
Intersection Cuts for Quadratic Constraints
Ashutosh Mahajan and the MINOTAUR Team

Mathematics and Computer Science Division, Argonne National Lab

1. Introduction

Consider the problem of optimizing a linear function subject to quadratic constraints:

min pTx

subject to: xTHix +
n
∑

j=1
aijxj + di ≤ 0, i = 1, 2, . . . m (QCQP)

l ≤ x ≤ u.

Three Approaches

Cutting Plane Method

•Based upon the work of

Tuy [1964].

•Uses intersection cuts.

Branch-and-Bound

Linear relaxations,

or

SDP Relaxations.

Others

•See Ritter [1966]; Zwart

[1974]; Konno [1976].

•Quadratic objective and

linear constraints.

2. A Cutting Plane Method

Assume for now (i) non-diagonal entries in all Hi are zero, (ii)l, u are finite. We rewrite

each constraint of QCQP as:

hi
jj

∑

j∈Ii+

wj − hi
jj

∑

j∈Ii−

vj +
n
∑

j=1
aij + di ≤ 0, i = 1, 2, . . . , m (L0)

x2
j ≤ wij (CX)

−x2
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Pros and Cons:

• Inexpensive cuts, no CGLP.

•No branching.

•Needs only simplex based solver.

But also needs BInvACol().

•May not converge!

General Remarks

• If a secant inequality for −x2
j ≤ −wij is included in L, and if (xB, wB) is a basic feasible

solution of L, then xj is non-basic. wij may or may not be non-basic at such points.

• In general, for each cut, we may need to find roots of up to n different quadratic equations

in one variable.

3. Transforming QCQP to Remove Bilinear Terms

Drop the subscript i and consider a quadratic constraint: xTHx + aTx + d ≤ 0. (QC)

Eigenvectors

of symmetric

matrix H

H = QDQT

Q is Orthogonal

D is a Diagonal Matrix

H = QRERQT

E, R Diagonal Matrices

eii ∈ {−1, 0, 1}

rii =
√

|dii| if |dii| > 0, 1 otherwise

Let



























I0 = {i | eii = 0},

I+ = {i | eii = 1},

I− = {i | eii = −1}.

and let



























b = R−1QTa,

z =
∑

i∈I0
biyi + d,

y = RQTx.
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4. Future Work and Research Directions

1.Report computational results!

2. Improve our implementation of the above methods. Handle degeneracy, free variables,

unbounded LPs, . . .

3.Strengthen these inequalities by using existing MILP techniques: using different basic so-

lutions for multiple cuts, exploiting structure, . . .
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