In Search of Optimal Disjunctions in Mixed Integer Programming

Ted Ralphs ${ }^{1}$, Ashutosh Mahajan ${ }^{2}$

${ }^{1}$ Cor@1 Lab
Department of Industrial and Systems Engineering
Lehigh University
${ }^{2}$ Mathematics and Computer Science Division
Argonne National Lab

UC Berkeley, 2009

Argonne
laboratory

Solving MIPs Using Disjunctions

How to select disjunctions for branching or generating valid inequalities?

What is a Disjunction?

Given a MIP of the form
$\min c x$
such that $A x \geq b$

$$
x \in \mathbb{Z}^{d} \times \mathbb{R}^{n-d}
$$

(objective function)
(constraints)
(integrality)

- Variable Disjunction: $x_{i} \leq \pi_{0} \vee x_{i} \geq \pi_{0}+1, i \in\{1,2, \ldots, d\}$
- General Disjunction: $\pi x \leq \pi_{0} \vee \pi x \geq \pi_{0}+1$, $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times\{0\}^{n-d} \times \mathbb{Z}$.

Problem of Maximizing Lower Bound

Criterion for selecting general disjunction: Maximization of the lower bound obtained after applying the disjunction.

Problem

Find $\left(\hat{\pi}, \hat{\pi}_{0}\right) \in \mathbb{Z}$ such that objective function value is at least (some given) K in both subproblems.

$$
\begin{array}{rrr}
A x \geq b & & A x \geq b \\
c x \leq K & \text { and } & c x \leq K \tag{1}\\
\pi x \leq \pi_{0} & & \hat{\pi} x \geq \hat{\pi}_{0}+1
\end{array}
$$

should both be infeasible.

Formulation Technique

The Formulation

Lower bound after "application" of a disjunction can be at least K if and only if

$$
\begin{align*}
p A-s_{L} c-\pi & =0 \\
q A-s_{R} c+\pi & =0 \\
p b-s_{L} K-\pi_{0} & \geq \delta \tag{2}\\
q b-s_{R} K+\pi_{0} & \geq-1+\delta \\
p, q, s_{L}, s_{R} & \geq 0 \\
\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{d} \times\{0\}^{n-d} & \times \mathbb{Z}^{1},
\end{align*}
$$

is feasible for some $\delta>0$.
Solve (2) over different values of K to get the best one.

Examples

of disjunctions: 4)
(No. of disjunctions: 1)
Tree size for selected instances:

Instance	Variable	Gen. Disj.	Improvement
10teams	115	12	9.58
bell3a	16387	259	63.27
flugpl	394	6	65.67
gt2	340	10	34
mod008	2840	68	41.76
vpm1	263111	20	13155.55

Comparison over 30 instances (MIPLIB and Mittleman)

Times size of branch-and-bound tree than the smallest

Computational Complexity

The problem of finding the "best" disjunction is:

- $\mathcal{N} \mathcal{P}$-complete in general (Reduction from Number Partitioning Problem)
- $\mathcal{N} \mathcal{P}$-complete when $\pi \in\{0,1\}^{n}$
- $\mathcal{N P}$-complete when $\pi \in\{-1,0,1\}^{n}$
- $\mathcal{N} \mathcal{P}$-complete when $\left(\pi, \pi_{0}\right) \in\{0,1\}^{n+1}$
- $\mathcal{N} \mathcal{P}$-complete when $x \in\{0,1\}^{n}$ and either of above four conditions hold (Reduction from 1-IN-3SAT)
...lead to similar results for some problems of generating split inequalities

Disjunctions for the Cutting-Plane Algorithm

$\alpha x \geq \beta$ is a "split-cut" that separates the LP solution from the feasible region.

- Most valid inequalities are types of Split Inequalities: C-G, GMI, Lift and Project, MIR
- Given an inequality $\alpha x \geq \beta$, is it an elementary split inequality? $\mathcal{N P}$-Complete.
- Given a polyhedron \mathcal{P} and $K \in \mathbb{R}$, does there exist an elementary split inequality such that the LP bound after adding it is at least K ? $\mathcal{N} \mathcal{P}$-Complete.

Using Formulations for "best" C-G Inequalities

Using Formulations for "best" Split Inequalities

Conclusions and Future Work

- Selecting the "best" disjunction is $\mathcal{N} \mathcal{P}$-hard in the general case and also for several natural restrictions.
- These disjunctions can reduce significantly the size of branch-and-bound tree.
- Inequalities obtained from such disjunctions can also increase the bound much better than maximally violated inequalities.
- However, fast heuristics to discover such disjunctions need to be developed.
- What is best way to use a disjunction: branch or generate valid inequalities?

