number of route defining constraints (Con-
straints (2)–(7)) were active in the optimal basis of the linear relaxation 
in all of the benchmark instances. 

Furthermore, we observed that restricting the feasible set of ports 
(not the sequence in which these ports should be visited) significantly 
reduced the MILP termination time. Additionally, letting MILP decide 
the sequence of ports increased the feasible region of the problem sub-
stantially when compared to fixing the exact route of the ship. The 
flowchart for the heuristic is presented in Fig. 7. 

We postpone our discussion on the performance of this heuristic until 
Section 7. We next describe our instance generator, which was used to 
generate the instances used for testing. 

6. Instance generator 

Benchmark data sets in maritime transportation research are scarce. 
Only a few researchers have presented reusable benchmark datasets. 
Brouer et al. (2011) present a benchmark dataset for liner shipping 
network design models. Their dataset is composed of data from the liner 
company, Maersk Line. Similarly, Papageorgiou et al. (2014) and 
Hemmati et al. (2014) present an extensive list of real-world benchmark 
data for maritime inventory routing problems and tramp scheduling 
problems. Hemmati et al. (2014) develop their data to represent various 
shipping segments based on factors like the deep sea or short sea and 
full-load or mixed-load problems. However, certain limitations restrict 
the use of their data to our problem. For example, they do not provide 
data related to the operational facets of our problem, such as the volume 
of compartments, compartment materials, compartment dimensions, 
cargo-cargo, and cargo-compartment compatibility. In order to over-
come this limitation, we introduce an instance generator that is based on 
real-world data and parameters. The instance generator code and in-
stances are publicly available online2. 

Our instance generator is built in the R programming language. It has 
three main components, the core data folder, the instance generation 
engine, and the input parameter file. The core data contains static data 
used by the instance generator to create the final problem-specific in-
stances. The instance generator engine is the actual code responsible for 
producing problem instances by processing the core data based on the 
specifications from the user. Finally, the input parameter file allows the 
user to select different parameter settings for the instances being pro-
duced. Fig. 8 outlines the structure of our instance generator. 

6.1. Instance format 

A single instance generated by the instance generator consists of four 
files; namely, the ship data file, the onboard cargo data file, the unas-
signed cargo data file and the problem data file. The ship data file 
consists of all the ship-related data like ship number, ship name, ship 
structure, port cost, time-chartered cost, and so on. The onboard cargo 
data file and the unassigned cargo data file consists of cargo data like 
cargo number, cargo weight, origin, destination, cargo-cargo compati-
bility restrictions, etc. Finally, the problem data file consists of miscel-
laneous problem-related data like the total number of ports, port names, 
port distances and administrative time. Fig. 9 presents a complete list of 
data included in a single instance. 

6.2. Core data for generator 

The generator relies on the core data to create instances. The core 
data includes the data collected by us and can be enhanced by the user. 
The core data consists of 38 structurally different ships and four net-
works of ports. The designs of the chemical tankers are largely based on 
Odfjell’s chemical tanker fleet3. The number of compartments on the 
chemical tanker ranges from 16 to 52. The compartment walls are made 
of stainless steel, zinc or epoxy. Network data consists of nautical 

Fig. 7. Flowchart for the neighbourhood search based heuristic.  

2 https://ladageanurag.shinyapps.io/s-PDP-TWTAC/ 

3 https://www.odfjell.com/tankers/our-fleet/ 
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distances between ports4. Network 1 is borrowed from Jetlund and 
Karimi, 2004. Network 2 consists of the 98 busiest ports of 2015 as 
specified by American Association of Port Authorities5. Network 3 
consists of the top 47 busy ports in the Asia Region, as published by the 
International Association of Ports and Harbour6. Finally, Network 4 
consists of the busiest ports in the year 2016 for the NAFTA region7. The 
NAFTA region consists of ports in the USA, Mexico and Canada. A user 
can add additional chemical tankers and network-related data to this 
core data. The instance generator engine reads this core data and gen-
erates instances. 

6.3. Input parameters file 

Our model depends on many parameters. To keep our instance 
generator flexible, we have provided multiple value levels for each 
parameter. The list of all input parameters that can be specified by the 
user are as follows:  

• total_ships: This parameter allows the user to specify the total 
number of instances that need to be generated. If a single value (n) is 
provided, then the generator engine randomly selects n different ship 
data files to create n single ship instances. If a list is supplied, then 
only those ships are used to create instances. When a list is provided, 
the number of single ship instances generated is equivalent to the 
length of the list. By default, a maximum of 38 (the default number of 
different ships included in the core data) instances can be generated 
if all other input parameters are fixed. 

• total_cargoes: This specifies the total numbers of cargoes (both on-
board and unassigned) that need to be generated. The number of 
cargoes can be from one to infinity. Practically, values between 50 
and 150 might be interesting, depending on market conditions.  

• network_number: Enables the user to select any single network, for 
instance generation. The network number can be between 1 and 4. 
The four networks have 36, 98, 46 and 48 ports respectively.  

• total_planning_time: The total short-term problem planning horizon. 
Specifying this parameter ensures that the pick-up time windows of 
all the unassigned cargoes start before the parameter value. The 
length of the pick-up time windows varies randomly from 3 days to 7 
days. The maximum and minimum time-windows lengths are 
determined from the literature. We use the value 30 for our tests.  

• cargo_complexity: This parameter can take values, 1, 5 or 10. Each 
value varies the percentage of cargoes that belongs to each category. 
Setting this parameter value to 1 makes sure that 20% of the cargoes 
belong to category 1, 30% of the cargoes belong to category 2, 20% 

Fig. 8. Principle components of the instance generator.  

Fig. 9. Complete list of data generated for a single instance.  

4 http://ports.com/sea-route/  
5 http://aapa.files.cms-plus.com/Statistics/WORLD%20PORT%20 

RANKINGS%202015.xlsx  
6 http://www.iaphworldports.org/iaph/wp-content/uploads/WorldPortT 

raffic-Data_for_IAPH_using_LL_data_2017_Final.pdf  
7 http://aapa.files.cms-plus.com/Statistics/NAFTA%20REGION%20CO 

NTAINER%20TRAFFIC%20PORT%20RANKING%202016_T3.pdf 
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of the cargoes belong to category 3, while the rest of the cargoes 
belong to category 4. Similarly, setting this parameter to 5 segregates 
the cargoes into four categories by {40%,30%,20%,10%} percentage 
split. Furthermore, setting this parameter to value 10 yields a cargo 
split that follows {70%,10%,10%,10%} percentage split. All four 
cargo categories are described in Section 6.4.  

• totallegs: This number specifies the total number of legs per ship. If 
total_ships is a list, then the totallegs parameter also needs to be a list 
of the same size separated by spaces. If a single number is specified, 
then all the ships with as many numbers of legs are generated. MILP 
solution time grows exponentially as the number of sailing legs in-
crease. The suggested range of values is from 7 to 15.  

• ship_util_level: This parameter specifies the maximum allowable 
chemical tanker utilisation at the beginning of the time horizon. For 
example, setting the value to 0.5 assumes that a maximum of half of 
the chemical tanker can be filled up with onboard cargoes in the 
generated data. The minimum and maximum values for this 
parameter are 0 and 1.  

• loading_rate: Specifies the loading rate for all the cargoes. The 
default tested value is 4800 tonnes/day, which is borrowed from 
Jetlund and Karimi, 2004.  

• unloading_rate: Specifies the unloading rate for all the cargoes. 
Default tested value is 4800 tonnes/day, which is borrowed from 
Jetlund and Karimi, 2004.  

• administrative_time: The default tested value is 0.25 days as stated 
by Jetlund and Karimi, 2004. 

• Alpha and beta: Absolute maximum allowable trim and heel mo-
ments in tonnes-metre. The tested value for both parameters in our 
experiments is 1 tonnes-metre. 

6.4. Instance generator engine 

The instance generator engine takes multiple input parameters that 
are provided by the user through a text file. A detailed description of all 
the input parameters is provided in Section 6.3. A high-level pseudo- 
code of the algorithm, which is used to generate the problem instances is 
presented using Algorithm1. A single problem instance comprises of a 
chemical tanker data file, an on-board cargoes data file, an unassigned 
cargoes data file, and the problem data file. The chemical tanker data file 
and both the cargo data files store chemical tanker and cargo-related 
information, respectively. The problem data file stores port-related in-
formation that includes the list of ports in the network and distances 
(nautical miles) between them. The problem data file also includes the 
administrative time constant.  

The readInputFile() processes the inputs that are provided by the user. 
Subsequently, the generateShips() and generateCargoes() functions 
generate the interim chemical tanker data file and the cargo data file. 
The generateCargoes() sub-routine is capable of generating many cargoes 
infinitely; it can generate as many as four different categories of cargoes. 
The first category can be stored in any compartment and has no conflict 
with any other cargo category. Cargoes in category two have conflicts 
with cargoes of category three. Further, the cargoes in category three 
have conflicts with cargo categories two and four. Additionally, the 
cargoes in category three cannot be stored in epoxy-coated compart-
ments. Finally, the cargoes in category four also have conflicts with 
cargo category three, and can only be stored in compartments that are 
made of stainless steel. 

The cargo data file that is generated by generateCargoes() acts as an 
input to the modifyToOnboardCargoes() and modifyToUnassignedCargoes 
() functions. Both these functions generate the final instance files for on- 
board cargoes and unassigned cargoes. The final list of onboard cargoes 
has to be generated such that there is at least one cargo-compartment 
allocation by weight, which respects the chemical tanker stability re-
quirements and the compartment capacities. For this purpose, the sub- 
routine solveWeightAssignmentsLP() solves a linear program (Eqs. (30)– 
(33)) below. This linear program tries to maximise the weight in each 
compartment (wh) while satisfying the compartment capacity constraint 
(31) and chemical tanker stability constraints (32, 33). Parameter ρmin 
equals the minimum density amongst all the cargo generated for that 
instance. Rest of the parameters used in the linear program are already 
defined in Section 4.  

Maximise :
∑

h∈NH

wh (30)  

Subjectto : 0⩽ wh ⩽Vhρmin ∀h ∈ NH , (31)  

− α⩽
∑

h∈NH

whιh⩽α,
(32)  

− β⩽
∑

h∈NH

whκh⩽β.
(33) 

Subsequently, cargo numbers are assigned to weights using the 
assignCargoNumbersToWeights() sub-routine. The assign-
CargoNumbersToWeights() sub-routine takes into consideration all the 
compatibility constraints to give a list of on-board cargoes with at least 
one feasible cargo-compartment assignment allocation. 

Algorithm1. Instance Generator Engine 
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The generator then modifies the chemical tanker data file to include 
the list of on-board cargoes, immediate destination and port costs 
through the modifyShipData() routine. The modifyShipData() routine 
completes the chemical tanker data instance file. Finally, it generates the 
problem instance file using the generateProblemData() function. In the 
next section, we discuss computational experiments on instances ob-
tained from the generator. 

7. Computational study 

The computational study is divided into two main parts. First, we 
discuss the effects of improvements in the model formulation. Second, 
we present a secondary study related to the performance of the proposed 
heuristic. 

We generated 200 test instances for our experiments in the following 
way. A default seed value of 10 and total_ships input parameter value of 
38 were provided to our generator to obtain 1,672 (44 different instance 
sets and 38 chemical tankers) random instances. To keep the number of 
test instances reasonable, we selected a subset of 13 chemical tankers 
(Table A.2), with the most diverse characteristics. We narrowed down 
our test set by randomly selecting 200 test instances in such a way that 
there is at least one instance from each of the 44 instance sets, and at 
least one for each of the 13 ships. The instances are named INST_SET_-
SHIP. SET denotes the instance set number for a given instance. SHIP 
denotes the chemical tanker number that is used in that particular 
instance. For example, instance INST_1_1 would belong to the instance 
set 1, and model ship 1 (BOW MEKKA) operations. Table A.1 lists the 
different input parameter values used to generate 44 instance sets. 
Tables A.1 and A.2 also tabulate some solution-related statistics, which 
will be discussed in Section 7.2. 

Instances with the same instance set number have identical input 
parameters (mentioned in Section 6.3). However, every instance within 
the same instance set has different chemical tanker characteristics. 
Additionally, even though the input parameter value total_cargoes is 
same for an instance set it only defines the cardinality of the cargo set. 
Individual cargoes differ in terms of cargo characteristics like total 
weight, density, origin, destination and pick-up time-windows. 

The generator was run using R (version 3.6.1) and RStudio (version 
1.1.383). All subsequent tests are carried out using the Cplex 12.7.1 
MILP solver. Each instance was solved using 4 cores of the Xeon-E5- 
2667-v3 3.20 GHz CPU and 8 GB RAM. We used C++11 standard li-
braries and Cplex Concert Technology libraries to construct all the 
formulations. 

We have uploaded along with the instance generator all the 200 test 
instances8. Logs and solution files for the Cplex run are available online. 
The Cplex run includes solving the REV formulation presented in Section 
4 using the Cplex solver for a CPU time limit of 86,400 s, and the default 
MIP gap tolerance of 0.01 %. First two sets of experiments described in 
Sections 7.1 and 7.2 have the changeover time (TS) set to zero. The 
changeover cost (CS) is also set to 0 during leg 0. These settings enable us 
to compare our formulations with the existing ones. We also discuss the 
effect of non-zero changeover time (TS) in Section 7.3. 

For the Cplex run, the total number of variables varies between 
23,115 and 4,97,749, while the total number of constraints vary be-
tween 24,440 and 5,23,392. It can be further observed that Cplex 
terminated with an optimal solution for 115 test instances with an 
average CPU time of 18,186 s, and a feasible solution for another 85 test 
instances. Amongst the 85 instances, Cplex found a Cplex gap (%) of less 
than 10 % for 3 instances, between 10 % and 50 % for 24 instances, and 
greater than 50 % for 58 instances. Additionally, our experiments 
showed that the Cplex run with pre-processing went out of memory for 
only 2/200 test instances. However, the Cplex runs without pre- 

processing went out of memory for a total of 77/200 instances. Re-
sults related to the performance of the heuristic will be discussed in 
Section 7.2. The next section presents our primary empirical study, 
which compares two different formulations of the s-PDP-TWTAC. 

7.1. Effects of improvements in the model formulation 

We now compare our revised (REV) formulation and an existing 
(OG) formulation of the s-PDP-TWTAC. In order to make a fair com-
parison, we make use of the new approximation of time windows in both 
the formulations. We refer to the formulation presented by Neo et al., 
2006, which is altered with our definition of pick-up time windows as 
the original formulation (OG). Further, we refer to the formulation 
presented in Section 4 as the revised formulation (REV). As the solution 
times are large we limit our comparative study to 30 instances selected 
from the above set of 200 instances. 

The OG and the REV formulations are compared on problem size, 
and their linear relaxations. The LP relaxation provides an upper bound 
to the optimal value of the model. Lower the upper bound, tighter is the 
relaxation and closer to the integer feasible points. Fig. 10 reports the 
percentage reduction from OG to REV in the number of variables and 
constraints. It was observed that the problem size decreased drastically 
for all the instances when the REV formulation is used. 21 out of 30 
instances show a reduction of at least 90 % in the total number of var-
iables, and other instances show a reduction by at least 76 %. Further, 
the total constraints decrease by 15 % to 23 %. The LP relaxation of both 
the formulations could be solved within the time limit for 22 out of 30 
instances. Fig. 11 compares the LP relaxation value of OG and REV 
formulations on these 22 instances. It shows that both the solution time 
and the upper bound decreases for our revised (REV) formulation. In the 
remaining 8 instances, the LP relaxation of the OG formulation ran out of 
memory. In contrast, solver managed to solve the REV formulation 
without any memory issues. 

Now we compare performance parameters such as the total solution 
time and the relative gap at time limit for the two MILP formulations 
(Table 2). The second column (Cplex Status) reports OOM if the MILP 
solver ran out of memory. The column that is labelled, Best Objective, 
lists the best lower bound obtained at termination. The total solution 
time at termination for all the 30 instances is reported in the succeeding 
column (Total CPU Time). Additionally, the Relative Gap column presents 
the relative gap (%) between the upper and lower bound on the optimal 
value reported by Cplex at termination. 

Out of the 30 instances, 18 instances ran out of memory (8 GB) 
without discovering any feasible integer solution when solved using the 
OG formulation. In contrast, the REV formulation stays within memory 
limits and finds at least one feasible integer solution for all 30 instances. 
Additionally, REV formulation finds the optimal solution in 15 instances 
(within the time limit), while the OG formulation terminates with 
optimality in only six instances. We observe that REV formulation is 
much faster (up to 15 times) and memory efficient as compared to the 
OG formulation. We now describe the performance of the proposed 
heuristic next. 

7.2. Revised formulation results: Cplex vs. Heuristic 

All the 200 test instances were used to perform this empirical 
computational study. The primary goal of this experiment is to present 
the results of solving the s-PDP-TWTAC revised formulation with the 
proposed heuristic. The heuristic is run for a CPU time of 86,400 s. The 
heuristic also terminates if the Cplex reported relative gap (%) is less 
than 0.01 %. We also make some preliminary comparisons between the 
Cplex run and the heuristic run. Further, we discuss the sensitivity of 
some of the performance parameters with respect to the input parame-
ters used to generate the test instances. The performance parameters 
include the Gap (%) and the total CPU time (sec) of both the Cplex run 
and the heuristic run. The comparison is aimed at understanding why 8 https://ladageanurag.shinyapps.io/s-PDP-TWTAC/ 
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the MILP solver takes a long time. A solver might be slow because it is 
not able to find a good solution early on. It might also be slow because it 
is unable to prove that the solution is optimal. Even though our heuristic 
finds better quality solutions faster for several instances, the Cplex run 
can solve the problem exactly for some others. Further, the Cplex run 
also generates an upper bound for the overall problem that our heuristic 
does not. 

We report some of the solution statistics in Tables A.1 and A.2. As 
explained earlier, the first four columns of Tables A.1 and A.2 give the 
instance set characteristics and the chemical tanker characteristics, 
respectively. In Table A.1, Column Instance per set gives the number of 
test instances (out of 200) that belong to each instance set. Similarly, in 
Table A.2, Column instance per ship gives the number of test instances 
(out of 200) for every chemical tanker. In both tables, Columns Avg. 
variables to Avg. Heur CPU time tabulate the corresponding solution 
statistics. Table A.1 presents average solution statistics for every 
instance set. Likewise, Table A.2 report solution statistics averaged for 
each of the chemical tankers. 

We record four performance parameters, the Heur Gap (%), the 
Cplex Gap (%), the Cplex CPU time (sec) and the Heur CPU time (sec). 
The Heur Gap (%) presents the percentage difference between the upper 
bound obtained during the Cplex run, and the lower bound obtained 
from the heuristic run. Moreover, the Cplex Gap (%) is the percentage 
difference between the Cplex upper and lower bounds. Both the gaps (%) 
are with respect to the absolute values of the upper bounds generated by 
Cplex. Lower the gap better is the performance of the run. The Cplex Gap 
(%) and the Heur Gap (%) for a given instance are calculated as follows: 

CplexGap
(

%
)

=
Cplexupperbound − Cplexbestobjective

Abs(Cplexupperbound)
× 100

HeurGap
(

%
)

=
Cplexupperbound − Heuristicbestobjective

Abs(Cplexupperbound)
× 100 

Subsequently, the average performance measures reported in 
Tables A.1 and A.2 are calculated as follows. 

Avg.CplexGap(%)=
TotalCplexGap(%) forn instances

n

Avg.HeurGap(%)=
TotalHeurGap(%) forn instances

n

Avg.CplexCPUtime(sec)=
TotalCplexrunCPUtime(sec)forn instances

n

Avg.HeurCPUtime(sec)=
TotalheuristicrunCPUtime(sec) forn instances

n 

Table A.1 reports n in Column Instances per set, while Table A.2 re-
ports it in Column Instances per ship. The heuristic run terminates with 
either no integer solution (Phase I OOM), local optimal solution (Local 
Optimal) or a feasible integer heuristic solution (Phase II OOM or time 
limit). The local optimal solution is the best possible solution that can be 
generated by the heuristic without hitting the time limit or the memory 
limit. It may not be the optimal solution of the REV formulation. 

Out of the 200 instances, our heuristic terminated due to local 
optimality in 157 instances, due to feasibility and time limit (Phase II 
time limit or OOM) in 33 instances, and due to Phase I OOM issue in 10 
instances. A run terminates with Phase I OOM if memory is exhausted 
while solving the linear relaxation of the problem. On the other hand, 
the Phase II time limit or OOM termination occurs if the Phase II MILP 
does not terminate within the time limit or the solver runs out of 
memory, respectively. 

Fig. 12 presents the Gap (%) and CPU time (sec) of both the runs. The 
horizontal axis plots instances in increasing order of Cplex Gap (%). The 
Gap (%) of both the runs are plotted in Chart 1, while the second chart 
plots the CPU time (sec) for both runs. We classify the 200 test instances 
into two sets. Set I (118 instances) includes all the instances with Cplex 
Gap (%) less than 1 %, while Set II (82 instances) includes all the 

Fig. 10. Percentage reduction in the number of variables and constraints - OG formulation vs. REV formulation.  
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Fig. 11. LP Relaxation - Objective value and solution time comparison - OG formulation vs. REV formulation.  

Fig. 12. Comparison of the Gap (%) and the CPU time (sec) of the Cplex and heuristic runs as the problem difficulty (Cplex Gap (%)) increases.  
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Fig. 13. The effect of the total number of cargoes and the maximum number of sailing legs on the average performance parameters.  

Fig. 14. The effect of the total number of onboard discharge ports on the average performance parameters.  
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instances with Cplex Gap (%) greater than 1%. 
The heuristic terminated with a solution equivalent to the Cplex 

optimal solution for 63 instances, which are a subset of Set I. For these 
63 instances, the total solution time reduced by 71.62 %. Within Set I, 
the Cplex run terminated with a lower Gap (%) when compared to the 
heuristic run for 54 instances. For the instances in Set I, the total solution 
time of the heuristic run increased for 6 instances with an average of 
786.67 %, while it decreased for 112 instances with an average of 79.87 
%, when compared to the Cplex run. 

Within Set II, the heuristic could not find a solution for 10 instances. 
For rest of the 72 instances (within Set II), compared to the Cplex run, 
the heuristic run terminated with a better, same and worst lower bound 
for 49, 3 and 20 instances, respectively. For Set II, an average Cplex gap 
of 59.95 % was observed. In comparison, the heuristic run resulted in an 
average gap (%) of 55.74 %. Moreover, the CPU time (sec) for the 
heuristic run decreased by 41.75 % when compared to the Cplex run for 
the instances in Set II. In summary, Fig. 12 shows that for instances in Set 
I, Cplex finds better quality solutions than the heuristic. However, as the 
Cplex Gap (%) increases the heuristic consistently finds better quality 
solutions compared to Cplex. Moreover, for majority of the test in-
stances, the heuristic run terminates faster than the Cplex run. 

Further, we discuss the sensitivity of the performance parameters, 
namely; the Gap (%) and the total CPU time of both the Cplex run and 
the heuristic run with respect to the different input parameters. The Gap 
(%) of both the runs is calculated with respect to the upper bound re-
ported by Cplex. The primary input parameters considered for this study 
are the total number of cargoes, the total number of ports, the maximum 
number of sailing legs, and the number of discharge ports of the onboard 
cargoes. Moreover, some secondary input parameters like the total 

number of compartments, the ship speed, the draft constant, the fuel 
cost, the time charter cost, and the average compartment volume were 
also considered during this study. 

Anaysis using multiple linear regression was performed to explore 
the effects of the input parameters on the performance parameters. Some 
of the primary input parameters significantly affect the performance 
parameters. Figs. 13 and 14 help us illustrate this claim. However, the 
performance parameters seem to be insensitive to the secondary input 
parameters. Figs. 13 and 14 classify the test instances into different 
categories based on the input parameters. The vertical axis in these 
figures presents the average of the performance parameters. For 
example, the first chart in Fig. 13 differentiates the test instances based 
on the total number of cargoes on the horizontal axis. Similarly, the 
vertical axis presents the average Gap (%). 

In Fig. 13, Chart 3 and 4 show that both the average solution quality 
and the average total CPU time worsen with the increase in the 
maximum number of sailing legs. Similarly, both the Cplex performance 
parameters deteriorate with the increase in the maximum number of 
legs. Additionally, even though the average total CPU time for the 

Table 2 
Comparison of problem status, best integer solution, total solution time and relative gap between the original and the revised formulation.  

Instances Cplex Status Best Objective Total CPU Time Relative Gap  

OG REV OG REV OG (sec) REV (sec) OG (%) REV (%) 

INST_1_1 Optimal Optimal 1904910 1904910 5651 412 0.01 0.01 
INST_5_9 Optimal Optimal 995262 995262 72102 31006 0.01 0.01 
INST_6_1 Feasible Optimal 1537990 1537990 86400 25274 54.563 0.01 
INST_8_18 OOM Optimal No Sol 2269880 718 20858 Inf 0.01 
INST_9_22 OOM Feasible No Sol 3239300 594 86400 Inf 53.261 
INST_10_10 Feasible Feasible 407682 372226 86400 86400 607.687 689.32 
INST_12_7 OOM Feasible No Sol 1172500 779 86400 Inf 104.12 
INST_13_17 OOM Optimal No Sol 2801950 1054 2288 Inf 0.01 
INST_16_4 OOM Optimal No Sol 1512150 1538 15294 Inf 0.01 
INST_17_4 OOM Feasible No Sol 1829870 834 86400 Inf 109.954 
INST_19_27 Feasible Feasible 3821410 4684360 86400 86400 82.4 37.607 
INST_21_7 OOM Feasible No Sol 1531150 14 86400 Inf 314.955 
INST_22_3 OOM Feasible No Sol − 281065 70 86400 Inf 1220.24 
INST_23_10 OOM Feasible No Sol 2951890 30 86400 Inf 132.28 
INST_24_22 OOM Feasible No Sol 793339 30 86400 Inf 695.712 
INST_25_18 OOM Optimal No Sol 3769140 37 70888 Inf 0.01 
INST_29_20 OOM Optimal No Sol 3798930 270 75667 Inf 0.01 
INST_30_20 OOM Optimal No Sol 2219180 110 43172 Inf 0.01 
INST_31_9 OOM Feasible No Sol 5863370 747 86400 Inf 15.953 
INST_32_1 OOM Feasible No Sol 2450400 33 86400 Inf 109.332 
INST_33_8 OOM Feasible No Sol 991297 33 86400 Inf 771.241 
INST_34_18 OOM Feasible No Sol 581309 1 86400 Inf 1035.6 
INST_35_22 OOM Feasible No Sol − 585672 34 86400 Inf 1740.83 
INST_38_7 Optimal Optimal − 1167910 − 1167910 6477 5420 0.01 0.01 
INST_39_17 Optimal Optimal 1218010 1218010 16594 1014 0.01 0.01 
INST_40_27 Optimal Optimal 623656 623656 1640 750 0.01 0.01 
INST_41_11 Feasible Feasible 25338.7 200491 86400 86400 3081.64 0.05 
INST_42_4 Feasible Optimal − 811647 − 781745 86400 32743 51.717 0.01 
INST_43_4 Optimal Optimal 2836360 2836360 76294 15602 0.01 0.01 
INST_44_11 Feasible Optimal 470923 505503 86400 36092 199.387 0.01  

Table 3 
Effect of changeover time on the revised formulation (30 instances).   

Cplex status count Avg. CPU Avg. Gap Obj change  

Optimal Feasible time (sec) (%) Avg. (%) 

REV (T̂ S  = 0) 15 15 55749 234.35 NA 
REV (T̂ S  = 1 h) 13 17 66130 1073.07 31.9  
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heuristic run worsens with the total number of cargoes, the solution 
quality does not. 

Charts 1 and 2 in Fig. 14 illustrate that the increase in the total 
number of onboard cargo discharge ports significantly improves the Gap 
(%) and the total CPU time related to both the runs. This effect is correct 
because the total number of onboard cargo discharge ports reduces the 
flexibility of the route of the chemical tanker. As per the problem defi-
nition, all onboard cargoes must be delivered. Consequently, their cor-
responding discharge ports have to be visited. Thus, a higher number of 
different discharge ports of onboard cargoes reduces the number of new 
ports on the route of the ship. This reduces the feasible region of the 
problem. Additionally, our preliminary sensitivity analysis shows that 
the performance parameters were not affected by the number of ports or 
the number of compartments. 

7.3. Effect of changeover time (TS) on the REV formulation 

We perform this study on the same 30 instances shortlisted in Section 
7.1 (Table 2). We solve the instances with TS = 0 and TS = 1 h. Addi-
tionally, for TS = 1 runs we include the changeover cost at the end of leg 
0. Both runs were restricted to 86400 s of CPU time per instance. 
Summary of these results is presented in Table 3. The performance 
measures listed in Table 3 are calculated as follows: 

Avg. CPU time =
Total CPU time for n instances

n

Avg. Gap (%) =
Total Cplex Gap (%) for n instances

n

Obj change (%) =
ABS(OBJTS=0 − OBJTS=1)

ABS(OBJTS=0)
× 100

Avg. Obj change (%) =
Total Obj change (%)forninstances

n 

For TS = 0 runs, Cplex terminates with an optimal solution for 15 
instances and a feasible solution for the remaining 15 instances. On the 
other hand, TS = 1 runs terminated with an optimal and feasible solution 
for 13 and 17 instances, respectively. We observe that the average CPU 
time (sec) for the 30 instances increases by 18.6 % for TS = 1 run. The 
overall Avg. Gap (%) also increases for TS = 1 runs. The Avg. Obj change 
(%) is around 31.9 %, with a high standard deviation of 63 %. For 21/30 
instances, the Obj change (%) is less than 5 %. In 7 instances, the Obj 
change (%) was more than 50 %. Thus, there seems to be a moderate 
effect of including TS on both the solution time and the optimal value. 

8. Conclusions and future work 

We present a revised (MILP) formulation that incorporates 
compartment-related decisions. Compartment-related decisions include 
compartment capacities, ship stability criteria, cargo-compartment and 
cargo-cargo incompatibility norms. These decisions directly impact the 
higher level scheduling decisions like determining the route of the 
chemical tanker and cargo pickups. Our revised formulation substan-
tially reduces the number of decision variables and constraints. The 
revised formulation performs better than the existing formulation that is 
available in the literature in terms of memory requirements, solution 
quality and Cplex solution time. We hope our instance generator and the 
library of instances will be used by other researchers to improve the 
models and solution techniques. 

The proposed heuristic shows that the existing heuristics in general- 
purpose MILP solvers are insufficient to tackle the s-PDP-TWTAC 
problem. The proposed LP-based neighborhood search heuristic gives 
better results than a commercial MILP solver but still may be slow for 

practical purposes. Using an LP-based neighborhood search heuristic, 
we restrict the feasible region using some knowledge of the continuous 
variables. Additionally, the REV formulation gives a tighter LP relaxa-
tion than the OG formulation. This made the LP relaxation a good 
candidate to define a restricted neighborhood. However, Phase I (solv-
ing the LP relaxation) also impedes the heuristic’s overall performance. 
We hope to improve this heuristic in the future. 

It can be concluded from Fig. 12 that the heuristic consistently finds 
better quality lower bounds in comparison to the Cplex run as the 
problem complexity (Cplex gap (%)) increases. Additionally, we 
conclude that the Cplex and heuristic performances deteriorate with the 
increase in the number of sailing legs and the total number of cargoes. 
The Cplex and heuristic performance also improves with the number of 
different discharge ports for onboard cargoes. Preliminary study showed 
that all other inputs to the instance generator did not affect the gaps and 
total solution time (both runs) significantly. However, additional study 
using a significantly higher number of test instances is required to 
discover better inputs to performance relationships. 

We have made some simplifying assumptions to make the problem 
tractable. The most important of these simplifications are the in-port 
activities of the chemical tanker. For example, a port has multiple 
berth or terminals. Thus, once the chemical tanker enters a port, it is 
required to visit different berths in order to load/unload the cargoes or 
to refuel. Incorporating these into the problem definition along with 
partial cargo pickups, and multiple discharge ports for a single cargo are 
some other interesting practical considerations, which would increase 
the robustness of the problem. 

Section 7.3 shows that the inclusion of changeover time affects the 
average solution time and the objective value moderately. In practice, 
the changeover time (TS) may vary based on various factors like the 
number of cleaning cycles and the type of cargo stored in the 
compartment. Additional study is required to determine its effect on the 
problem. 

Another extension of our work would be to scale the present model to 
optimise an entire fleet of heterogeneous chemical tankers. Having 
multiple ships increases the complexity significantly. We are also trying 
to gain a better insight into other input factors that could affect the 
complexity of the problem. Subsequently, we hope to introduce further 
instances for the multi-ship version of the s-PDP-TWTAC. 
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Appendix A  

Table A.1 
Instance set data combined with the average (per instance set) statistics related to Cplex and heuristic runs of the revised formulation.  

Instance 
set 

Total 
cargoes 

Network 
number 

Total 
legs 

Onboard 
cargoes 

discharge port 

Instances 
per set 

Avg. 
variables 

Avg. 
constraints 

Avg. 
Cplex gap 

(%) 

Avg. 
heur gap 

(%) 

Avg. Cplex 
CPU time 

(sec) 

Avg. heur 
CPU time 

(sec) 

1 40 1 7 1 6 43408 57191 0.01 3.25 1448.83 366.83 
2 40 2 7 1 6 94383 60193 0.01 10.16 1681.83 14530.67 
3 40 3 7 1 8 45221 55980 0.01 7.92 970.25 127.88 
4 40 4 7 1 4 46720 51995 0.01 7.66 2600 4358.5 
5 40 1 10 1 5 49667 59382 0.01 8.47 32214.4 6831.6 
6 40 2 10 1 6 136299 83130 3.71 3.67 44494.67 1866 
7 40 3 10 1 6 60921 63053 0.01 1.42 40243.83 9357 
8 40 4 10 1 6 71844 83683 0.01 0.01 15380.5 2397.83 
9 40 1 15 1 5 100603 132176 24.8 20.79 86400 70942.6 
10 40 2 15 1 4 194300 94044 101.22 96.37 86400 22569.25 
11 40 3 15 1 3 114784 135634 45.25 30.72 86400 86400 
12 40 4 15 1 2 114085 132965 46.19 40.92 86400 77056.5 
13 80 1 7 1 4 83335 118948 0.01 13.99 2498 738.75 
14 80 2 7 1 4 136394 124260 0.01 0.01 13012.75 1903 
15 80 3 7 1 5 87365 120124 0.01 1.04 6140.8 3676.4 
16 80 4 7 1 3 72798 94775 0.01 8.04 8695.67 1076 
17 80 1 10 1 6 98349 134064 17.5 20.21 73734.83 12582.5 
18 80 2 10 1 6 187005 159942 35.43 37.19 80524.83 14011.67 
19 80 3 10 1 3 141346 194443 43.48 45.35 86400 48502.33 
20 80 4 10 1 4 112200 146745 26.04 31.32 71406.75 5128.75 
21 80 1 15 1 4 165962 238134 83.68 81.54 86400 86400 
22 80 2 15 1 6 264903 200870 100.18 90 86400 37930 
23 80 3 15 1 5 196374 264101 68.95 61.75 86400 76789 
24 80 4 15 1 1 233813 316200 87.43 86.67 86400 86400 
25 120 1 7 1 3 150964 223035 0.01 0.01 34131 17464.33 
26 120 2 7 1 4 162734 169457 0.01 35.7 25290.25 3549.5 
27 120 3 7 1 4 101858 137909 0.01 3.53 14367.5 6825.5 
28 120 4 7 1 6 147804 211763 0.01 2.57 24387.83 9310.83 
29 120 1 10 1 3 171276 290309 27.11 28.46 82822.33 67004.67 
30 120 2 10 1 6 257975 280855 61.66 53.16 79195.33 20739 
31 120 3 10 1 6 148034 207094 27.54 31.04 86400 34733 
32 120 4 10 1 3 192374 284153 52.74 53.07 86400 36389.67 
33 120 1 15 1 6 238604 341598 82.46 66.87 86400 73790.67 
34 120 2 15 1 4 374820 400572 90.65 82.87 86400 86400 
35 120 3 15 1 5 275870 395457 91.68 60.31 86400 86400 
36 120 4 15 1 5 244908 327946 82.79 78.08 86400 53841.33 
37 40 1 7 4 1 53353 83854 0.01 0.01 503 68 
38 40 2 7 4 5 92015 58793 0.01 5.9 2208.4 127.8 
39 40 3 7 4 2 56571 63176 0.01 0.01 1000 574.5 
40 40 4 7 4 2 54644 65740 0.01 3.45 659.5 172.5 
41 40 1 10 4 5 61922 82451 0.02 4.36 41816.4 21566.6 
42 40 2 10 4 5 132411 78300 0.01 1.99 28926 1101 
43 40 3 10 4 7 66584 79313 3.2 3.37 20168.57 2177.43 
44 40 4 10 4 6 68680 85378 0.01 9.69 32624.83 2976.33  

Table A.2 
Ship data combined with average (per ship) statistics related to Cplex and heuristic runs of the revised formulation.  

Ship 
numbers 

Ship name Draft 
constant 
(tonnes) 

Total 
compartments 

Ship 
speed 

(knots) 

Instances 
per ship 

Avg. 
variables 

Avg. 
constraints 

Avg. 
Cplex 

gap (%) 

Avg. 
heur 

gap (%) 

Avg. Cplex 
CPU time 

(sec) 

Avg. Heur 
CPU time 

(sec) 

1 BOW MEKKA 11176 52 14.3 16 152081 209057 20.78 19.18 41222.12 25090.25 
3 BOW 

HECTOR 
8154 16 14.2 15 84040 58615 17.43 26.97 41849 9133.67 

4 BOW 
SANTOS 

5027 22 14.1 18 105427 88765 29.21 34.03 49803.89 21144.22 

7 BOW FAGUS 11176 52 14.3 18 164351 215119 22.03 21.48 46607.94 27238.88 
8 BOW 

ATLANTIC 
4541 24 13.6 16 107265 114122 34.74 37.67 52575.31 18861.38 

9 BOW KISO 8793 16 13.8 16 79702 64199 21.15 23.54 39526.56 10960.44 
10 BOW 

FORTUNE 
10915 47 14.3 17 149452 180304 22.09 16.16 42259.41 16540.25 

11 BOW SAGA 10262 40 14.6 17 128695 172658 22.02 22.13 46645.71 22842.81 
17 BOW 

ARCHITECT 
7691 28 14.5 13 123080 123345 29.04 30.09 47945.46 27024.69 

18 BOW CEDAR 11176 52 14.3 15 208423 241611 31.08 16.82 50513 28112.42 
20 BOW LIND 13416 29 13.7 11 111102 154050 24.6 20.99 50484.27 34533.27 
22 BOW FIRDA 10915 47 14.3 19 190641 239079 43.95 27.94 59761.16 37577.53 
27 BOW HERON 9450 31 14.5 9 98211 101828 13.05 15.52 26950.22 10811.44  
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Appendix B. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, athttps://doi.org/10.1016/j.cor.2021.105345. 
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