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Abstract— Power Integrity is maintained in a high speed
system by designing an efficient decoupling network. This paper
provides a generic formulation for decoupling capacitor selec-
tion and placement problem which is solved by mixed-integer
programming. A real-world example is presented for the same.
The minimum number of capacitors that could achieve the target
impedance over the desired frequency range are found along with
their optimal locations. In order to solve an industrial problem,
the s-parameters data of power plane geometry and capacitors
are used for the accurate analysis including bulk capacitors and
VRM.

Index Terms— Power Integrity, Power Delivery Networks, De-
coupling Capacitors, S-parameters, Mixed-Integer Programming.

I. INTRODUCTION

Power Integrity (PI) is becoming one of the most impor-
tant issues in high speed systems as the dimensions of the
switching devices are reducing continuously. Power Integrity
is a term associated with power delivery networks (PDNs)
for ensuring the proper quality of power supply in a system.
The power supply should be sufficient enough with proper
stability and should be supplied with good efficiency, in order
to maintain power integrity [1]. In off-chip PDNs, there are
various components which have varying impedance profiles
in different frequency ranges e.g. VRM, bulk capacitor, power
planes, decoupling capacitors etc. Power planes are used for
supplying power to the chip through package power nets and
decoupling capacitors and have various resonance and anti-
resonance peaks in their impedance profile due to cavities.
Decoupling capacitors are mid-frequency capacitors that pro-
vide low impedance in the range of some hundreds of MHz
and are used to damp the cavity mode peaks of power planes
[2]. The selection of decoupling capacitors and their positions
on the board affect the system performance [3]-[5].

Various researchers have solved the decoupling capacitor
placement problem by metaheuristic techniques [6]-[8]. This
paper attempts to solve the same problem using a different
paradigm: deterministic optimization techniques that are math-
ematically more rigorous and ensure (under mild assumptions)
optimality in a finite number of steps. Specifically, mixed-
integer programming [10] is used as the number of capacitors

available and the ports where the capacitors should be placed
are integers, but their impedance profile is continuous in a
frequency range.

II. PROBLEM FORMULATION

The problem of decoupling capacitors selection and place-
ment in any high speed system can be generically formulated
as an integer optimization problem as follows:
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x,y
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ẑrcfxp,c ∀f ∈ [0, fmax], p ∈ {1, . . . , P}, (3)

yipf
=

C∑
c=1
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xp,c ∈ {0, 1} ∀p ∈ {1, . . . , P}, c ∈ {1, . . . , C}. (6)

Here, x is a decision variable with xp,c = 1 if capacitor c
is placed in port p and 0 otherwise. Thus, x tells us what
capacitors should be placed in each port. yrpf

and yipf
are re-

spectively the real and imaginary parts of the total admittance
of the capacitors placed at a port p at frequency f . The variable
y, that we use to denote the tuple (yi1f , y

r
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, . . . , yiPf

, yrPf
), is

thus an auxiliary variable, whose value is uniquely determined
once we fix x.

The optimization model minimizes the number of capacitors
required to achieve the target impedance ZT . fmax is the
maximum frequency upto which the board operates. P is the
number of ports available on the board where capacitors can
be placed, and C is the total number of capacitors available
along with their s-parameters files. F is a ‘black-box’ function
which computes the cumulative impedance of the board at a
frequency f when the total admittance of each port (due to
capacitors placed there) is given. The given parameters ẑrcf and



ẑicf are respectively the real and imaginary parts of admittance
of a capacitor c at frequency f . K is the maximum number
of capacitors which can be placed at any port.

There are several benefits of using a modeling approach
like ours. First, there exist state-of-the-art optimization solvers,
commercial as well as open-source for solving problems of
various types. Second, such a model provides us flexibility to
change the model if and when the need arises. Suppose, for
instance, a different problem: one may want to know what is
the best impedance that can be achieved by using at most T
capacitors of any type. Then one can just change the model
to

min
x,y,z

z

s.t. F (yi1f , y
r
1f
, . . . , yiPf

, yrPf
) ≤ z ∀f ∈ [0, fmax],

yrpf
=

C∑
c=1
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While the model has changed, the same algorithmic procedure
can be applied with little modifications in setting up the
problem. Third, one can study the mathematical structure of
these models and attempt to solve these models exactly to
optimality.

For the sake of clarity, we explain our methodology using
only the first model. In Section V we present results obtained
from both the models.

III. OPTIMIZATION PROCEDURE

Solving the optimization model is difficult because of two
reasons.

1) We need an infinite number of variables yrpf
, yipf

as the
set of frequencies is dense. Similarly, the constraints (2)-
(4) are infinite in number, one for each frequency.

2) It is not easy to write the function F in an algebraic
form that is convenient to solve using available integer
programming solvers.

We tackle the first difficulty by considering only a finite
number of frequencies in the interval [0, fmax]. By taking a
sufficiently large number of discrete frequency points spaced
appropriately in the interval, we can ensure that the impedance
does not exceed the threshold ZT at any frequency.

We address the second difficulty by taking linear approxima-
tions of the black-box function F . This approximation follows
from the Taylor-series expansion of F . Given a point ŷ, the
function F can be approximated in its neighborhood by

F (y) ≈ F (ŷ) +∇F (ŷ)T (y − ŷ). (7)

So we replace the intractable constraint (2) in our model by
the linear constraint

F (ŷ) +∇F (ŷ)T (y − ŷ) ≤ ZT . (8)

ŷ
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Fig. 1. The feasible region enclosed by a nonlinear constraint is shown by
the shaded region. The linear approximation obtained at five different points
includes the grey area that is not feasible. If the optimal point in grey area
lies outside the feasible region, then we can add a linearization inequality (8)
shown by the dotted line to cut it off.

Applying this idea at only one point (ŷ) results in a rather weak
approximation. Hence, we add the constraint (8) at several
different points. Selection of these points is an important step
of our procedure that we will describe in the next section.
The approximate model that we obtain in this way is an
instance of mixed-integer linear programming (MILP). Even
though MILPs are NP -hard in general, there are several fast
and robust solvers available to solve them to optimality in
reasonable time [11].

If F is a convex function, then the above approximation is
also an under-estimator of F , i.e.,

F (ŷ) +∇F (ŷ)T (y − ŷ) ≤ F (y). (9)

In this case, constraint (8) is a relaxation of the original
constraint (2). This useful property can be exploited to develop
algorithms that guarantee optimal solution in a finite number
of steps. We refer the readers to a recent survey [12] for
more details. There is no such guarantee when the function is
nonconvex, as is the case in our problem. In order to make our
algorithm robust towards nonconvexity, we implement a dy-
namic procedure to add and remove the above approximations
from our model depending upon the progress. We describe it
next.

IV. ALGORITHM

Our procedure is based on the outer-approximation proce-
dure developed by [13]. We start by including only a few linear
inequalities of the model. In particular, we drop constraints (2)
from our model. This model is now a linear problem with
integer variables. It is solved by an MILP solver. Suppose
the solution obtained is (x̂, ŷ). If it satisfies all the nonlinear
constraints (2), then we are done. Otherwise, there is some
frequency f for which we have F (ŷi1,f , ŷ

r
1,f , . . . , ŷ

i
P,f , ŷ

i
P,f ) >

ZT . We add to our model a linear approximation inequality (8)
for this frequency f . Figure 1 explains this scheme pictorially.
The point ŷ clearly does not satisfy this new inequality. So
this new inequality ensures that we do not obtain ŷ when we
solve the MILP in the next iteration. This iterative procedure
is continued until we find a point that satisfies all nonlinear



inequalities or our MILP does not return any solution. The
latter can happen if the problem has no integer solution (i.e.
we provide a very low value of impedance ZT ) or if the MILP
solver reaches a time limit.

Algorithm 1 depicts all the steps of our method. As we
keep adding new inequalities, the effort required to solve the
MILP increases in every iteration. Moreover, as our nonlinear
function may not be convex, some of these inequalities may
wrongly cut off some solution points. To overcome these
difficulties, we call a routine ‘cleanOldCons’ in every iteration.
Linear approximations that were generated a fixed number of
iterations ago are removed if they are not active at the current
iterate (x̂, ŷ). More sophisticated versions of this routine can
be developed for more efficiency.

Choose a discrete set I of frequencies from [0, fmax].
Initialize x̂p,c ← 0, p = 1, . . . , P, c = 1, . . . , C.
Initialize ŷp,f ← 0, p = 1, . . . , P, f ∈ I.
Initially create optimization model M with x̂, ŷ.
Add objective function (1) and constraints (5), (6) to M.
foreach f in I do add constraints (5), (6) to M .
Initialize iter ← 0.
while iter < MaxIter do

iter ← iter + 1
newcons← 0
foreach f ∈ I do

if F (ŷi1f , ŷ
r
1f
, . . . , ŷiPf

, ŷrPf
) > ZT then

Add constraint (8) for this frequency to M .
newcons← newcons + 1

if newcons == 0 then
STOP.

Solve M using an MILP solver.
if M is infeasible then

STOP.
else

Update x̂, ŷ to the solution of M .
cleanOldCons()

Algorithm 1: MILP Approximation Algorithm

V. IMPLEMENTATION

The maximum current of the system is 40 mA, supply
voltage is 1.2 V and the tolerance is 3%. So, the target
impedance for the system is 0.95Ω. The frequency range of
interest for the analysis is 200 MHz which was calculated from
the power spectral density (PSD) of the current required at the
package pin. Thus, the impedance after placing decoupling
capacitors should be lesser than 0.95 Ω at all the frequencies
lesser than 200 MHz. The optimal number of capacitors (N )
needed to achieve this, their names in the capacitor bank and
their optimum locations are to be found.

The cumulative z-parameter matrix of a board loaded with
decoupling capacitors can be given by the following for-
mula [4].

Zeff = (Z−1 + Z−1
decap)−1 (10)

Here, the z-parameters matrix of the board is Z, and Zdecap

is the diagonal matrix in which the diagonal elements are the
impedance of the decoupling capacitors on the ports corre-
sponding to the diagonal elements. All non-diagonal elements
of Zdecap are zero. The problem with the above formula arises
when the decoupling capacitors on the board are lesser than the
available number of ports. In that case, one or more number
of diagonal elements of matrix Zdecap are zero, which will
not allow calculations of the inverse. To avoid this problem,
we used y-parameters for that step particularly.

The analysis is carried out for a high speed serial link board.
The extracted s-parameters file was having 39 ports. There are
39 ports in the board from which 4 ports are reserved, one
for VRM and 3 for bulk capacitors, while one of the ports
is the observation port where the package pin is connected.
Thus, there are 34 ports available while defining or initializing
the ports for decoupling capacitors. There are hundreds of
capacitors (800 for this study) used for creating the bank.
The capacitive effects of a capacitor are dominated by the
inductive effects after a certain frequency called resonance
frequency. After this resonance frequency, a capacitor starts
behaving like an inductor, and at this frequency only resistive
effects are effective. rlc models of capacitors may be very
inaccurate at some frequencies [9]. Thus for this case study,
s-parameters data is used.

Even if we suppose that each available port can have at
most one capacitor from the capacitor bank for meeting the
target impedance of the system, the total number of possible
combinations is 80034 ≈ 1099 which are impossible to
enumerate using available computing systems.

A. Function and Gradient Evaluation

In every iteration of our algorithm, we need to evaluate
the nonlinear function F (or Zeff ) in the formula (10). We
also need gradient of F with respect to y variables for adding
the linearization constraints (8). We obtained these gradients
by method of finite differences. We perturb the point ŷ and
re-evaluate the function. Gradient is estimated by taking the
ratio of the change in the function value and the change in a
component of ŷ. Since there are P components of y we have
to evaluate the function P times. This step can thus be time-
consuming. In our experiments, we found that in the early
stages of the algorithm, the time was comparable to the time
spent by MILP solver.

B. Choice of the MILP solver

Branch-and-cut is a well established method for solving
large scale MILP problems [13]. The algorithm starts by
solving a linear programming relaxation obtained by ignoring
any integrality constraints. If the solution satisfies integrality
constraints, we are done. Otherwise, the relaxation is tightened
by either adding new inequalities (cuts) or by branching.
Modern solvers deploy several additional auxiliary techniques
like presolving, primal heuristics and symmetry exploitation
to enhance the speed of the algorithm. There are several
implementations of branch-and-cut available: both commercial
and open-source [11]. We have used IBM-CPLEX version
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Fig. 2. A comparison of the results from the two optimization models.

12.5 in our experiments. It is capable of using multiple cores
sharing a common memory.

C. Results

We implemented our algorithm in MATLAB and ran it
on a computer with 64GB RAM and four Intel Xeon 2.3
GHz cores. We solved both models described in Section II.
We considered the system of 34 available ports and 800
capacitors described above. The frequency range [0, 200] MHz
was approximated by selecting 401 equally spaced points.
The resulting MILP initially had 27200 integer variables and
27302 linear constraints. With every iteration, the number
of constraints increases as we keep adding more and more
linearization inequalities. We chose K = 5 for the second
model.

The behaviour of the two models is compared in Figure 2.
The solid line denotes the impedance (in Ω) at a given iteration
from the first model. The dashed line denotes the same for
the second model. The dotted line is objective function value
of the second model. The horizontal line is the target value.
We observe that the second model provides solutions with
smaller impedance values as compared to the first model. This
behaviour is along expected lines because we are explicitly
minimizing the impedance value while allowing upto five
capacitors. The first model on the other hand always provides
solutions that use fewer capacitors (2-3). The two models thus
provide us a good set of solutions satisfying two desirable
properties. The dotted line denotes the lower bound on the
impedance when the number of capacitors is fixed to five. It
increases monotonically because we are adding constraints in
each iteration. This curve increases until it reaches one of the
other two curves. The intersection point is theoretically the
best possible solution. The gap between the curves shows that
it may be possible to further reduce the impedance value.

We were able to find several solutions with impedance in
range of 0.8Ω − 0.95Ω. One such solution is shown in the
table I.

TABLE I
LOCATION OF CAPACITORS FROM THE CAPACITOR BANK ON THE BOARD

Port 26 27 29 33 35
Capacitor 350 141 141 350 348

VI. CONCLUSION

We have developed an optimization model for a highly
combinatorial problem of determining the optimal selection
and placement of capacitors in a power delivery network. The
linearization based algorithm that we deploy makes it possible
to solve this problem. Our relatively simple implementation
can be refined to make it faster and more accurate, which is
something we will pursue in our future research. We also want
to try nonlinear branch-and-bound methods for this problem,
as nonlinear solvers are usually designed to handle nonconvex
problems in a more robust fashion. Also, we have not used any
existing algorithmic techniques to obtain the gradients [14],
which can be faster and more accurate. Application of this
approach to other combinatorial problems in design of high-
speed systems is also possible.
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