
Mathematical Programming Computation
https://doi.org/10.1007/s12532-020-00196-1

FULL LENGTH PAPER

Minotaur: a mixed-integer nonlinear optimization toolkit

Ashutosh Mahajan1 · Sven Leyffer2 · Jeff Linderoth3 · James Luedtke3 ·
Todd Munson2

Received: 16 October 2017 / Accepted: 19 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2020

Abstract
We present a flexible framework for general mixed-integer nonlinear programming
(MINLP), called Minotaur, that enables both algorithm exploration and structure
exploitation without compromising computational efficiency. This paper documents
the concepts and classes in our framework and shows that our implementations of
standard MINLP techniques are efficient compared with other state-of-the-art solvers.
We then describe structure-exploiting extensions that we implement in our framework
and demonstrate their impact on solution times. Without a flexible framework that
enables structure exploitation, finding global solutions to difficult nonconvex MINLP
problems will remain out of reach for many applications.

Keywords Mixed-integer nonlinear programming · Global optimization · Software

Mathematics Subject Classification 65K05 · 90C11 · 90C30 · 90C26

B Ashutosh Mahajan
amahajan@iitb.ac.in

Sven Leyffer
leyffer@mcs.anl.gov

Jeff Linderoth
linderoth@wisc.edu

James Luedtke
jim.luedtke@wisc.edu

Todd Munson
tmunson@mcs.anl.gov

1 Industrial Engineering and Operations Research, IIT Bombay, Mumbai 400076, India

2 Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439,
USA

3 Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI
53706, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-020-00196-1&domain=pdf

A. Mahajan et al.

1 Introduction, background, andmotivation

Over the past two decades, mixed-integer nonlinear programming (MINLP) has
emerged as a powerful modeling paradigm that arises in a broad range of scientific,
engineering, and financial applications; see, e.g., [7,28,41,57,66,71]. MINLP com-
bines the combinatorial complexity of discrete decision variables with the challenges
of nonlinear expressions, resulting in a class of difficult nonconvex optimization prob-
lems. The nonconvexities can arise from both the integrality restrictions and nonlinear
expressions. MINLP problems can be generically expressed as

⎧
⎨

⎩

minimize
x

f (x),

subject to c(x) ≤ 0,
x ∈ X , xi ∈ Z, ∀i ∈ I,

(1.1)

where f : IRn → IR and c : IRn → IRm are given functions, X ⊂ IRn is a bounded
polyhedral set, and I ⊆ {1, . . . , n} is the index set of the integer variables. Equality
and range constraints can be readily included in (1.1).

MINLP problems are at least NP-hard combinatorial optimization problems
because they include mixed-integer linear programming (MILP) as a special case
[50]. In addition, general nonconvexMINLP problems can be undecidable [49]. In the
remainder of this paper, we consider only MINLP problems (1.1) that are decidable
by assuming that eitherX is compact or the problem functions, f and c, are convex. In
reality, the distinction between hard and easy problems in MINLP is far more subtle,
and instances of NP-hard problems are routinely solved by state-of-the-art solvers.

Figure 1 provides an overview of the problem classes within the generic MINLP
formulation in (1.1). At the top level, we divide MINLP problems into convex and
nonconvex problems (green arrows), where convex refers to problems in which the
function defined in the nonlinear constraints and objective are convex. Next, we fur-
ther divide the problem classes depending on whether they contain discrete variables
or not (red arrows). Then we subdivide the problems further by the class of func-
tions that are present. Figure 1 illustrates the broad structural diversity of MINLP. In
addition to the standard problem classes of nonlinear programming (NLP), quadratic
programming (QP), linear programming (LP), and their mixed-integer (MI) versions,
our tree includes second-order cone programming (SOCP) and polynomial optimiza-
tion, which have received much interest [52–54]. This tree motivates the development
of a flexible software framework for specifying and solvingMINLP problems that can
be extended to tackle different classes of constraints.

Existing solvers for convex MINLP problems include α-ECP [77], BONMIN [9],
DICOPT [75], FilMINT [1], GuRoBi [46] (for convexMIQP problems with quadratic
constraints), KNITRO [14,79], MILANO [8], MINLPBB [55], and SBB [12]. These
solvers require only first and second derivatives of the objective function and con-
straints. The user can either provide routines that evaluate the functions and their
derivatives at given points or use modeling tools such as AMPL [30], GAMS [11], or
Pyomo [47] to provide them automatically. These solvers are not designed to exploit

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Fig. 1 MINLP problem class tree (color figure online)

the structure of nonlinear functions. While the solvers can be applied to nonconvex
MINLP problems, they are not guaranteed to find an optimal solution.

On the other hand, existing solvers for nonconvex MINLP include α-BB [4],
ANTIGONE [62], BARON [67], COCONUT [63,69], Couenne [6], CPLEX [48]
(for MIQP problems with a nonconvex objective function), GloMIQO [61], and SCIP
[2,74]. These solvers require the user to explicitly provide the definition of the objec-
tive function and constraints. While linear and quadratic functions can be represented
by using data stored in vectors and matrices, other nonlinear functions are usually
represented by means of computational graphs. A computational graph is a directed
acyclic graph (DAG). A node in the DAG represents either a variable, a constant, or
an operation (e.g., +,−,×, /, exp, log). An arc connects an operator to its operands.
An example of a DAG is shown in Fig. 2. Functions that can be represented by using
DAGs are referred to as “factorable functions.” Modeling languages allow the user to
define nonlinear functions in a natural algebraic form, convert these expressions into
DAGs, and provide interfaces to read and copy the DAGs.

Algorithmic advances over the past decade have often exploited special problem
structure. To exploit these advances, MINLP solvers must be tailored to special prob-
lem classes and nonconvex structures. In particular, a solver must be able to evaluate,
examine, and possibly modify the nonlinear functions. In addition, a single MINLP
solver may require several classes of relaxations or approximations to be solved as
subproblems, including LP, QP, NLP, or MILP problems. For example, our QP-diving

123

A. Mahajan et al.

Fig. 2 A directed acyclic graph
representing the nonlinear
function x1(x1 + x2) +
(x1 + x2)

2

+

× ∧2

+

x1 x2

approach [58] solves QP approximations and NLP relaxations. Different nonconvex
structures benefit from tailored branching, bound tightening, cut-generation, and sep-
aration routines. In general, nonconvex forms are more challenging and diverse than
integer variables, thus motivating a more tailored approach. Moreover, the emergence
of new classes of MINLP problems such as MILP problems with second-order cone
constraints [20,21] andMINLP problems with partial-differential equation constraints
[56] necessitates novel approaches.

These challenges and opportunities motivate the development of our Minotaur
software framework for MINLP. Minotaur stands for Mixed-Integer Nonlinear Opti-
mization Toolkit: Algorithms, Underestimators, and Relaxations. Our vision is to
enable researchers to implement new algorithms that take advantage of problem struc-
ture by providing a general framework that is agnostic of problem type or solvers.
Therefore, the goals of Minotaur are to (1) provide reliable, efficient, and usable
MINLP solvers; (2) implement a range of algorithms in a common framework; (3)
provide flexibility for developing new algorithms that can exploit special problem
structure; and (4) reduce the burden of developing new algorithms by providing a
common software infrastructure.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
some fundamental algorithms for MINLP and highlight the main computational and
algorithmic components that motivate the design of Minotaur. In Sect. 3, we describe
Minotaur’s class structure and introduce the basic building blocks of Minotaur. In
Sect. 4, we show howwe can use this class structure to implement the basic algorithms
described in Sect. 2. Section 5 presents some extensions to these basic algorithms that
exploit additional problem structure, including a nonlinear presolve and perspective
reformulations. This section illustrates how one can take advantage of our software
infrastructure to build more complex solvers. Section 6 summarizes our conclusions.
Throughout, we demonstrate the impact of our techniques on sets of benchmark test
problems and show that we do not observe decreased performance for increased gen-
erality.

123

Minotaur: a mixed-integer nonlinear optimization toolkit

2 General algorithmic framework

Minotaur is designed to implement a broad range of relaxation-based tree-search
algorithms for solving MINLP problems. In this section, we describe the general
algorithmic framework and demonstrate how several algorithms for solving MINLP
problems fit into this framework.We concentrate on describing single-treemethods for
convex MINLP problems (i.e., MINLP problems for which the nonlinear functions f
and c are convex), such as nonlinear branch-and-bound [18,45,51] and LP/NLP-based
branch-and-bound [65]. We also describe how nonconvex MINLP problems fit into
our framework. We do not discuss multitree methods such as Benders decomposition
[38,72], outer approximation [9,22,25], or the extended cutting plane method [70,78],
although these methods can be implemented by extending some of the source code of
Minotaur.

2.1 Relaxation-based tree-search framework

The pseudocode in Algorithm 1 describes a basic tree-search algorithm. In the algo-
rithm, P , P ′, and Q represent subproblems of the form (1.1), whichmay be obtained by
reformulating a problem or by adding restrictions introduced in the branching phase.
The set O maintains a list of open subproblems that need to be processed. When this
list is empty, the algorithm terminates. Otherwise, a node is selected from the list and
“processed.” The results from processing a node are used to (1) determine whether a
new feasible solution is found and, if it is better than an existing solution, to update the
incumbent solution and (2) determine whether the subproblem can be pruned. If the
subproblem cannot be pruned, then the subproblem is branched to obtain additional
subproblems that are added to O.

Algorithm: Tree Search

Reformulate P to obtain problem P ′.
Place P ′ in the set O.
repeat

Node selection: Select and remove a problem Q fromO
(FeasSolutionFound,CanPrune) ← Process node Q
if FeasSolutionFound then

Update incumbent
else if not CanPrune then

Branch: Create subproblems and add to O
until O is empty

Algorithm 1: Generic tree-search algorithm for solving a MINLP problem P .

The standard mechanism in Minotaur for node processing is described in Algo-
rithm 2, which constructs relaxations of the subproblem Q. A relaxation of Q is a
problem R such that the optimal value of R (when minimizing) is guaranteed to be
a lower bound on the optimal value of Q. After the relaxation is constructed, the
relaxation problem is solved to obtain its optimal value. If the relaxation problem is

123

A. Mahajan et al.

infeasible or if its optimal value matches or exceeds the value of a known upper bound,
then the subproblem can be pruned. Otherwise, the relaxation may be updated (this
step might be skipped in some algorithms); and, if the relaxation solution x R is no
longer feasible, then the updated relaxation is solved.

The relaxation used is a key characteristic of a tree-search algorithm. The basic
requirements for a relaxation are that it provides a lower bound on the optimal value
of a subproblem and can be solved by an available solver. Tighter relaxations are pre-
ferred because they typically result in smaller branch-and-bound search trees. Creating
and updating (refining) relaxations from the description of subproblem Q are critical
computational tasks.

Algorithm: Process Node Q

Input: Incumbent value v I and subproblem Q
Output: FeasSolutionFound, CanPrune, and possibly updated incumbent value v I

FeasSolutionFound ← FALSE, CanPrune ←FALSE
Construct a relaxation R of Q
repeat

Solve relaxation: Solve problem R to obtain value vR and solution x R

if R is infeasible or vR ≥ v I then
CanPrune ← TRUE

else if x R is feasible for Q then
FeasSolutionFound ← TRUE

else
Update Relaxation R

until CanPrune or FeasSolutionFound or x R feasible for updated R

Algorithm 2: Generic relaxation-based algorithm for processing a node Q.

Minotaur provides a basic infrastructure for managing and storing the open nodes
in the tree-search algorithm (the tree), for interfacing to modeling languages and
subproblems solvers, and for performing basic housekeeping tasks, such as timing and
statistics. Section 3 shows how these computational components are implemented in
Minotaur’s class structure. The remaining subsections illustrate how these components
are used to build standard solvers and to develop more advanced MINLP solvers.

2.2 Nonlinear branch and bound for convexMINLPs

In nonlinear branch and bound (NLPBB) for convex MINLP problems, a relaxation
R of a subproblem Q is obtained by relaxing the constraints x j ∈ Z to x j ∈ IR for all
j ∈ I . The resulting problem is a continuous NLP problem; and when all functions
defining the (reformulated) MINLP P ′ are smooth and convex, Q can be solved to
global optimality with standard NLP solvers.

If the solution of the relaxation x R is integer feasible (i.e., x Rj ∈ Z for all
j ∈ I), then the relaxation solution is feasible and the node processor sets vari-
able FeasSolutionFound to TRUE. If the relaxation is infeasible or its optimal
value is at least as large as the incumbent optimal value, then the subproblem can be

123

Minotaur: a mixed-integer nonlinear optimization toolkit

pruned. Otherwise, branching must be performed. In this case, branching is performed
by choosing a variable x j with j ∈ I such that x Rj /∈ Z. Then, two new subproblems

are created by adding new bounds x j ≤ �x Rj � and x j ≥ x Rj �, respectively, and these
subproblems are added to O.

2.3 LP/NLP-based branch-and-bound algorithms for convexMINLPs

Modern implementations of the LP/NLP-based branch-and-bound method [65] are
among the most powerful solvers [1,9] for convex MINLP problems. The basic idea
is to replace the NLP relaxation used in NLPBB with an LP relaxation. This LP
relaxation is constructed by relaxing the constraints x j ∈ Z to x j ∈ IR for all j ∈ I
and by replacing the nonlinear functions f and c with piecewise-linear lower bounds
obtained from first-order Taylor-series approximations about a set of points x (l) for
l ∈ L. The convexity of the problem functions ensures that this linearization provides
an outer approximation. As usual, if this relaxation is infeasible or its objective value is
at least as large as the incumbent objective value, then the subproblem can be pruned.

Feasibility of the relaxation solution x R is checked with respect to both the inte-
grality constraints and the relaxed nonlinear constraints.

1. If x R is feasible for both, then the incumbent is updated, and the node is pruned.
2. If x R is integer feasible, but violates a nonlinear constraint, then the relaxation

is updated by fixing the integer variables x j = x Rj for all j ∈ I and solving
the resulting continuous NLP subproblem. If the NLP subproblem is feasible and
improves upon the best-known solution, then the incumbent is updated. Whether
the NLP subproblem is feasible or not, the set of linearization points x (l) for l ∈ L
is updated so that the LP relaxation is refined.

3. If x R is not integer feasible, then either the LP relaxation can be refined (e.g.,
by updating the set of linearization points so that the relaxation solution x R is no
longer feasible), or we can choose to exit the node processing.

If the node processing terminates with a relaxed solution that is not integer feasible,
then, as in NLPBB, the subproblem is subdivided by choosing an integer variable j
with x Rj /∈ Z and updating the bounds in the two subproblems.

2.4 Branch and bound for nonconvexMINLPs

If the problem functions f or c are nonconvex, then standard NLP solvers are not
guaranteed to solve the continuous relaxation of (1.1) to global optimality. In order
to ensure that the relaxations remain solvable, convex relaxations of the nonconvex
feasible set must be created. In such relaxations, the quality of the outer approximation
depends on the tightness of the variable bounds. The details of such a relaxation scheme
for nonconvex quadratically constrained quadratic programs are described in Sect. 4.
A key difference is that in addition to branching on integer variables, this algorithm
requires branching on continuous variables that appear in nonconvex expressions in
(1.1). Thus, in the branching step, subproblems may be created by subdividing the
domain of a continuous variable. The updated lower and upper bounds are then used

123

A. Mahajan et al.

when these subproblems are processed to obtain tighter convex outer approximations
of the nonconvex feasible region.

3 Software classes in Minotaur

The Minotaur framework is written in C++ by using a class structure that allows
developers to easily implement new functionality and exploit structure. By follow-
ing a modular approach, the components remain interoperable and compatible if the
functions they implement are compatible. Thus, developers can customize only a few
selected components and use the other remaining components to produce new solvers.
In particular, a developer can override the default implementation of only a few spe-
cific functions of a class by creating a “derived C++ class” that implements these
functions using methods or algorithms different from the base class. This approach
also facilitates easy development of extensions to solvers, such asMINLP solvers with
nonconvex nonlinear expressions.

Our framework has threemain parts: (1) core, (2) engine, and (3) interface. The core
includes all methods and data structures used while solving a problem, for example,
those to store, modify, analyze, and presolve problems, create relaxations and add cuts,
and implement the tree search and heuristic searches. The engine includes routines
that call various external solvers for LP, QP, or NLP relaxations or approximations.
The interface contains routines that read input files in different formats and construct
an instance. We first describe the most commonly used classes in these three parts and
then demonstrate how some can be overridden.

3.1 Core

The C++ classes in the core can be classified into four types based on their use.

3.1.1 Classes used to represent andmodify a problem

A MINLP problem is represented by means of the Problem class. This class stores
pointers to all the variables and constraints and the objective and provides methods
to query and modify them. Each variable is an object of the Variable class. Sim-
ilarly, constraints and the objective function are objects of the Constraint and
the Objective classes, respectively. A separate SOS class is provided for storing
special ordered sets (e.g., SOS-1 and SOS-2). This scheme provides a natural and
intuitive representation of the problem that is easy to modify. Table 1 lists the main
classes used in defining a MINLP problem in Minotaur and their brief description.

Since the objective and constraints of the MINLP problem may have general
nonlinear functions, we require specialized data structures for these functions. The
Constraint and Objective classes store a pointer to an object of the Function
class. The Function class in turn has pointers to objects of the LinearFunction,
QuadraticFunction, and NonlinearFunction classes and provides other
operations. Thus, we store the mathematical function of a constraint or objective as

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Table 1 Base classes used in defining a MINLP problem

Name of class Description

Variable Store a representation of a variable including its index in the instance, its
type (integer, binary or continuous), its lower and upper bounds, and
other useful information, such as the list of constraints where it appears
and whether it appears in any nonlinear functions

Function Store a mathematical function of the variables and define C++ functions to
evaluate the function, gradient, and Hessian at a given point. It also has
routines to infer bounds on function values, check the type of function,
add another mathematical function, replace a variable by another one,
remove variables, and implement other tasks

LinearFunction Store a linear function of variables and implements methods to evaluate it
at a given point and to query and modify the coefficients

QuadraticFunction Store a quadratic function of variables and implements methods to evaluate
the function, gradient, and Hessian at a given point and query and modify
the coefficients

NonlinearFunction Store a nonlinear function of variables and implements methods to evaluate
the function, gradient, and Hessian at a given point

Constraint Store and modify properties of a constraint including its index in the
problem, its lower and upper bounds, and the functions used by the
constraint

Objective Store and modify properties of the objective including the functions used by
the objective, its sense (maximize or minimize), and the constant offset

Problem Store a representation of a MINLP problem. The object stores Variable,
Constraint, and Objective objects. Additionally it has routines to
store and query the Jacobian and Hessian of the Lagrangian and other
problem-specific objects, such as SOS variables

a sum of a linear component, a quadratic component, and a general nonlinear com-
ponent. A linear constraint, for example, is represented by a Constraint object
whose Function class has a pointer to only a LinearFunction; the pointers to
QuadraticFunction and NonlinearFunction are null. The Nonlinear-
Function class has several derived classes that we describe next.

The CGraph Class is a derived class of the NonlinearFunction class used
to store any factorable function. As described in Sect. 1, it stores a nonlinear function
in the form of a directed acyclic graph. Each node of DAG is assumed to be scalar
valued. The DAG is stored as a vector of objects of class CNode. Each CNode object
represents either an operator (+,−, |.|,etc), a constant number or a variable of the
Problem. Each CNode except the one corresponding to the output (topmost node)
of the DAG has at least one parent and also contains pointers to its child and parent
CNode-objects. Table 2 lists the operators supported by CGraph.

CGraph class has DAG-specific methods, such as adding or deleting a node or
changing a variable or a constant. These methods can be used to create and modify
any factorable function by using a given set of operators. For instance, Fig. 3 shows an
excerpt of code that can be used to create an object of CGraph class corresponding
to the example DAG from Fig. 2. A more complicated example is shown in Fig. 4 that

123

A. Mahajan et al.

Table 2 List of operators supported by CGraph class

Name Operation Name Operation Name Operation

OpAbs |x | OpDiv x/y OpRound �x�
OpAcos arccos(x) OpExp ex OpSin sin(x)

OpAcosh arccosh(x) OpFloor �x� OpSinh sinh(x)

OpAsin arcsin(x) OpLog ln(x) OpSqr x2

OpAsinh arcsinh(x) OpLog10 log10(x) OpSqrt
√
x

OpAtan arctan(x) OpMinus x − y OpSumList
∑n

i=1 xi
OpAtanh arctanh(x) OpMult x × y OpTan tan(x)

OpCeil x� OpNum OpTanh tanh(x)

OpCos cos(x) OpPlus x + y OpUMinus −x

OpCosh cosh(x) OpPow x y OpVar x

OpCPow xk OpPowK xk

x , y denote the operands. Only OpSumList accepts more than two operands

constructs the function needed for an approximation of the perspective formulation of
a given nonlinear expression; see Sect. 5.

Being a derived class of NonlinearFunction, the CGraph class also contains
routines for evaluating the gradient and Hessian of the function it stores. We have
implemented automatic differentiation techniques [15,36,40] for these purposes. In
particular, the gradient is evaluated by using reverse mode. The Hessian evaluation
of a function f : Rn → R uses at most n evaluations, one for each column of the
Hessian matrix. In each iteration, say i , we first evaluate∇ f (x)T ei in a forward-mode
traversal and then perform a reverse-mode traversal to compute the i th column of the
Hessian (see, e.g., [64, Ch. 7]). Exploiting sparsity for faster evaluation of Hessian [37]
is currently not implemented, but will be tried in the future. The call to the derivative
evaluation returns an error if the CGraph object has an operator that does not permit
differentiation (like OpAbs) or if the derivative is not defined at the given point (e.g.√
x at x = 0).
Besides computing the derivatives, the CGraph class is used for finding bounds on

the values that the nonlinear function can assume over the given ranges of variables.
Conversely, it can deduce bounds on the values that a variable can assume from given
lower or upper bounds on the nonlinear function and other variables. These techniques
are called feasibility-based bound tightening [6].

TheMonomialFunctionClass is a derived class of theNonlinearFunction
class used for representing monomial functions of the form a

∏
i∈J x

pi
i , where

a ∈ R, pi ∈ Z+, i ∈ J , and the set J are given. This class stores the pointer to
the variables and the powers in a C++ map data structure.

The PolynomialFunction Class is a derived class of the
NonlinearFunction class used for representing polynomial functions. It keeps
a vector of objects of the MonomialFunction class to represent the polynomial.

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Fig. 3 Excerpt of code used to create and display the nonlinear function in two variables x1(x1 + x2) +
(x1 + x2)

2

Table 3 Base classes used in implementing branch-and-bound algorithms for solving MINLP problems

Name of class Description

Brancher Determine how to branch a node of the
branch-and-bound tree to create new subproblems

Engine Solve LP, QP, NLP, or some other problem using an
external solver such as FilterSQP, IPOPT, or CLP

Node Store information about a node of the branch-and-bound
tree such as the lower bound on the optimal value, the
branching variable (or object), and pointers to child
and parent nodes

NodeRelaxer Create or modify a relaxation of the problem at a given
node in the branch-and-bound tree

TreeManager Store, add, and delete nodes of the branch-and-bound
tree and select the node for processing

ActiveNodeStore Store active or open nodes of the branch-and-bound tree
in an appropriate data structure and compute the global
lower bound from the bounds of the individual nodes

CutManager Store, add, and remove cuts from the problem

NodeProcessor Process a node of the branch-and-bound tree by solving
the relaxation and/or adding cuts, presolving,
branching, or applying heuristics

3.1.2 Classes used in branch-and-bound algorithms

To keep the design of branch-and-bound algorithms modular and flexible, a base class
is defined for every step of the algorithm described in Sect. 2. Table 3 lists some of the
main classes and their functionality. The user can derive a new class for any of these
steps without modifying the others.

We illustrate the design principle by means of the NodeProcessor class. The
class implements the methods processRootNode() and process(), and other
helper functions. Figure 5 depicts two ways of processing a node. In a simple NLPBB
solver for convex MINLP problems, we may only need to solve an NLP relax-
ation of the problem at the current node. This procedure is implemented in the

123

A. Mahajan et al.

Fig. 4 Excerpt of code used to obtain a CGraph of p(x, y) = (y(1 − ε) + ε) f
(

x
y(1−ε)+ε

)
from a given

CGraph of f (x) by recursively traversing it

BndProcessor class derived from the NodeProcessor class. Based on the solu-
tion of this NLP, we may either prune the node or branch. For other algorithms, we
may need a more sophisticated node processor that can call a cut-generator to add
cuts or invoke presolve. The PCBProcessor (Presolve, Cut and Bound Processor)

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Fig. 5 Two ways of implementing a NodeProcessor class in the branch-and-bound method. Left:
standard NLPBB; right: LP/NLP-based branch and bound

derived class implements this scheme. The right hand side picture in Fig. 5 represents
the scheme implemented in PCBProcessor.

Modularity enables us to select at runtime the implementation of each component
of the branch-and-bound algorithm. For instance, depending on the we are solving, we
can select at runtime one of five branchers: ReliabilityBrancher, for imple-
menting reliability branching [3]; MaxVioBrancher, for selecting the maximum
violation of the nonconvex constraint; LexicoBrancher, for selecting the variable
with the smallest index; MaxFreqBrancher, for selecting a variable that appears
as a candidate most often; and RandomBrancher, for selecting a random variable.
Minotaur also has branchers for global optimization that select continuous variables
in order to refine the convex relaxations.

3.1.3 Classes used to exploit problem structure

The classes mentioned in the preceeding sections implement general methods of a
branch-and-bound algorithm and do not explicitly exploit the “structure” or “specific
difficulties” of a problem. By structure, we mean those special properties of the con-
straints and variables that can be exploited (and, sometimes, must be exploited) to
solve the problem. For instance, if we have integer decision variables and linear con-
straints, then we can generate valid inequalities to make the relaxation tighter by using
the techniques developed by the MILP community. Similarly, if some constraints of
the problem are nonlinear but convex, then we can create their linear relaxation by
deriving linear underestimators from a first-order Taylor approximation.

123

A. Mahajan et al.

Table 4 Main functions of a Handler

Name of the function Description

relaxNodeFull Create a new relaxation of the constraints being handled

relaxNodeInc Create a relaxation by adding relevant modifications to
the relaxation obtained at the parent node

presolve Presolve the specific structure

presolveNode Presolve the specific structure at a given node

isFeasible Check whether a point is feasible to the constraints
being handled

separate Store, add, and remove valid inequalities for the specific
structure

getBranchingCandidates Shortlist candidates for branching in a node of the
branch-and-bound tree

branch Create branches of the current node using the branching
candidate shortlisted by this handler and selected by
the brancher

We use a Handler class to enable implementation of routines that exploit specific
problem structures. This idea is inspired from the “Constraint Handlers” used in SCIP
[2] that ensure that a solution satisfies all the constraints of a problem. Since special
properties or structures can be exploited in a branch-and-bound algorithm at many
different steps, Handler instances are invoked at all these steps: creating a relax-
ation, presolving, finding valid inequalities, checkingwhether a given point is feasible,
shortlisting candidates for branching, and creating branches. Table 4 lists some of the
important functions of a Handler.

The Handler base class in Minotaur is abstract; it declares only the functions
that every Handler instance must have and leaves the implementation of structure-
specific methods to the developer. We describe a few commonly used Handler types
implemented for our solvers.

IntVarHandler is one of the simplest handlers. It ensures that a candidate
accepted as a solution satisfies all integer constraints at a given point. It implements
only three of the functions listed inTable 4:branch,isFeasible, andgetBranc-
hingCandidates. The first function checks whether the value of each integer-
constrained variable is integerwithin a specified tolerance. The second function returns
a list of all the integer variables that do not satisfy their integer constraints. The last
function creates two branches of a node if the Brancher selects an integer variable
for branching.

SOS2Handler is used when the MINLP problem contains SOS-2 variables [5].
Its isFeasible routine checks whether at most two consecutive variables in the set
are nonzero. The getBranchingCandidates routine returns two subsets, one
for each branch. In the first branch all variables of the first subset are fixed to zero,
and in the second all variables of the second subset are fixed to zero.

QGHandler is a more complicated handler used when solving convex MINLP
problems with the LP/NLP-based algorithm of Quesada and Grossmann [65] (QG

123

Minotaur: a mixed-integer nonlinear optimization toolkit

stands Quesada-Grossmann.) This handler does not implement any branch or
getBranchingCandidates routines. TheisFeasible routine checkswhether
the nonlinear constraints are satisfied by the candidate solution. If the problem is not
feasible, then the separate routine solves a continuous NLP relaxation and obtains
linear inequalities that cut off the given candidate. These valid inequalities are added
to the LP relaxation, which is then solved by the NodeProcessor.

NlPresHandler is for applying presolving techniques to nonlinear functions
in the constraints and objective. Therefore, it implements only the presolve and
presolveNode functions. This handler tries to compute tighter bounds on the vari-
ables in nonlinear constraints by performing feasibility-based bound tightening on
one constraint at a time. It also checks whether a nonlinear constraint is redundant or
infeasible.

QuadHandler is for constraints of the form

x2i = xk, or (3.1)

xi x j = xk (3.2)

for some i, j, k ∈ {1, . . . , n}, with bounds on all variables given by li ≤ xi ≤ ui
for all i ∈ {1, . . . , n}. This handler ensures that a solution satisfies all constraints of
type (3.1) and (3.2) of a MINLP problem. It implements all the functions in Table 4.
The RelaxNodeFull and RelaxNodeInc functions create linear relaxations of
these constraints by means of the McCormick inequalities [60],

(li + ui)xi − xk ≥ li ui (3.3)

for constraint (3.1) and

l j xi + li x j − xk ≤ li l j
u j xi + ui x j − xk ≤ uiu j

l j xi + ui x j − xk ≥ ui l j
u j xi + li x j − xk ≥ li u j (3.4)

for the bilinear constraint (3.2). The presolve and nodePresolve routines find
tighter bounds, li ≤ ui , on the variables based on the bounds of the other two variables.
A lower bound on xk , for example, is min{li l j , ui l j , li u j , uiu j }. The isFeasible
routine checks whether a given candidate solution satisfies all the constraints of the
form (3.1) and (3.2). If the given point x̂ has x̂2i > x̂k , then the separate routine
generates a valid inequality

2x̂i xi − xk ≤ x̂2i .

If x̂2i < x̂k for constraint (3.1) or x̂i x̂ j �= x̂k for constraint (3.2), then the
getBranchingCandidates routine returns xi and x j as candidates for branch-
ing. If one of these is selected for branching by the Brancher, then the branch
routine creates two branches by modifying the bounds on the branching variable.

123

A. Mahajan et al.

3.1.4 Transformer

It is frequently the case that the specific structure a handler supports, such as the
quadratic constraints (3.1) and (3.2), may occur in more complicated functions of a
given problem formulation. To enable application of handlers for those structures, we
first need to transform a problem into a form that is equivalent to the original problem,
but exposes these simpler structures. The Transformer class performs this task.
The default implementation of the Transformer traverses the DAG of a nonlinear
function in a depth-first search and adds new variables to create simple constraints of
the desired form. The process can be better explained with an example. Consider the
constraint

x1(x1 + x2) + (x1 + x2)
2 ≤ 1.

Its computational graphwas earlier shown in Fig. 2. TheTransformer reformulates
it as

x3 = x1 + x2,

x4 = x1x3,

x5 = x23 ,

x4 + x6 ≤ 1,

where we have used unary and binary operations for simplicity. The Transformer
also maintains a list of new variables it introduces and the corresponding expression
they represent. These variables are then reused if the same expression is observed
in other constraints or the objective function. In this example, if the expression
x1 + x2 is observed in some other computational graph, then x3 will be reused.
Similarly, x4 and x5 will be reused. The code uses a simple hashing function to
detect these common subexpressions. In addition to applying the transformations,
the Transformer assigns every nonlinear constraint to a specific Handler. Since
there are often many alternative reformulations of a problem, a different implementa-
tion of the Transformer class may lead to a different reformulation and can have
significant impact on algorithm performance.

3.1.5 Utility classes

Utility classes provide commonly required functions such as measuring the CPU time
(Timer class), writing logs (Logger), parsing and storing user-supplied options
(Options), and commonly used operations on vectors, matrices, and intervals
(Operations).

3.2 Engine

The Minotaur framework calls external libraries for solving relaxations or simpler
problems. A user can choose to link the Minotaur libraries with several external

123

Minotaur: a mixed-integer nonlinear optimization toolkit

libraries. Minotaur libraries and executables can also be compiled without any of
these external libraries.

The Open-Solver Interface (OSI) library provided by COIN-OR [17] is used to link
to the CLP [29], GuRoBi [46], and CPLEX [48] solvers for LP problems. The BQPD
[24] and qpOASES [23] solvers can be used to solve QP problems. FilterSQP [26,27]
and IPOPT [76] can be used to solve NLP problems using active-set and interior-point
methods, respectively.

The interface to each solver is implemented in a separate class derived from the
Engine abstract base class. For instance, the BQPDEngine class implements an
interface with the BQPD solver. The two main functions of an Engine class are
to (1) convert a problem represented by the Problem class to a form required by
the particular solver and (2) convert and convey the solution and solution status to
the Minotaur routines. The conversion of LP and QP problems is straightforward.
The engine sets up the matrices and vectors in the format required by the solver
before passing them. More general NLP solvers such as FilterSQP and IPOPT require
routines to evaluate derivatives. These engine classes implement callback functions.
For instance, the FilterSQPEngine class implements the functions objfun,
confun, gradient, and hessian that the FilterSQP solver requires, and the
IpoptEngine class implements the eval_f, eval_grad_f, and eval_h func-
tions required by the IpoptFunInterface class.

In a branch-and-bound algorithm, these engines are called repeatedly with
only minor changes to the problem. Therefore, one can use the solution infor-
mation from the previous invocation to warm-start the next. The BQPDEngine,
FilterSQPEngine, and IpoptEngine classes implement methods to save and
use thewarm-starting information fromprevious calls. TheOSI interface forLP solvers
already provides routines to save and load warm-starting information. The LP engines
of Minotaur merely use these features and do not implement any routines for saving
the information about the basis associated with the last solution.

3.3 Interface

The Interface consists of classes that convert MINLP problems written in a mod-
eling language or a software environment to Minotaur’s Problem class and other
associated classes. In the current version of the Minotaur framework, we have an
interface only to AMPL. This interface can be used in two modes.

In the first mode, the AMPLInterface class reconstructs the full computational
graphof eachnonlinear function in the problem.The class usesAMPL library functions
to parse each graph and then converts it into the form required by the CGraph class.
Derivatives are provided by the CGraph class. Once the problem instance is created,
the AMPLInterface is no longer required to solve the instance.

In the second mode, we do not store the computational graph of the nonlinear
functions. Rather, the AMPLProblem class is derived from the Problem class and
stores linear constraints and objective using the default implementation. Nonlinear
constraints are not stored by using the CGraph class. Instead, pointers to the nonlinear
functions stored by theAMPL library are placed in theAMPLNonlinearFunction

123

A. Mahajan et al.

class derived from the NonlinearFunction class. This class calls methods pro-
vided by the AMPL solver library to evaluate the function or its gradient at a
given point. In this mode, the AMPLInterface class provides an object of class
AMPLJacobian to evaluate the Jacobian of the constraint set and AMPLHessian
to evaluate the Hessian of the Lagrangian of the continuous relaxation. This mode is
useful when implementing an algorithm that only requires evaluating the values and
derivatives of nonlinear functions in the problem.

Computational evaluation of the speed of the two modes is presented later in
Sect. 4.4 (see Automatic Differentiation). The interface also implements routines to
write solution files so that the user can query the solution and solver status within
AMPL.

4 Implementing basic solvers in Minotaur

We now describe how the three algorithms presented in Sect. 2 can be implemented by
combining different classes of theMinotaur framework. Our goal here is not to develop
the fastest possible solver, but rather to demonstrate that our flexible implementa-
tion does not introduce additional computational overhead. These demonstrations are
implemented as examples in our source code and are only simplistic versions of the
more sophisticated solvers available.

The general approach for implementing a solver is to first read the problem instance
by using an Interface. The next step is to initialize the appropriate objects of
the base or derived classes of NodeRelaxer, NodeProcessor, Brancher,
Engine, and Handler. Then an object of the BranchAndBound class is set
using these components, and the solvemethod of the BranchAndBound object is
called to solve the instance. The code for these steps can be written in a C++ main()
function that can be compiled and linked with the Minotaur libraries to obtain an
executable.

4.1 Nonlinear branch-and-bound

The NLPBB algorithms for convex MINLPs (Sect. 2.2) is the simplest to implement.
It needs only one handler: IntVarHandler to check whether the solution of a
relaxation satisfies integer constraints and to return a branching candidate if it does
not satisfy the constraints. The BndProcessor described in Sect. 3.1.2 can be used
as the node processor, since we need only compare the lower bound of the relaxation
with the upper bound at each node. It needs a pointer to an Engine to solve the
relaxation. We use FilterSQP in this example. Since only the bounds on variables
of the relaxation change during the tree search, NodeIncRelaxer is used to update
the relaxation at every node by changing the bounds on appropriate variables. We
need not create any relaxation since the variables, constraints, and objective are the
same as in the original problem. We use ReliabilityBrancher as the brancher,
which implements a nonlinear version of reliability branching [3,10]. The pointer
to the Engine used for BndProcessor can be used for this brancher as well.

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Fig. 6 Excerpt of code for implementing our NLPBB algorithm, simple-bnb, using theMinotaur frame-
work and the AMPL function, gradient, and Hessian evaluation routines

Figure 6 contains the main() function used to implement this solver. Additional
lines containing directives to include header files are omitted for brevity. We refer to
our NLPBB solver as simple-bnb.

4.2 LP/NLP-based branch-and-bound

Implementing the LP/NLP-based branch-and-bound method [65] requires us to solve
a LP relaxation that is different from that of the original problem. The QGHandler
described in Sect. 3.1.3 solves the required NLP to find the point around which
linearization constraints are added to the relaxation. LinearHandler is used
to copy the linear constraints from the original problem to the relaxation. The
NodeProcessor is required to solve several relaxations at each node if cuts are
added. Thus we use the PCBProcessor described in Sect. 3.1.2. The remaining
setup is similar to that of the NLPBB algorithm. Figure 7 shows the main portion

123

A. Mahajan et al.

Fig. 7 Excerpt of code for implementing our LP/NLP-based algorithm, simple-qg, using the Minotaur
framework

of the code for implementing this solver. We refer to our LP/NLP-based solver as
simple-qg.

4.3 Global optimization of quadratically constrained problems

A simple implementation of the branch-and-bound method for solving nonconvex
quadratically-constrained quadratic programming (QCQP) problems demonstrates
how the Minotaur framework can be used for global optimization. A Transformer
first converts a givenQCQPproblem to a formwhere each quadratic term is assigned to
a newvariable bymeans of constraints of the form (3.1) and (3.2). TheQuadHandler
creates the linear relaxations of each of these constraints. Other components of the
solver are similar to those described earlier: the LinearHandler copies all the
linear constraints in the problem, the IntVarHandler is used to check integrality
constraints, the NodeIncRelaxer is used to update the relaxation at each node, and
the PCBProcessor is used for processing each node. Any of the branchers available

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Fig. 8 Excerpt of code for implementing our simple global optimization algorithm, simple-glob, for
QCQP problems using the Minotaur framework

in the toolkit can be used for branching. Figure 8 shows the implementation of this
solver. We refer to our simple global optimization solver as simple-glob.

The QuadHandler requires bounds on variables in the quadratic constraints to
create a linear relaxation. A Presolver is used to obtain bounds on all variables
before the relaxation is created. The Presolver class, in turn, calls the presolve
function of each Handler. When QuadHandler sees infinite bounds on a variable
that requires a McCormick approximation (3.4), the handler returns an error and the
solver stops with an error message.

4.4 Performance of Minotaur

We now present experimental results of the performance of the algorithms presented
in this section. We have divided the results into three parts: (1) using automatic dif-
ferentiation, (2) solving convex MINLPs and (3) solving nonconvex MINLPs. Before
describing the experiments we first describe the limits and tolerances used in them.

123

A. Mahajan et al.

Since many of the comparisons make use of performance profiles, they are also briefly
explained.

Limits, tolerances and errorsGiven a constraint of the form lb ≤ h(x) ≤ ub, where
h is the constraint function and lb, ub are the given lower and upper bounds. We say
a point x̂ ∈ R

n is feasible to the constraint if

min{lb − ea, lb − er |lb|} ≤ h̃(x̂) ≤ max{ub + ea, ub + er |ub|}, (4.1)

where ea and er are the absolute and relative tolerance parameters for checking feasi-
bility, and h̃(x̂) is the value of the function h at x̂ evaluated on the computer. In general
h and h̃ are different because of the imprecise numerical computing observed when
using floating point numbers. For the solvers we describe in this paper, both these
tolerance parameters are fixed to 10−6. The same tolerances are used for checking
whether a variable value lies between the given bounds. The absolute tolerance for
deciding whether a floating point number is an integer value is also 10−6. These toler-
ance values can be overridden by a user through command line options feasAbs_tol,
feasRel_tol and int_tol.

We say a point x̂ ∈ R
n is feasible to a given MINLP if it satisifies all constraints

and integer constraints within the above tolerances. If x̂ is feasible to a MINLP within
given tolerances, it may still violate some constraints if the MINLP is transformed to
another equivalent form. We check candidate solutions of optimization problems for
feasibility on the reformulated problem (i.e. the problem obtained after presolving and
transforming) before accepting them as feasible. Numerical tolerances are also used
when a branch-and-bound node is checked for pruning. A node is pruned if

lb ≥ min{ub − ea, ub − er |ub|},

where lb is the lower bound computed for the node, ub is the best known upper bound
on the optimal value, ea is the absolute tolerance and er the relative tolerance for
pruning nodes on the basis of objective value. Both tolerance parameters are set to
10−5 by default and can be overridden by using command line options solAbs_tol and
solRel_tol.

When a bound on a constraint is not finite, we use the INFINITY and -INFINITY
macros provided by cmath header in C++ to represent these bounds. Solvers used
to solve relaxations have their own definitions of infinity. Filter-SQP, for instance,
considers 1020 as infinity. We translate the bounds suitably in the respective Engine
class.

Other numerical issues also arise while implementing the branch-and-bound based
algorithm. The subsolvers or the engines (LP or NLP) used to solve relaxations at a
node (Algorithm 2) may fail to converge. If the engine is able to return a feasible point
in such cases, we continue branch-and-bound by branching on a candidate if one can
be found. Otherwise, a warning is issued and the node is pruned. It is also possible,
especially in global optimization, that the optimal solution of the relaxation at a node
is not feasible for the MINLP, but neither branching nor cutting planes are able to cut
it off because of numerical issues. In this case also, a warning is issued and the node is

123

Minotaur: a mixed-integer nonlinear optimization toolkit

pruned. Detailed analysis of such errors and numerical issues is a subject of a different
study that can be pursued in the future.

Extended performance profile Extended performance profiles [59] plot the relative
performance of a set of solvers (say, S) on a given set of problem instances (say,
P). Suppose that the performance measure of interest is the time taken to solve an
instance. Let tp,s be the time taken by solver s ∈ S to solve problem instance p. The
‘performance ratio’ is defined as:

r̂ p,s = tp,s
min{tp,i | i ∈ S, i �= s} . (4.2)

The performance ratio is thus the factor by which solver s is slow in solving instance
p as compared to the best amongst S, except s, for instance p. The smaller the ratio,
the faster the solver s is for p. A ratio higher than one indicates that solver s is slower
than the fastest solver for p by this factor. On the other hand a ratio value of, say, 0.2
indicates that s is faster than all others by a factor of at least five. A distribution function
ρ̂s is defined as follows to depict performance ratios of a solver over all instances:

ρ̂s(τ) =
∣
∣{p ∈ P | r̂ p,s ≤ τ }∣∣

|P| , (4.3)

where τ ≥ 0. Thus ρ̂s(2) is the fraction of instances on which solver s is slow by
a factor of 2 or less as compared to best of all other solvers put together. Similarly,
ρ̂s(0.5) is the fraction of instances on which solver s is faster than all other solvers by
a factor of two or more. An extended performance profile plots ρ̂s(τ) for all solvers,
one curve for each solver, as a function of τ .

As the name suggests, extended performance profile is an extension of the perfor-
mance profile [19]. The performance ratio (4.2) differs slightly in the two, but the
two profiles are the same for τ ≥ 1. Extended performance profiles provide addtional
information on how fast the solver is (0 ≤ τ < 1) while the performance profile only
shows how slow it is (1 ≤ τ) as compared to the fastest possible. While a higher curve
in the performance profile and extended performance profile denotes a faster solver,
generally speaking, the relative positions of solver profiles may change when the set
of solvers changes [39]. Hence, conclusions should be drawn carefully: when more
than two solvers are profiled, a pairwise comparison is not feasible.

Experimental setup All experiments were done on a computer with a 2.9MHz Intel
Xeon CPU E5-2670 processor and 128GB RAM. Hyperthreading was switched off.
A single compute core was used to solve each problem instance within a specified
time limit of one hour. Debian-8 Linux was the operating system. Minotaur version
0.2 (git revision b944ef6), is used in all experiments along with IPOPT version 3.12.3,
Mumps version 4.10.0, and Clp version 0.107.4. TheMinotaur, IPOPT, AMPL Solver
Library, and OSI-CLP code was compiled with the Gnu “g++” version 4.9.2, while
“gfortran” version 4.9.2 was used for the fortran code including FilterSQP, BQPD, and
MUMPS (used by IPOPT). The optimization flag was set to ‘-O3’ for both compilers.

Automatic differentiation We first compare the effect of using our own implemen-
tation of automatic differentiation on the performance of NLP engines. We set up an

123

A. Mahajan et al.

Table 5 Time taken to solve 100 NLP relaxations

Instance Time (s) Instance Time (s)
AMPL CGraph AMPL CGraph

batchs151208m 28.52 29.96 o7_ar5_1 5.34 5.27

clay0304m 1.51 1.68 rsyn0820m04m 44.47 44.88

clay0305h 42.36 41.00 rsyn0830m04h 119.22 119.75

flay05h 5.41 5.24 slay07m 1.75 1.80

flay06m 1.13 1.15 slay09h 10.55 10.82

fo7_2 3.76 3.83 smallinvDAXr5b150-165 0.71 1.43

fo9_ar2_1 8.38 8.26 smallinvSNPr3b020-022 2.85 17.35

m6 2.88 2.87 sssd22-08 2.24 2.20

m7_ar4_1 5.78 5.93 syn30m03m 18.53 18.74

no7_ar3_1 4.97 5.06 syn40m04h 71.18 75.16

Derivatives are obtained from Minotaur’s AMPL interface (column “AMPL”) and Minotaur’s CGraph
class (column “CGraph”)

experiment in which an NLP engine solves a sequence of NLPs that differ only in
bounds on variables. This setup closely mimics the use of NLP engines in a MINLP
solver while ensuring that other MINLP routines such as heuristics, presolving, and
valid inequalities do not affect the observations.

To benchmark the derivatives produced with our native CGraph class, we compare
its computation time with that of the AMPL interface derivatives. In particu-
lar, we modified simple-bnb to replace the Reliability Brancher with
LexicoBrancher. LexicoBrancher simply selects the candidate for branch-
ing with the smallest index from the list of branching candidates. This solver thus
spends almost the entire time solving the NLP relaxations. Table 5 reports the time
taken to process 100 nodes of branch and bound (i.e., 100 NLPs) with derivatives from
both CGraph and AMPLInterface on selected instances. We observe no signifi-
cant difference between the two for nearly 80% of the instances. CGraph is slower by
a factor of 8 or less for QCQP problems that have a dense Hessian of the Lagrangian as
in the case of the smallinvDAXrx and smallinvSNPrx instances. The times for these
problems could be significantly reduced by extracting and storing the vectors and
matrices for the quadratic forms. While speed is important, the main goal of CGraph
is to enable a user to easily and reliably manipulate nonlinear functions. CGraph
never failed in evaluating derivatives in all runs, thus demonstrating its reliability in
solving MINLPs.

Convex MINLPWe now benchmark the performance of our simple-bnb solver
described in Sect. 4.1.We compare its performance in two settings: one usingCGraph
and the other using AMPLInterface. We also compare the results with Bonmin’s
implementation of the branch and bound method. In all three settings, we use the
IPOPT solver (with MUMPS and ATLAS-BLAS). We set a limit of one hour for each
solver. Of the 356 convex MINLPs available in the MINLPLib-2 collection [13,73],
we consider only the 333 instances that have integer variables.

123

Minotaur: a mixed-integer nonlinear optimization toolkit

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-2 2-1 20 21 22 23 24 25

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Minotaur-CGraph
Minotaur-ASL

Bonmin-BB
Best possible

Fig. 9 Extended performance profile based on CPU time for simple NLPBB solvers on 333 convexMINLP
problems

The time taken to solve the instances is comparedbyusing the extendedperformance
profiles shown in Fig. 9. The figure shows that our simple-bnb method is able to
solve almost the same number of instances as is Bonmin (nearly 73% of all instances)
within the time limit. On 10% of instances Bonmin is faster than the Minotaur solvers
by a factor of 2 or more. This can be seen in the profile by looking at the value for
Bonmin at (2−1). The simple implementation with the AMPLInterface is slower
by a factor of 2 or more as compared with the fastest solver for about 12% of the
instances (as Minotaur-ASL value is about 0.6 at 2 and the best possible is 0.73). The
same is true for 24% of the instances for CGraph and 8% for Bonmin.

Figure 10 compares the performance of our simple-qg method described in
Sect. 4.2. In this experiment, Bonmin’s QG algorithm is selected for solving the prob-
lems. The Minotaur solvers use IPOPT for solving NLP problems and OSI-CLP for
solving LP problems. The impact of using CGraph in this algorithm is much smaller
when compared with that of our NLPBB algorithm since fewer NLP relaxations are
solved. The performance of the simple implementation is comparable to that of Bon-
min even though a gap is discernible in the left half of the graph. This gap is expected
because the two examples of Minotaur are nearly identical in behavior and hence only
in a few instances is one of them is faster than all other solvers by a large factor.
Global optimization We compare the performance of our simple-glob method
described in Sect. 4.3 with that of three other solvers: BARON-15.2 (with AMPL
interface), Couenne-0.5.6 (with AMPL interface, CLP as the LP solver, IPOPT as the
NLP solver, and Cbc as the MILP solver), and SCIP-3.2.0 (with pip interface, SoPlex
as the LP solver, and IPOPT as the NLP solver). All solvers were run using default
settings.A time limit of one hourwas set on each instance. Testswere performedon266
continuous QP and QCQP problems taken from the MINLPLib-2 collection [13,73].

123

A. Mahajan et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-2 20 22 24 26

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Minotaur-CGraph
Minotaur-ASL

Bonmin-QG
Best possible

Fig. 10 Extended performance profile based on CPU time of LP/NLP-based solvers on 333 convexMINLP
problems

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-4 2-2 20 22 24 26 28 210

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

BARON
Couenne

SCIP
simple-glob

Best possible

Fig. 11 Extended performance profile based on CPU time of global optimization solvers on 266 QCQP
problems

Figure 11 plots the extended performance profiles. Our simple-glob method was
able to solve over 50% of the problems in the time limit without using any heuristics,
convexity-detection routines, cutting planes, or advanced presolving. Other solvers
that use these techniques were able to solve nearly 70% of the instances.

123

Minotaur: a mixed-integer nonlinear optimization toolkit

5 Extensions of Minotaur

In this section, we provide a small set of examples that illustrate howMinotaur can be
used and extended to exploit problem specific structures. In each case, we present the
main algorithmic idea, show how it is implemented in Minotaur, and give numerical
results from our experiments. The experimental setup used for this section is same as
that described in Sect. 4.4.

5.1 Nonlinear presolve

Our first example illustrates how the availability of a native computational graph
(see Sect. 3) allows us to discover nonlinear structure and to perform certain nonlinear
reformulations that are simple but have a dramatic effect on the solution of an important
class of MINLP problems.

We consider a chemical engineering problem from the IBM/CMU collection [16],
namely, syn20M04M. This problem has 160 integer variables, 260 continuous vari-
ables, 56 convex nonlinear constraints, and 996 linear constraints. The NLP relaxation
can be solved in a fraction of a second. However, standard NLPBB and LP/NLP-based
solvers fail to solve this MINLP problem in a two-hour time limit.

Analysis of these models reveals that these problems contain big-M constraints of
the form

c(x0, x1, x2, . . . , xk) ≤ M0(1 − x0),

0 ≤ xi ≤ Mi x0, i = 1, . . . , k,

x0 ∈ {0, 1}, xi ∈ IR, i = 1, . . . , k. (5.1)

This structure is common in MINLP. The binary variable x0 acts as a “switch”, such
that, when x0 = 1 the continuous variables x1, . . . , xk can take nonzero values and
the nonlinear constraint is enforced, and when x0 = 0 the continuous variables are
forced to zero, and M0 is large enough so that the nonlinear constraint is redundant.
The difficulty for MINLP solvers arises because the upper bound M0 is not always
“tight” when the nonlinear constraint is switched off. In particular, if M0 is chosen to
be too large, the continuous relaxation allows more noninteger solutions, thus making
the relaxation weak.

To compute a tighter upper bound M0, we exploit the implication constraints 0 ≤
xi ≤ Mi x0, i = 1, . . . , k. If x0 = 0, then each xi = 0 and we can replace the
coefficient M0 by

cu = c(0, . . . , 0)

if cu ≤ M0. If cu > M0, we can fix x0 = 1 since (5.1) is infeasible if x0 = 0. The
bound cu obtained by exploiting the above structure is the tightest possible. The effect
of improving the coefficient is dramatic. As shown in Table 6, the solution time for
syn20M04M is reduced to about 66 seconds. To compute the tightest upper bound in

123

A. Mahajan et al.

Table 6 Effects of presolve on the size of instance syn20M04M and its solution time

No presolve Basic presolve Full presolve

Variables 420 328 292

Binary vars. 160 144 144

Constraints 1052 718 610

Nonlin. constr. 56 56 56

Bonmin-bnb (s) > 3600 NA NA

Bonmin-QG (s) > 3600 NA NA

Simple-bnb (s) > 3600 >3600 66.76

Simple-qg (s) > 3600 >3600 0.49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-4 2-2 20 22 24 26 28

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Bonmin-BB
simple-bnb-ASL

simple-bnb-CGraph
simple-bnb-presolve

Best possible

Fig. 12 Performance profile comparing presolve on RSyn-X and Syn-X instances

the general case, we need to solve the following nonconvex optimization problem:

maximize
x

c(x0, x1, x2, . . . , xk) subject to x0 = 0, x ∈ X ,

where X is a feasible region of the MINLP problem obtained by removing con-
straint (5.1). This maximization problem can be efficiently solved in some cases (e.g.,
by exploiting the structure of the constraints).

We also compared the effect of this simple presolve technique on all 96 instances
of RSyn-* and Syn-*. The results are shown in the performance profile in Fig. 12.
This presolve clearly has a dramatic effect on the solution times for almost all of these
instances, increasing the robustness by nearly 20% compared with that of Bonmin and
our simple-bnb without presolve.

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Fig. 13 Code snippet illustrating Presolver:solve function from base classes

We have implemented these and other more standard presolve techniques, well
known fromMILP [68], into the coreMinotaur library. The Presolver class imple-
ments the main routine of calling various handlers for exploiting specific structures.
In its simplest form, it calls the Handler::presolve() function of each of the
handlers one by one repeatedly. It stops when no changes are made in the last k calls
to handlers, where k is the number of handlers, or when a certain overall iteration
limit is reached (see Fig. 13 for pseudocode). The handlers used in presolving may
be specifically designed for presolving alone and need not implement every func-
tion in the Handler class (e.g., checking feasibility of a given point or separating
a given point). For example, NlPresHandler class does not implement any other
Handler functions besides presolving techniques for general nonlinear constraints
and the objective function.

NlPresHandler applies four presolve methods to the problem: bound-
improvement, identifying redundant constraints, coefficient improvement, and lin-
earization of bilinear expressions on binary variables. In bound improvement, we
consider all nonlinear constraints of the type li ≤ ci (x) ≤ ui . Using available bounds
on the variables x , we find lower and upper bounds (Li ,Ui) of the nonlinear func-
tion by propagating the bounds in the forward-mode transversal of the computational
graph. We then traverse in reverse mode to update bounds on each node of the graph
based on the constraint bounds li and ui . The bounds on variables are thus tightened.
Additionally, if li ≤ Li and ui ≥ Ui , then the constraint is identified as redundant and
may be dropped. Similarly, if Li > ui orUi < li for some i , then no point can satisfy
this constraint, and the problem is infeasible.

Whenwe are unable to find implications to fix all variables of the function c in (5.1),
we find upper bounds on cu by traversing the computational graph of c as in the bound-
improvement technique. If we have a quadratic function of the form

∑
i, j qi j xi x j in

which all variables have finite bounds and every term of the sum contains at least one
binary variable, then NlPresHandler replaces this expression by an equivalent set

123

A. Mahajan et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-4 2-2 20 22 24 26 28

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Bonmin-BB
simple-bnb-ASL

simple-bnb-CGraph
simple-bnb-presolve

Best possible

Fig. 14 Performance profile showing the impact of presolving on NLPBB solvers

of linear constraints. For example, the constraint y1,2 = x1x2, where x1 ∈ {0, 1} and
x2 ∈ [l2, u2], is reformulated as

y1,2 ≤ u2x1,

y1,2 ≥ l2x1,

x2 − y1,2 ≤ u2(1 − x1),

x2 − y1,2 ≥ l2(1 − x1).

Coefficient improvement, bound tightening, and identification of redundancy are
also applied to linear constraints by the LinearHandler. In addition to these
functions, the LinearHandler class implements dual fixing and identification of
duplicate columns (variables) and constraints.

Figure 14 shows the effect of presolving on simple-bnbwhen applied to the 333
convex MINLP instances from MINLPLib-2. In this example, we call the presolver
routines only once before the root node is solved in the branch-and-bound portion.
Our simple-bnb solver with initial presolving was able to solve approximately
10% more instances than did the solver without presolve in the one-hour time limit.
Similarly our simple-qg solver was able to solve 5% more instances with initial
presolving (see Fig. 15).

5.2 Nonlinear perspective formulations

Consider the mixed binary set S = {(x, z) ∈ R
n × {0, 1} : c(x) ≤ 0, lz ≤ x ≤ uz},

where c is a convex function. Setting the single binary variable z to zero forces all
the other continuous variables x to zero. Moreover, the continous relaxation of S is a

123

Minotaur: a mixed-integer nonlinear optimization toolkit

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-4 2-2 20 22 24 26 28

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Bonmin-qg
simple-qg-ASL

simple-qg-CGraph
simple-qg-pres

Best possible

Fig. 15 Performance profile showing the impact of presolving on LP/NLP-based solvers

convex set. The convex hull ofS can be obtained by taking a perspective reformulation
of the nonlinear constraint [32]. More precisely, conv(S) = {(x, z) ∈ R

n × [0, 1] :
zc(xz) ≤ 0, lz ≤ x ≤ uz}. Perspective cuts using this reformulation can be derived
and were shown to be effective in structured problem instances [32]. Perspective
reformulations, cuts derived from these reformulations, and their applications have
been studied extensively (see, e.g., [31,33,34,42–44]).

Replacing the original constraint c(x) ≤ 0 with zc(xz) ≤ 0 creates difficulties
for convex NLP solvers since the new function and its gradient need to be specially
defined at z = 0 and constraint qualifications fail. The following approximation [35]
overcomes these difficulties:

(z(1 − ε) + ε) c

(
x

z(1 − ε) + ε

)

≤ 0. (5.2)

The function in (5.2) has the same value as that of c when z = 0 and z = 1. Moreover,
this function is convex, and its gradient is well defined at z = 0. For small values of
ε, this reformulation provides a good approximation to the convex hull while being
amenable to solution by standard convex NLP solvers.

We implemented a function in the NlPresHandler class of Minotaur to identify
this structure automatically. For each nonlinear constraint in the problem, Algorithm 3
is used to identify a binary variable for applying the reformulation.A setC of candidates
is initially populated with all binary variables in the problems. For each variable xi of
this nonlinear constraint, we try to find those binary variables that turn xi off by visiting
all linear constraints that reference xi . All other binary variables are removed from C,
and the procedure is repeated for the remaining variables in the nonlinear constraint. If
a required binary variable is found, the original function is replaced by its approximate

123

A. Mahajan et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-4 2-2 20 22 24 26 28

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Bonmin-BB
simple-bnb-presolve

simple-bnb-presolve-persp
Best possible

Fig. 16 Performance profile showing the impact of using perspective reformulations with NLPBB algo-
rithms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2-4 2-2 20 22 24 26 28

F
ra

ct
io

n
of

 In
st

an
ce

s

Ratio to Fastest

Bonmin-qg
simple-qg-presolve

simple-qg-presolve-persp
Best possible

Fig. 17 Performance profile showing the impact of using perspective reformulations with LP/NLP-based
methods

perspective reformulation (5.2) by updating the CGraph using a procedure similar to
that in Fig. 4. This routine is applied only during the initial presolve phase.

Figures 16 and 17 show the effect of using the perspective reformulation with
simple-bnb and simple-qg, respectively, on the convex problems in the
MINLPLib-2 collection. Six instances that were not solved in the one-hour time limit

123

Minotaur: a mixed-integer nonlinear optimization toolkit

with presolve using the simple-bnb code were solved after perspective reformula-
tion. As one might expect from a tighter formulation, there was generally a reduction
in the number of nodes. However, the reduction in time to solve the problems was less
than the reduction in the number of nodes, as the average time spent for solving the
NLP relaxations generally increased. Table 7 reports the time spent per NLP solve,
the total number of nodes, and the total time to solve such instances. The reported
time spent per NLP problem is not equal to the total time divided by the number of
nodes because more than one NLP problem is solved at some nodes to find branching
candidates.

Algorithm: Detecting Perspective Structure

input : A MINLP (1.1) and an index r of a nonlinear constraint in (1.1).
output: A binary variable that can be used for perspective reformulation of cr (x) ≤ 0
begin

C ←− {t : xt is a binary variable in (1.1)}
for each i such that xi appears in constraint cr (x) ≤ 0 do

F i ←− φ (Set of binary variables that turn off xi)
for each j such that xi appears in constraint c j (x) ≤ 0 and c j is a linear function do

Let K be the set of all binary variables in C that also appear in c j
for each k in K do

if Fixing xk to zero in c j forces xi to zero then
F i ←− F i ∪ {k}

C ←− C ∩ F i

if C = φ then
return no variable found

return first element of C

Algorithm 3: Algorithm for finding a binary variable that can be used to perform
a perspective reformulation of a given nonlinear constraint.

6 Conclusions

Identifying and exploiting structure in MINLP problems are essential when solving
difficult problems. A flexible and extensible framework for developingMINLP solvers
is necessary in order to rapidly adopt new ideas and techniques and to specialize
the methods. The modular class structure of our Minotaur framework provides such
capabilities to developers and is the vehicle bywhichwedeliver the resulting numerical
methods to users. This flexibility does not come at the cost of speed and efficiency.
As demonstrated by our nonlinear presolve and perspective formulation extensions,
exploiting the problem structure in Minotaur can result in more reliable and efficient
solvers. The source code for Minotaur is available from https://github.com/minotaur-
solver/minotaur. Because of its availability and extensibility, Minotaur opens the door
for future research to further advance the state of the art in algorithms and software
for MINLP.

123

https://github.com/minotaur-solver/minotaur
https://github.com/minotaur-solver/minotaur

A. Mahajan et al.

Table 7 Effect of using perspective reformulation on three measures: the total time taken (s) to solve an
instance, the number of nodes processed in branch and bound, and the average time taken per NLP problem
(ms)

Instance Without perspective Ref. With perspective Ref.
Time (s) Nodes Time/NLP (ms) Time (s) Nodes Time/NLP (ms)

rsyn0805m 33.38 1103 24.35 30.59 802 29.96

rsyn0805m02m 873.88 7444 103.20 774.96 5387 121.67

rsyn0805m03m 2259.38 12,303 163.44 1943.15 8485 195.62

rsyn0805m04m >3600.00 13,832 227.78 >3600.00 8814 332.13

rsyn0810m 26.96 786 26.53 31.44 680 36.07

rsyn0810m02m 1030.63 8404 108.99 1014.40 5874 146.51

rsyn0810m03m >3600.00 16,642 194.67 1879.59 6257 239.25

rsyn0810m04m >3600.00 10,875 273.70 2049.40 3741 368.59

rsyn0815m 23.70 505 30.09 29.38 495 41.32

rsyn0815m02m 1259.49 8617 128.12 1342.10 6294 185.64

rsyn0815m03m >3600.00 15,640 206.27 2783.14 8113 289.00

rsyn0815m04m >3600.00 9568 296.64 >3600.00 6407 428.55

rsyn0820m 35.34 822 30.35 25.02 406 42.52

rsyn0820m02m 1742.62 10,084 152.14 1190.27 5027 194.82

rsyn0820m03m >3600.00 13,476 230.98 >3600.00 9099 335.58

rsyn0820m04m >3600.00 7378 355.32 >3600.00 5380 489.58

rsyn0830m 30.86 576 35.67 27.46 301 55.55

rsyn0830m02m 3214.76 17,294 171.81 1007.66 3358 225.94

rsyn0830m03m >3600.00 10,329 289.15 2993.20 5492 423.63

rsyn0830m04m >3600.00 5420 439.46 >3600.00 4063 609.82

rsyn0840m 71.12 1292 44.93 43.04 452 67.40

rsyn0840m02m >3600.00 16,059 202.69 1234.59 3670 266.33

rsyn0840m03m >3600.00 8205 336.70 1404.32 1924 415.15

rsyn0840m04m >3600.00 4148 485.52 >3600.00 3438 680.76

syn05m 0.07 5 7.78 0.06 3 12.00

syn05m02m 0.32 7 15.24 0.20 3 22.22

syn05m03m 0.75 11 22.73 0.41 5 31.54

syn05m04m 1.25 15 30.49 0.68 7 40.00

syn10m 0.06 3 12.00 0.09 3 18.00

syn10m02m 1.32 13 24.91 0.58 5 34.12

syn10m03m 3.48 21 40.94 1.33 9 53.20

syn10m04m 6.11 27 57.01 2.39 13 72.42

syn15m 0.12 5 13.33 0.12 3 24.00

syn15m02m 0.60 5 35.29 0.47 3 52.22

syn15m03m 1.64 9 56.55 0.99 5 76.15

syn15m04m 2.97 13 80.27 1.87 7 110.00

123

Minotaur: a mixed-integer nonlinear optimization toolkit

Table 7 continued

Instance Without perspective Ref. With perspective Ref.
Time (s) Nodes Time/NLP (ms) Time (s) Nodes Time/NLP (ms)

syn20m 0.50 15 15.15 0.26 5 23.64

syn20m02m 2.60 15 43.90 1.87 7 60.32

syn20m03m 20.48 79 72.85 4.06 13 94.42

syn20m04m 66.76 150 109.38 7.33 19 133.27

syn30m 1.11 27 19.47 0.54 7 31.76

syn30m02m 6.88 23 64.30 3.39 9 82.68

syn30m03m 57.29 148 100.49 7.93 11 130.00

syn30m04m 210.63 389 146.65 16.06 17 188.94

syn40m 2.00 43 25.97 1.04 11 41.60

syn40m02m 23.04 80 81.13 9.00 11 103.45

syn40m03m 272.23 859 135.93 18.70 34 179.81

syn40m04m 318.25 460 194.50 49.74 63 260.42

Acknowledgements This material is based upon work supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, under contract DE-AC02-06CH11357.
This work was also supported by the U.S. Department of Energy under Grant DE-FG02-05ER25694.

References

1. Abhishek, K., Leyffer, S., Linderoth, J.T.: FilMINT: an outer-approximation-based solver for nonlinear
mixed integer programs. INFORMSJ.Comput. 22, 555–567 (2010). https://doi.org/10.1287/ijoc.1090.
0373

2. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)
3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)
4. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general

twice-differentiable constrained NLPs-II. Implementation and computational results. Comput. Chem.
Eng. 22, 1159–1179 (1998)

5. Beale, E.W.L., Tomlin, J.A.: Special facilities in a general mathematical programming system for
non-convex problems using ordered sets of variables. In: Lawrence, J. (ed.) Proceedings of the 5th
International Conference on Operations Research, pp. 447–454 (1969)

6. Belotti, P.: COUENNE: A user’s manual. Technical report. Lehigh University (2009)
7. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J.T., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear

optimization. Acta Numer. 22, 1–131 (2013)
8. Benson, H.Y.: Mixed integer nonlinear programming using interior point methods. Optim. Methods

Softw. 26(6), 911–931 (2011)
9. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A.,

Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear
programs. Discrete Optim. 5(2), 186–204 (2008)

10. Bonami, P., Lee, J., Leyffer, S., Wächter, A.: On branching rules for convex mixed-integer nonlinear
optimization. J. Exp. Algorithm. 18, 2.6:2.1–2.6:2.31 (2013)

11. Brooke, A., Kendrick, D., Meeraus, A., Raman, R.: GAMS, A User’s Guide. GAMS Development
Corporation, Fairfax (1992)

12. Bussieck, M.R., Drud, A.: SBB: a new solver for mixed integer nonlinear programming. Talk, OR
2001, Section Continuous Optimization (2001)

123

https://doi.org/10.1287/ijoc.1090.0373
https://doi.org/10.1287/ijoc.1090.0373

A. Mahajan et al.

13. Bussieck, M.R., Drud, A., Meeraus, A.: MINLPLib—a collection of test models for mixed-integer
nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

14. Byrd, R.H., Nocedal, J., Richard,W.A.: KNITRO: an integrated package for nonlinear optimization. In:
Pillo, G., Roma,M. (eds.) Large-ScaleNonlinearOptimization,Volume 83 ofNonconvexOptimization
and Its Applications, pp. 35–59. Springer, Berlin (2006)

15. Christianson, B.: Automatic Hessians by reverse accumulations. IMA J. Numer. Anal. 12(2), 135–150
(1992)

16. CMU-IBM cyber-infrastructure for MINLP (2009). http://www.minlp.org/
17. COIN-OR: Computational Infrastructure for Operations Research (2014). http://www.coin-or.org
18. Dakin, R.J.: A tree search algorithm for mixed programming problems. Comput. J. 8, 250–255 (1965)
19. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program.

91, 201–213 (2002)
20. Drewes, S.: Mixed Integer Second Order Cone Programming. Ph.D. thesis. Technische Universität

Darmstadt (2009)
21. Drewes, S., Ulbrich, S.: Subgradient based outer approximation for mixed integer second order cone

programming. Mixed Integer Nonlinear Programming, Volume 154 of the IMA Volumes in Mathe-
matics and Its Applications, pp. 41–59. Springer, New York (2012)

22. Duran, M.A., Grossmann, I.: An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Math. Program. 36, 307–339 (1986)

23. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set
algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

24. Fletcher, R.: User Manual for BQPD. University of Dundee, Dundee (1995)
25. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math.

Program. 66, 327–349 (1994)
26. Fletcher, R., Leyffer, S.: User Manual for filterSQP. University of Dundee Numerical Analysis Report

NA-181 (1998)
27. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91,

239–270 (2002)
28. Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer

Academic Publishers, Dordrecht (2000)
29. Forrest, J.: CLP (2014). http://www.coin-or.org/
30. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Program-

ming. The Scientific Press, Cambridge (1993)
31. Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a project and lift approach.

Comput. Optim. Appl. 63, 705–735 (2016). https://doi.org/10.1007/s10589-015-9787-8
32. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math.

Program. 106, 225–236 (2006)
33. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparableMIQP.

Oper. Res. Lett. 35, 181–185 (2007)
34. Frangioni, A., Gentile, C.: A computational comparison of reformulations of the perspective relaxation:

SOCP vs cutting planes. Oper. Res. Lett. 37(3), 206–210 (2009)
35. Furman, K., Grossmann, I., Sawaya, N.: An exact MINLP formulation for nonlinear disjunctive pro-

grams based on the convex hull. In: Presented at the 20th International Symposium on Mathematical
Programming, Chicago, IL (2009)

36. Gay, D.M.: More AD of nonlinear AMPL models: computing Hessian information and exploiting
partial separability. In: Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.) Computational Differ-
entiation Techniques Applications and Tools. SIAM, Philadelphia (1996)

37. Gebremedhin, A.H., Tarafdar, A., Pothen, A., Walther, A.: Efficient computation of sparse Hessians
using coloring and automatic differentiation. INFORMS J. Comput. 21(2), 209–223 (2009)

38. Geoffrion, A.M.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
39. Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Trans. Math.

Softw. 43(2), 1–5 (2016)
40. Griewank, A., Walther, A.: Evaluating Derivatives Principles and Techniques of Algorithmic Differ-

entiation, Second edn. SIAM, Philadelphia (2008)
41. Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: a survey of algorithms and

applications. In: Conn, A.R., Biegler, L.T., Coleman, T.F., Santosa, F.N. (eds.) Large-Scale Optimiza-
tion with Applications, Part II: Optimal Design and Control. Springer, New York (1997)

123

http://www.minlp.org/
http://www.coin-or.org
http://www.coin-or.org/
https://doi.org/10.1007/s10589-015-9787-8

Minotaur: a mixed-integer nonlinear optimization toolkit

42. Günlük, O., Linderoth, J.: Perspective relaxation of mixed integer nonlinear programs with indicator
variables. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008: The Thirteenth Conference on
Integer Programming and Combinatorial Optimization, vol. 5035, pp. 1–16 (2008)

43. Günlük, O., Linderoth, J.T.: Perspective relaxation of mixed integer nonlinear programs with indicator
variables. Math. Program. Ser. B 104, 186–203 (2010)

44. Günlük, O., Linderoth, J.T.: Perspective reformulation and applications. IMA Vol. 154, 61–92 (2012)
45. Gupta, O.K., Ravindran, A.: Branch and bound experiments in convex nonlinear integer programming.

Manag. Sci. 31, 1533–1546 (1985)
46. Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, Version 5.6 (2014)
47. Hart, W.E., Watson, J.-P., Woodruff, D.L.: Pyomo: modeling and solving mathematical programs in

Python. Math. Program. Comput. 3, 219–260 (2011)
48. IBM Corp. IBM ILOG CPLEX V12.6: User’s Manual for CPLEX (2014)
49. Jeroslow, R.G.: There cannot be any algorithm for integer programming with quadratic constraints.

Oper. Res. 21(1), 221–224 (1973)
50. Kannan, R., Monma, C.L.: On the computational complexity of integer programming problems. In:

Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research, Volume 157 of Lecture
Notes in Economics and Mathematical Systems, pp. 161–172. Springer, Berlin (1978)

51. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming problems. Econo-
metrica 28, 497–520 (1960)

52. Lasserre, J.: An explicit exact SDP relaxation for nonlinear 0–1 programs. In: Aardal, K., Gerards,
A.M.H. (eds.) Integer Programming andCombinatorial Optimization 2001, LectureNotes in Computer
Science, vol. 2081, pp. 293–303. Springer, Berlin (2001)

53. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.
11(3), 796–817 (2001)

54. Laurent, M.: A comparison of the Sherali–Adams, Lovász–Schrijver, and Lasserre relaxations for 0–1
programming. Math. Oper. Res. 28(3), 470–496 (2003)

55. Leyffer, S.: User Manual for MINLP-BB. University of Dundee, Dundee (1998)
56. Leyffer, S.: Mixed-Integer PDE-Constrained Optimization. Technical report. Argonne (2015)
57. Leyffer, S., Linderoth, J.T., Luedtke, J., Miller, A., Munson T.: Applications and algorithms for mixed

integer nonlinear programming. In: Journal of Physics: Conference Series, SciDAC 2009, vol. 180,
pp. 012014 (2009)

58. Mahajan, A., Leyffer, S., Kirches, C.: Solving convexmixed-integer nonlinear programs by QP-diving.
Preprint ANL/MCS-P1801-101. Argonne National Laboratory (2010)

59. Mahajan,A., Leyffer, S.,Kirches,C.: Solvingmixed-integer nonlinear programsbyQP-diving. Preprint
ANL/MCS-2071-0312. Argonne National Laboratory, Mathematics and Computer Science Division
(2012)

60. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex
underestimating problems. Math. Program. 10, 147–175 (1976)

61. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 5,
1–48 (2012)

62. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for coNTinuous/integer global optimization of
nonlinear equations. J. Glob. Optim. 59, 503–526 (2014)

63. Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta
Numer. 13, 271–369 (2004)

64. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
65. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP

optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)
66. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications

in process design. Comput. Chem. Eng. 19, 552–566 (1995)
67. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8,

201–205 (1996)
68. Savelsbergh,M.W.P.: Preprocessing and probing techniques for mixed integer programming problems.

ORSA J. Comput. 6, 445–454 (1994)
69. Schichl, H.: Global optimization in the COCONUT project. In: Alt, R., Frommer, A., Baker Kearfott,

R., Luther, W. (eds.) Numerical Software with Result Verification, Volume 2991 of Lecture Notes in
Computer Science, pp. 243–249. Springer, Berlin (2004)

123

A. Mahajan et al.

70. Still, C., Westerlund, T.: Solving convex MINLP optimization problems using a sequential cutting
plane algorithm. Comput. Optim. Appl. 34(1), 63–83 (2006)

71. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous andMixed-
Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer Academic
Publishers, Boston (2002)

72. Van Roy, T.J.: Cross decomposition for mixed integer programming. Math. Program. 25, 145–163
(1983)

73. Vigerske, S.: MINLPLib 2. In: Proceedings of the XII Global Optimization Workshop: Mathematical
and Applied Global Optimization, pp. 137–140 (2014)

74. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-
and-cut framework.Optim.Methods Softw. 33(3), 563–593 (2018). https://doi.org/10.1080/10556788.
2017.1335312

75. Viswanathan, J., Grossmann, I.E.: A combined penalty function and outer-approximation method for
MINLP optimization. Comput. Chem. Eng. 14(7), 769–782 (1990)

76. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

77. Westerlund, T., Lundqvist, K.: Alpha-ECP, version 5.01: an interactive MINLP-solver based on the
extended cutting plane method. Technical Report 01-178-A. Process Design Laboratory at Åbo Uni-
versity (2001)

78. Westerlund, T., Pettersson, F.: A cutting plane method for solving convex MINLP problems. Comput.
Chem. Eng. 19, 131–136 (1995)

79. Ziena Optimization. KNITRO Documentation (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312

	Minotaur: a mixed-integer nonlinear optimization toolkit
	Abstract
	1 Introduction, background, and motivation
	2 General algorithmic framework
	2.1 Relaxation-based tree-search framework
	2.2 Nonlinear branch and bound for convex MINLPs
	2.3 LP/NLP-based branch-and-bound algorithms for convex MINLPs
	2.4 Branch and bound for nonconvex MINLPs

	3 Software classes in Minotaur
	3.1 Core
	3.1.1 Classes used to represent and modify a problem
	3.1.2 Classes used in branch-and-bound algorithms
	3.1.3 Classes used to exploit problem structure
	3.1.4 Transformer
	3.1.5 Utility classes

	3.2 Engine
	3.3 Interface

	4 Implementing basic solvers in Minotaur
	4.1 Nonlinear branch-and-bound
	4.2 LP/NLP-based branch-and-bound
	4.3 Global optimization of quadratically constrained problems
	4.4 Performance of Minotaur

	5 Extensions of Minotaur
	5.1 Nonlinear presolve
	5.2 Nonlinear perspective formulations

	6 Conclusions
	Acknowledgements
	References

