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Solving MIPs Using Disjunctions
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How to select disjunctions for branching or generating valid
inequalities?



What is a Disjunction?
Given a MIP of the form

mincx (objective function)

such that Ax≥ b (constraints)

x ∈ Z
d × R

n−d. (integrality)

◮ Variable Disjunction: xi ≤ π0 ∨ xi ≥ π0 + 1, i ∈ {1, 2, . . . , d}

◮ General Disjunction: πx ≤ π0 ∨ πx ≥ π0 + 1,
(π, π0) ∈ Z

d × {0}n−d × Z.
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Problem of Maximizing Lower Bound

Criterion for selecting general disjunction: Maximization of the lower
bound obtained after applying the disjunction.

Problem

Find (π̂, π̂0) ∈ Z such that objective function value is at least (some
given)K in both subproblems.

Ax≥ b
cx≤ K

πx ≤ π0

and
Ax≥ b
cx≤ K

π̂x ≥ π̂0 + 1
(1)

should both be infeasible.



Formulation Technique
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The Formulation

Lower bound after “application” of a disjunction can be at leastK if
and only if

pA− sLc− π = 0

qA− sRc + π = 0

pb− sLK − π0 ≥ δ (2)

qb− sRK + π0 ≥ −1 + δ

p, q, sL, sR ≥ 0

(π, π0) ∈ Z
d × {0}n−d × Z

1,

is feasible for someδ > 0.
Solve (2) over different values ofK to get the best one.



Examples
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(No.
of disjunctions: 4) (No. of disjunctions: 1)

Tree size for selected instances:
Instance Variable Gen. Disj. Improvement
10teams 115 12 9.58

bell3a 16387 259 63.27
flugpl 394 6 65.67

gt2 340 10 34
mod008 2840 68 41.76

vpm1 263111 20 13155.55



Comparison over 30 instances (MIPLIB and Mittleman)
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Computational Complexity

The problem of finding the “best” disjunction is:

◮ NP−complete in general (Reduction from Number Partitioning
Problem)

◮ NP−complete whenπ ∈ {0, 1}n

◮ NP−complete whenπ ∈ {−1, 0, 1}n

◮ NP−complete when(π, π0) ∈ {0, 1}n+1

◮ NP−complete whenx ∈ {0, 1}n and either of above four
conditions hold (Reduction from1-IN-3SAT)

. . . lead to similar results for some problems of generatingsplit
inequalities



Disjunctions for the Cutting-Plane Algorithm
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αx ≥ β is a “split-cut” that separates the LP solution from the feasible
region.

◮ Most valid inequalities are types ofSplit Inequalities: C-G, GMI,
Lift and Project, MIR . . . .

◮ Given an inequalityαx ≥ β, is it an elementary split inequality?
NP−Complete.

◮ Given a polyhedronP andK ∈ R, does there exist an elementary
split inequality such that the LP bound after adding it is at least
K? NP−Complete.



Using Formulations for “best” C-G Inequalities
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Using Formulations for “best” Split Inequalities

 1

 2

 4

 8

 16

 32

 64

 1  4  16  64  256  1024  4096  16384  65536

G
ap

 (
%

) 
cl

os
ed

 b
y 

in
eq

ua
lit

ie
s

Number of valid split inequalities

maximize bound
maximize violation



Conclusions and Future Work

◮ Selecting the “best” disjunction isNP−hard in the general case
and also for several natural restrictions.

◮ These disjunctions can reduce significantly the size of
branch-and-bound tree.

◮ Inequalities obtained from such disjunctions can also increase
the bound much better than maximally violated inequalities.

◮ However, fast heuristics to discover such disjunctions need to be
developed.

◮ What is best way to use a disjunction: branch or generate valid
inequalities?


