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Abstract

This chapter presents the foundations of nonlinearly constrained optimization, or nonlinear
programming. We emphasize general methods and highlight their key components, such as
local model and global convergence mechanism. We summarize convergence results.
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1 Background and Introduction

Nonlinearly constrained optimization problems (NCOs) are an important class of problems with
a broad range of engineering, scientific, and operational applications. For ease of presentation, we
consider NCOs of the form

minimize
x

f(x) subject to c(x) = 0 and x ≥ 0, (1.1)

where the objective function, f : IRn → IR, and the constraint functions, c : IRn → IRm are twice
continuously differentiable. We denote the multipliers corresponding to the equality constraints,
c(x) = 0, by y and the multipliers of the inequality constraints, x ≥ 0, by z ≥ 0. An NCO may also
have unbounded variables, upper bounds, or general range constraints of the form li ≤ ci(x) ≤ ui,
which we omit for the sake of simplicity.

In general, one can not solve (1.1) directly or explicitly. Instead, an iterative method is used that
solves a sequence of simpler, approximate subproblems to generate a sequence of approximate
solutions, {xk}, starting from an initial guess x0. A simplified algorithmic framework for solving
(1.1) is as follows.
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Given initial estimate x0 ∈ IRn, set k = 0;
while xk is not optimal do

repeat
Approximately solve and refine a local model of (1.1) around xk.

until an improved solution estimate xk+1 is found ;
Check whether xk+1 is optimal; set k = k + 1.

end

Algorithm 1: Framework for Nonlinear Optimization Methods

In this chapter, we review the basic components of methods for solving NCOs. In particular,
we review the four fundamental components of Algorithm 1: convergence test that checks for op-
timal solutions, or detects failure; local model that computes an improved new iterate; globalization
strategy that ensures convergence from remote starting points, by indicating whether a new so-
lution estimate is better than the current estimate; and globalization mechanism that truncates the
local model to enforce the globalization strategy, effectively refining the local model.

Algorithms for NCOs are categorized by the choice they implement for each of these funda-
mental components. In the next section, we review the fundamental building blocks of methods
for nonlinearly constrained optimization.

Notation: Throughout this section, we denote iterates by xk, k = 1, 2, . . ., and we use subscripts
to indicate functions evaluated at an iterate, e.g., fk = f(xk) and ck = c(xk). We also denote the
gradients by gk = ∇f(xk), and Ak = ∇c(xk). The Hessian of the Lagrangian is denoted by Hk.

2 Convergence Test

We start by describing the convergence test, a common component among all NCO algorithms.
The convergence test also provides the motivation for many local models that are described next.
The convergence analysis of NCO algorithms typically provides convergence only to KKT points.
A suitable approximate convergence test is thus given by

‖c(xk)‖ ≤ ε and ‖gk −Akyk − zk‖ ≤ ε and ‖min(xk, zk)‖ ≤ ε,

where ε > 0 is the tolerance and the min in the last expression corresponding to complementary
slackness is taken componentwise.

In practice, it may not be possible to ensure convergence to an approximate KKT point, for
example, if the constraints fail to satisfy a constraint qualification (Mangasarian, 1969, Ch. 7). In
that case, we replace the second condition by

‖Akyk + zk‖ ≤ ε,

which corresponds to a Fritz-John point.
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Infeasible Stationary Points Unless the NCO is convex or some restrictive assumptions are
made, methods cannot guarantee convergence even to a feasible point. Moreover, an NCO may
not even have a feasible point, and we are interested in a (local) certificate of infeasibility. In
this case, neither the local model nor the convergence test is adequate to achieve and detect con-
vergence. A more appropriate convergence test and local model can be based on the following
feasibility problem:

minimize
x

‖c(x)‖ subject to x ≥ 0, (2.2)

which can be formulated as a smooth optimization problem by introducing slack variables. Local
models can be derived analogous to those of Section 3. In general, we can replace this objective by
any weighted norm. A suitable convergence test is then

‖Akyk − zk‖ ≤ ε and ‖min(xk, zk)‖ ≤ ε,

where yk are the multipliers or weights corresponding to the norm used in the objective of (2.2).
For example, if we use the `1 norm, then yk ∈ {−1, 1}m depending on which side of the equality
constraint is active. The multipliers are readily computed as a by-product of solving the local
model.

3 Local Model

One key difference among nonlinear optimization methods is how the local model is constructed.
The goal of the local model is to provide a step that improves on the current iterate. We distinguish
three broad classes of local models: sequential linear models, sequential quadratic models, and
interior-point models. Models that are based on the augmented Lagrangian method are more
suitably described in the context of merit functions in Section 4.2.

3.1 Sequential Linear and Quadratic Programming

Sequential linear and quadratic programming methods construct a linear or quadratic approxi-
mation of (1.1) and solve a sequence of such approximations, converging to a stationary point.

Sequential Quadratic Programming (SQP) Methods: SQP methods successively minimize a
quadratic model, mk(x), subject to a linearization of the constraints about xk (Han, 1977; Pow-
ell, 1978; Boggs and Tolle, 1995). We define the displacement d := x− xk and obtain the QP

minimize
x

mk(d) := gT
k d +

1
2
dT Hkd subject to ck + AT

k d = 0 xk + d ≥ 0, (3.3)

where Hk ' ∇2L(xk, yk) approximates the Hessian of the Lagrangian and yk is the multiplier
estimate at iteration k. The new iterate is xk+1 = xk + d, together with the multipliers yk+1 of the
linearized constraints of (3.3). The solution of the QP subproblem can become computationally
expensive for large-scale problems because the null-space method for solving QPs requires the
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factorization of a dense reduced Hessian matrix. If Hk is not positive definite on the null-space of
the active constraint normals, then the QP is nonconvex, and SQP methods seek a local minimum
of (3.3).

Sequential Linear Programming (SLP) Methods: SLP methods construct a linear approxima-
tion to (1.1). In general, this LP will be unbounded, and SLP methods require the addition of a
trust-region (discussed in more detail in the next section):

minimize
x

mk(d) = gT
k d subject to ck + AT

k d = 0, xk + d ≥ 0, and ‖d‖∞ ≤ ∆k, (3.4)

where ∆k > 0 is the trust-region radius. Griffith and Stewart (1961) used this method without
using a trust-region but with the assumption that the variables are bounded. In general, ∆k → 0
must converge to zero to ensure convergence. SLP methods can be viewed as steepest descent
methods and typically converge only linearly. If, however there are exactly n active and linearly
independent constraint normals at the solution, then SLP reduces to Newton’s method for solving
a square system of nonlinear equations and converges superlinearly.

Sequential Linear/Quadratic Programming (SLQP) Methods: SLQP methods combine the ad-
vantages of the SLP method (fast solution of the LP) and SQP methods (fast local convergence)
by adding an equality-constrained QP to the SLP method (Fletcher and Sainz de la Maza, 1989;
Chin and Fletcher, 2003; Byrd et al., 2004). SLQP methods thus solve two subproblems: first,
an LP is solved to obtain a step for the next iteration and also an estimate of the active set
Ak :=

{
i : [xk]i + d̂i = 0

}
from a solution d̂ of (3.4). This estimate of the active set is then used

to construct an equality-constrained QP (EQP), on the active constraints,

minimize
x

qk(d) = gT
k d +

1
2
dT Hkd subject to ck + AT

k d = 0 [xk]i + di = 0, ∀i ∈ Ak. (3.5)

If Hk is second-order sufficient (i.e., positive-definite on the null-space of the constraints), then
the solution of (3.5) is equivalent to the following linear system obtained by applying the KKT
conditions to the EQP:

(EQP )




Hk −[Ak : Ik]
AT

k

IT
k




(
x

yA

)
=



−gk + Hkxk

−ck

0


 ,

where Ik = [ei]i∈Ak
are the normals of the active inequality constraints. By taking a suitable basis

from the LP simplex solve, SLQP methods can ensure that [Ak : Ik] has full rank. Linear solvers
such as MA57 can also detect the inertia; and if Hk is not second-order sufficient, a multiple of the
identity can be added to ensure descent.

Sequential Quadratic/Quadratic Programming (SQQP) Methods: SQQP methods have recently
been proposed as SQP types of methods. First, a convex QP model constructed by using a positive-
definite Hessian approximation is solved, followed by a reduced inequality constrained model or
an EQP with the exact second derivative of the Lagrangian.
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The methods described in this section are also often referred to as active-set methods, because
the solution of each LP or QP provides not only a suitable new iterate but also an estimate of the
active set at the solution. It can be shown that this estimate settles down under mild assumptions.

Theory of Sequential Linear/Quadratic Programming Methods. If Hk is the exact Hessian of
the Lagrangian and if the Jacobian of the active constraints has full rank, then SQP methods con-
verge quadratically near a minimizer that satisfies a constraint qualification and a second-order
sufficient condition (Boggs and Tolle, 1995). It can also be shown that, under the additional as-
sumption of strict complementarity, that all four methods identify the optimal active set in a finite
number of iterations, and this is one of the motivations for SLQP methods.

3.2 Interior-Point Methods

Interior-point methods (IPMs) are an alternative approach to active-set methods. Interior-point
methods are a class of perturbed Newton methods that postpone the decision of which constraints
are active until the end of the iterative process. The most successful IPMs are primal-dual IPMs,
which can be viewed as Newton’s method applied to the perturbed first-order conditions of (1.1):

(Fµ) 0 = Fµ(x, y, z) =



∇f(x)−∇c(x)T y − z

c(x)
Xz − µe


 ,

where µ > 0 is the barrier parameter, X = diag(x) is a diagonal matrix with x along its diagonal,
and e = (1, . . . , 1) is the vector of all ones. Note that, for µ = 0, these conditions are equivalent to
the first-order conditions except for the absence of the non-negativity constraints x, z ≥ 0.

Interior-point methods start at an “interior” iterate x0, z0 > 0 and generate a sequence of in-
terior iterates xk, zk > 0 by approximately solving the first-order conditions (Fµ) for a decreasing
sequence of barrier parameters. Interior-point methods can be shown to be polynomial-time al-
gorithms for convex NLPs. Newton’s method applied to the primal-dual system around xk gives
rise to the local model,




Hk −Ak −I

AT
k 0 0

Zk 0 Xk







∆x

∆y

∆z


 = −Fµ(xk, yk, zk),

where Hk approximates the Hessian of the Lagrangian, ∇2Lk, and the step (xk+1, yk+1, zk+1) =
(xk, yk, zk) + (αx∆x, αy∆y, αz∆z) is safeguarded to ensure that xk+1, zk+1 > 0 remain strictly pos-
itive.

Relationship to Barrier Methods: Primal-dual interior-point methods are related to earlier bar-
rier methods. These methods were given much attention in the 1960s but soon lost favor because
of the ill-conditioning of the Hessian. They regained attention in the 1980s after it was shown
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that these methods can work well for linear programming problems. See a survey by Forsgren
et al. (2002) for recent developments. Barrier methods approximately solve a sequence of barrier
problems,

minimize
x

f(x)− µ
n∑

i=1

log(xi) subject to c(x) = 0, (3.6)

for a decreasing sequence of barrier parameters µ > 0. The first-order conditions of (3.6) are given
by

∇f(x)− µX−1e−A(x)y = 0 and c(x) = 0. (3.7)

Applying Newton’s method to this system of equations results in the following local model around
xk: [

Hk + µX−2
k −Ak

AT
k 0

](
∆x

∆y

)
= −

(
gk − µX−1

k e−Akyk

ck

)
.

Introducing first-order multiplier estimates Z(xk) := µX−1
k , which can be written as Z(xk)Xk =

µe, we obtain the system
[

Hk + Z(xk)X−1
k −Ak

Ak 0

](
∆x

∆y

)
= −

(
gk − µX−1

k e−Akyk

ck

)
,

which is equivalent to the primal-dual Newton system, where we have eliminated

∆z = −X−1Z∆x− Ze− µX−1e.

Thus, the main difference between classical barrier methods and the primal-dual IPMs is that Zk

is not free for barrier methods but is chosen as the primal multiplier Z(xk) = µX−1
k , which avoids

some difficulties with ill-conditioning of the barrier Hessian.

Convergence of Barrier Methods: If there exists a compact set of isolated local minimizers of
(1.1) with at least one point in the closure of the strictly feasible set, then it follows that barrier
methods converge to a local minimum (Wright, 1992).

4 Globalization Strategy to Promote Convergence from Remote Start-
ing Points

The local improvement models of the preceeding section guarantee convergence only in a small
neighborhood of a regular solution. Globalization strategies are concerned with ensuring conver-
gence from remote starting points to stationary points (and should not be confused with global
optimization). To ensure convergence from remote starting points, we must monitor the progress
of the local method. Monitoring is easily done in unconstrained optimization, where we can mea-
sure progress by comparing objective values. In constrained optimization, however we must take
the constraint violation into account. Two broad classes of strategies exist: penalty and merit-
function, and filter and funnel methods.
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4.1 Augmented Lagrangian Methods

The augmented Lagrangian of (1.1) is given by

L(x, y, ρ) = f(x)− yT c(x) +
ρ

2
‖c(x)‖2

2, (4.8)

where ρ > 0 is the penalty parameter. The augmented Lagrangian is used in two modes to develop
algorithms for solving (1.1): by defining a linearly constrained problem or by defining a bound
constrained problem.

Linearly constrained Lagrangian methods: These methods successively minimize a shifted aug-
mented Lagrangian subject to a linearization of the constraints. The shifted augmented Lagrangian
is defined as

L(x, y, ρ) = f(x)− yT pk(x) +
ρ

2
‖pk(x)‖2

2, (4.9)

where pk(x) are the higher-order nonlinear terms at the current iterate xk, that is,

pk(x) = c(x)− ck −AT
k (x− xk). (4.10)

This approach results in the following local model:

minimize
x

L(x, yk, ρk) subject to ck + AT
k (x− xk) = 0, x ≥ 0. (4.11)

We note that if ck + AT
k (x− xk) = 0, then minimizing the shifted augmented Lagrangian is equiv-

alent to minimizing the Lagrangian over these constraints. Linearly constrained, augmented La-
grangian methods solve a sequence of problems (4.11) for a fixed penalty parameter. Multipliers
are updated by using a first-order multiplier update rule,

yk+1 = yk − ρkc(xk+1), (4.12)

where xk+1 solves (4.11). These methods can be made globally convergent by adding slack vari-
ables to deal with infeasible subproblems.

Bound-constrained Lagrangian methods: These methods approximately minimize the augmented
Lagrangian,

minimize
x

L(x, yk, ρk) subject to x ≥ 0. (4.13)

The advantage of this approach is that efficient methods for bound-constrained optimization can
readily be applied, such as gradient-projection conjugate-gradient approach, which can be inter-
preted as an approximate Newton method on the active inequality constraints.

Global convergence is promoted by defining two forcing sequences, ωk ↘ 0, controlling the ac-
curacy with which every bound constrained problems is solved, and ηk ↘ 0, controlling progress
toward feasibility of the nonlinear constraints. A typical bound constrained Lagrangian method
can then be stated as follows:
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Given an initial solution estimate (x0, y0), and an initial penalty parameter ρ0.
while xk is not optimal do

Find an ωk-optimal solution, xc
k of (4.13). if ‖c(xc

k)‖ ≤ ηk then
Perform a first-order multiplier update: yk+1 = yk − ρkc(xc

k)
else

Increase penalty: ρk+1 = 10ρk

end
Set k = k + 1

end

Algorithm 2: Bound Constrained Augmented Lagrangian Method.

Theory of Augmented Lagrangian Methods. Conn et al. (1991) show that a bound-constrained
Lagrangian method can globally converge if the sequence {xk} of iterates is bounded and if the
Jacobian of the constraints at all limit points of {xk} has column rank no smaller than m. Conn
et al. (1991) show that if some additional conditions are met, then their algorithm is R-linearly
convergent. Bertsekas (1996) shows that the method converges Q-linearly if {ρk} is bounded, and
superlinearly otherwise.

4.2 Penalty and Merit Function Methods

Penalty and merit functions combine the objective function and a measure of the constraint viola-
tion into a single function whose local minimizers correspond to local minimizers of the original
problem (1.1). Convergence from remote starting points can then be ensured by forcing descent of
the penalty or merit function, using one of the mechanisms of the next section.

Exact penalty functions are an attractive alternative to augmented Lagrangians and are defined
as

pρ(x) = f(x) + ρ‖c(x)‖,

where ρ > 0 is the penalty parameter. Most approaches use the `1 norm to define the penalty
function. It can be shown that a local minimizer, x∗, of pρ(x) is a local minimizer of problem (1.1) if
ρ > ‖y∗‖D, where y∗ are the corresponding Lagrange multipliers, and ‖·‖D is the dual norm of ‖·‖
(i.e., the `∞-norm in the case of the `1 exact-penalty function). Classical approaches using pρ(x)
have solved a sequence of penalty problems for an increasing sequence of penalty parameters.
Modern approaches attempt to steer the penalty parameter by comparing the predicted decrease
in the constraint violation to the actual decrease over a step.

Other Merit Functions. A range of other merit functions exist. The oldest, the quadratic penalty
function, f(x)+ρ‖c(x)‖2

2, converges only if the penalty parameter diverges to infinity. Augmented
Lagrangian functions and Lagrangian penalty functions such as f(x)+yT c(x)+ρ‖c(x)‖ have also
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been used to promote global convergence. A key ingredient in any convergence analysis is to
connect the local model to the merit function that is being used in a way that ensures a descent
property of the merit function; see Section 5.1.

4.3 Filter and Funnel Methods

Filter and funnel methods provide an alternative to penalty methods that does not rely on the use
of a penalty parameter. Both methods use step acceptance strategies that are closer to the original
problem, by separating the constraints and the objective function.

Filter methods: Filter methods keep a record of constraint violation hl := ‖c(xl)‖ and objective
function value fl := f(xl) for some previous iterates xl, l ∈ Fk (Fletcher and Leyffer, 2002). A new
point is acceptable if it improves either the objective function or the constraint violation compared
to all previous iterates. That is, x̂ is acceptable, if

f(x̂) ≤ fl − γhl or h(x̂) ≤ βhl ∀l ∈ Fk,

where γ > 0, 0 < β < 1, are constants that ensure iterates cannot accumulate at infeasible limit
points. A typical filter is shown in Figure 1 (left), where the straight lines correspond to the region
in the (h, f)-plane that is dominated by previous iterations, and the dashed lines correspond to
the envelope defined by γ, β.

The filter provides convergence only to a feasible limit because any infinite sequence of iterates
must converge to a point, where h(x) = 0, provided that f(x) is bounded below. To ensure
convergence to a local minimum, filter methods use a standard sufficient reduction condition from
unconstrained optimization and employ a switching condition that indicates when this condition
should be checked (typically near the feasible set). The sufficient reduction condition is thus

f(xk)− f(xk + d) ≥ −σmk(d), (4.14)

where σ > 0 is the fraction of predicted decrease and mk(d) is the model reduction from the local
model. This condition is enforced only if the model predicts a decrease in the objective function
(far from the feasible set, the local model may indeed predict an increase in the objective, and
it would not be appropriate to require an objective decrease). Thus, the switching condition is
given by mk(d) ≥ γh2

k. A new iterate that satisfies both conditions is called an f-type iterate, and
an iterate for which (4.14) fails is called an h-type iterate to indicate that it mostly reduces the
constraint violation. If a new point is accepted, then it is added to the current iterate to the filter,
Fk, if hk > 0 or if it corresponds to an h-type iterations (which automatically satisfy hk > 0).

Funnel methods: The method of Gould and Toint (2010) can be viewed as filter methods with
just a single filter entry, corresponding to an upper bound on the constraint violation. Thus, the
filter contains only a single entry, namely, (Uk,−∞). The upper bound is reduced during h-type
iterations, to force the iterates toward feasibility; and is left unchanged during f-type iterations.
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Thus, it is possible to converge without reducing Uk to zero (consistent with the observation that
SQP methods converge locally). A schematic interpretation of the funnel is given in Figure 1 (left).

Figure 1: The left figure shows a filter where the shaded area corresponds to the points that are
rejected by the filter. The right figure shows a funnel around the feasible set.

4.4 Maratos Effect and Loss of Fast Convergence

One can construct simple examples showing that arbitrarily close to an isolated strict local min-
imizer, the Newton step will be rejected by the exact penalty function (Maratos, 1978), resulting
in slow convergence. This phenomenon is known as the Maratos effect. It can be mitigated by
computing a second-order correction step, which is a Newton step that uses the same linear sys-
tem with an updated right-hand-side (Fletcher, 1987; Nocedal and Wright, 1999). An alternative
method to avoid the Maratos effect is the use of nonmonotone techniques that require descent
over only the last M iterates, where M > 1 is a constant.

5 Globalization Mechanisms

In this section, we review two mechanisms to reduce the step that is computed by the local model:
line-search methods and trust-region methods. Both mechanisms can be used in conjunction with
any of the local models and any of the global convergence strategies, giving rise to a broad family
of algorithms. In Chapter ??, we describe how these components are used in software for NCOs.

5.1 Line-Search Methods

Line-search methods enforce convergence with a backtracking line-search along the direction s =
x̂ − xk. It is important to ensure that the model produces a descent direction, e.g., ∇Φ(xk)T s < 0
for a merit or penalty function Φ(x); otherwise, the line-search may not terminate. A popular line-
search is the Armijo search (Nocedal and Wright, 1999) in Algorithm 3 for a merit function Φ(x).
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The algorithm can be shown to converge to a stationary point, detect unboundedness, or converge
to a point where there are no directions of descent.

Given initial estimate x0 ∈ IRn, let 0 < σ < 1, and set k = 0;
while xk is not optimal do

Approximately solve a local model of (1.1) around xk.
Denote the solution by x̂.
Let s := x̂− xk

Make sure that s is a descent direction, e.g. ∇Φ(xk)T s < 0.
Set α0 = 1 and l = 0.
repeat

Set αl+1 = αl/2 and evaluate Φ(xk + αl+1s). Set l = l + 1.
until Φ(xk + αls) ≤ fk + αlσsT∇Φk ;
set k = k + 1.

end

Algorithm 3: (Armijo) Line-Search Method for Nonlinear Optimization

Line-search methods for filters can be defined in a similar way. Instead of checking descent in
the merit function, a filter method is used to check acceptance to a filter. Unlike merit functions,
filter methods do not have a simple definition of descent; hence, the line-search is terminated
unsuccessfully once the step-size αl becomes smaller than a constant. In this case, filter methods
switch to a restoration step.

5.2 Trust-Region Methods

Trust-region methods explicitly restrict the step that is computed by the local model, by adding a
trust-region constraint of the form ‖x − xk‖ ≤ ∆k to the local model. Most methods use an `∞-
norm trust-region, which can be represented by bounds on the variables. The trust-region radius,
∆k > 0, is adjusted at every iteration depending on how well the local model agrees with the
NCO, (1.1).
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Given initial estimate x0 ∈ IRn, choose ∆0 > 0, and set k = 0;
while xk is not optimal do

Reset ∆k;
repeat

Approximately solve a local trust-region model with ‖x− xk‖ ≤ ∆k.
Let the solution by x̂. if x̂ is sufficiently better than xk then

Accept the step: xk+1 = x̂; possibly increase ∆k.
else

Reject the step
Decrease the trust-region radius, e.g. ∆k = ∆k/2.

end

until an improved solution estimate xk+1 is found ;
Check whether xk+1 is optimal; set k = k + 1.

end

Algorithm 4: Trust-Region Methods for Nonlinear Optimization

Trust-region methods are related to regularization techniques, which add a multiple of the
identity matrix, σkI , to the Hessian, Hk. Locally, the solution of the regularized problem is equiv-
alent to the solution of a trust-region problem with an `2 trust-region.
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