In Search of Optimal Disjunctions in Mixed Integer Programming

Ted Ralphs¹, Ashutosh Mahajan²

¹Cor@l Lab Department of Industrial and Systems Engineering Lehigh University
²Mathematics and Computer Science Division Argonne National Lab

UC Berkeley, 2009

Solving MIPs Using Disjunctions

What is a Disjunction?

Given a MIP of the form

min cx(objective function)such that $Ax \ge b$ (constraints) $x \in \mathbb{Z}^d \times \mathbb{R}^{n-d}$.(integrality)

Variable Disjunction: x_i ≤ π₀ ∨ x_i ≥ π₀ + 1, i ∈ {1, 2, ..., d}
General Disjunction: πx ≤ π₀ ∨ πx ≥ π₀ + 1, (π, π₀) ∈ Z^d × {0}^{n-d} × Z.

Problem of Maximizing Lower Bound

Criterion for selecting general disjunction: Maximization of the lower bound obtained after applying the disjunction.

Problem

Find $(\hat{\pi}, \hat{\pi}_0) \in \mathbb{Z}$ such that objective function value is at least (some given) *K* in both subproblems.

$$Ax \ge b$$
 $Ax \ge b$ $cx \le K$ and $cx \le K$ (1) $\pi x \le \pi_0$ $\hat{\pi} x \ge \hat{\pi}_0 + 1$

should both be infeasible.

Formulation Technique

The Formulation

Lower bound after "application" of a disjunction can be at least *K* if and only if

$$pA - s_L c - \pi = 0$$

$$qA - s_R c + \pi = 0$$

$$pb - s_L K - \pi_0 \ge \delta$$

$$qb - s_R K + \pi_0 \ge -1 + \delta$$

$$p, q, s_L, s_R \ge 0$$

$$(\pi, \pi_0) \in \mathbb{Z}^d \times \{0\}^{n-d} \times \mathbb{Z}^1,$$

is feasible for some $\delta > 0$. Solve (2) over different values of *K* to get the best one.

Examples

*	*	*	* *	* *	*
* S ₁	* \$2 *	*	* *	* 1 *	* * (No.
of disjunctions: 4)			(Ne	o. of disjunctic	ons: 1)
	Tre	a siza for	colocted in	atonoog.	
		JU SIZU IUI	<u>Selected III</u>	stances.	
	Instance	Variable	Gen. Disj.	Improvement	_
	Instance 10teams	Variable 115	Gen. Disj.	Improvement 9.58	
	Instance 10teams bell3a	Variable 115 16387	Gen. Disj. 12 259	Improvement 9.58 63.27	
	Instance 10teams bell3a flugpl	Variable 115 16387 394	Gen. Disj. 12 259 6	Stances. Improvement 9.58 63.27 65.67	
	Instance IOteams bell3a flugpl gt2	Variable 115 16387 394 340	Gen. Disj. 12 259 6 10	stances. Improvement 9.58 63.27 65.67 34	
	Instance I0teams bell3a flugpl gt2 mod008	Variable 115 16387 394 340 2840	Gen. Disj. 12 259 6 10 68	Stances. Improvement 9.58 63.27 65.67 34 41.76	

Comparison over 30 instances (MIPLIB and Mittleman)

Computational Complexity

The problem of finding the "best" disjunction is:

- *NP*-complete in general (Reduction from Number Partitioning Problem)
- \mathcal{NP} -complete when $\pi \in \{0, 1\}^n$
- \mathcal{NP} -complete when $\pi \in \{-1, 0, 1\}^n$
- \mathcal{NP} -complete when $(\pi, \pi_0) \in \{0, 1\}^{n+1}$
- ▶ NP-complete when x ∈ {0,1}ⁿ and either of above four conditions hold (Reduction from 1-IN-3SAT)

... lead to similar results for some problems of generating *split inequalities*

Disjunctions for the Cutting-Plane Algorithm

 $\alpha x \ge \beta$ is a "split-cut" that separates the LP solution from the feasible region.

- Most valid inequalities are types of *Split Inequalities*: C-G, GMI, Lift and Project, MIR
- Given an inequality $\alpha x \ge \beta$, is it an elementary split inequality? \mathcal{NP} -Complete.
- Given a polyhedron \mathcal{P} and $K \in \mathbb{R}$, does there exist an elementary split inequality such that the LP bound after adding it is at least *K*? \mathcal{NP} -Complete.

Using Formulations for "best" C-G Inequalities

Using Formulations for "best" Split Inequalities

Conclusions and Future Work

- Selecting the "best" disjunction is NP-hard in the general case and also for several natural restrictions.
- These disjunctions can reduce significantly the size of branch-and-bound tree.
- Inequalities obtained from such disjunctions can also increase the bound much better than maximally violated inequalities.
- However, fast heuristics to discover such disjunctions need to be developed.
- What is best way to use a disjunction: branch or generate valid inequalities?