
Proceedings of the 2001 Winter Simulation Conference
B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, eds.

ABSTRACT

This paper presents an application of distributed simulation
to the evaluation of virtual enterprises. Each company or
candidate can use a simulation of its facilities to determine
if it has the capability to perform its individual function in
the virtual enterprise. Then, these simulations can be
integrated into a distributed simulation of the complete
enterprise, and used to predict the viability and profitability
of the proposed product collaboration. In this paper, a
prototype distributed simulation for such a purpose is
presented. First, information flows as well as material
flows among members in a virtual enterprise are identified
using IDEF�, a formal function modeling method.
Sequences of the identified functions are then presented
using the finite state automata formalism. These
interactions are then implemented for a commercial
simulation package. Finally, a distributed simulation
composed of three individual simulations is successfully
tested across platforms over both the internet and the local
area network.

1 INTRODUCTION

Today’s manufacturing industries face the challenge of
responding more rapidly and efficiently to the changing
markets driven by customized products. The agile
manufacturing paradigm has been proposed to solve this
problem. Agile manufacturing is a technology that allows a
firm to achieve flexibility and rapid responsiveness to the
changing market and customers needs, by enabling the
firm to quickly respond to customers’ requirements and
design, prototype, manufacture, test and deliver a high-
quality product to the market in the least time possible
(Cheng et al., 1998). In this paradigm, manufacturers must
emphasizenot only quality, productivity and reduced cost,
but also the ability to react quickly and effectively to

changes in markets, production technology, and computer
and information technology.

DISTRIBUTED SIMULATION: AN ENABLING TECHNOLOGY FOR THE EVALUATION OF VIRTUAL
ENTERPRISES

Jayendran Venkateswaran
 Kalachikan Jafferali Mohammed Yaseen

Young-Jun Son

Department of Systems and Industrial Engineering
The University of Arizona

Tucson, AZ 85721-0020, U.S.A.

One way in which manufacturing industries can take
advantage of their agility is to form virtual enterprises.
Virtual enterprises are ephemeral organizations in which
several companies collaborate to produce a single product
or product line. Participating in virtual enterprises allows
an agile company to use its knowledge, resources, and
particular manufacturing expertise to take advantage of
business opportunities that are on a larger scale than the
company could handle alone. Here, the knowledge and
expertise may include business and engineering activities
throughout the product’s life cycle, such as product design,
process planning, production costing, scheduling of shop
activities, shop floor control, quality control, sales,
marketing, resource maintenance, product disposal, etc.
This virtual enterprise is accomplished without making a
long-term commitment to the other partners of the virtual
enterprise or to the new business area.

The scope of the virtual enterprise discussed in this
paper is relatively narrow in terms of the business and
engineering activities considered for the collaboration.
The virtual enterprise in this paper is somewhat similar to a
supply chain system, synchronizing business processes in
each member company by using shared information within
and among firms. The specification of a virtual enterprise
includes physical transactions of manufacturing and the
transportation system, as well as informational transactions
of planning, data processing, manufacturing management
transactions, and negotiation among member firms in the
virtual enterprise. Such enterprise integration requires
sophisticated process specifications for business activities
and a well-defined information communication structure.

To facilitate the creation of virtual enterprises,
potential partners must be able to quickly evaluate whether
it will be profitable for them to participate in a proposed
enterprise. Simulation technology in general, and
distributed simulation technology in particular, can

Venkateswaran, Yaseen, and Son

facilitate the evaluation process. Each partner can use a
simulation of its facilities to determine if it has the
capability to perform its individual function in the virtual
enterprise. Then, these simulations can be integrated into a
distributed simulation of the complete enterprise, and used
to predict the viability and profitability of the proposed
product collaboration. The use of distributed simulation
technology allows each potential partner to hide any
proprietary information in the implementation of the
individual simulation, but still to provide enough
information to evaluate the virtual enterprise as a whole.

2 SCENARIO OF A VIRTUAL ENTERPRISE

This section presents a prototype virtual enterprise for
manufacturing a few final products. The configurations for
different virtual enterprises will vary, depending on
production requirements and the characteristics of potential
collaborating companies. The prototype virtual enterprise
considered in this paper is composed of three different
players: two component suppliers and one final assembly
plant (see Figure 1). The prototype shown in Figure 1 is a
simplified version of the full model that is being developed
by the authors. In addition to component suppliers and
assembly plants, the full model includes a headquarters,
warehouses, distributors, retailers, and transportation
systems.

Final Assembly
Line

Component B
Supplier

Component A
Supplier

Customer

Virtual Enterprise

Component “A” Component “B”

Product “AB”

Figure 1: Sample Figure Caption

The virtual enterprise produces one type of product,
which is made up of two different components. The
components are assembled at the assembly plant. There
are two suppliers supplying the two different components
to the assembly plant. This virtual enterprise is a pull
system. The assembly line maintains a buffer stock of both
of the components. When either of the components falls
below the prescribed threshold level, a purchase order is
issued to that supplier. The supplier, on receiving the
order, releases the required quantity to the assembly line.
The suppliers continuously maintain a minimum level of
stock. This is to ensure that the assembly line always gets
its requirements immediately. The interactions between

the assembly line and the suppliers are initiated by the
assembly line only. A ‘handshake’ agreement is
performed to open and close a transaction. More detailed
interactions among the components will be described in
Sections 3 and 4.

3 IDEF� FUNCTIONAL MODELING

Figure 1 showed the members of the virtual enterprise and
the material flows among them. In this section,
information flows as well as material flows among virtual
enterprise members are identified using the IDEF�, a
formal function modeling method. The IDEF� method
has been used for modeling the functions of an
organization or a system and the relationships between
those functions (Mayer 1992). The function of the
prototype virtual enterprise system is represented in Figure
2. Two external components interacting with the virtual
enterprise are raw material suppliers and customers (or
other companies).

The function of a virtual enterprise shown in Figure 2
is composed of two sub-functions as shown in Figures 3.
The function A1, final assembly plant, interacts both
internally with the members of the virtual enterprise and
externally with other parties that do not belong to the
virtual enterprise. The function A2, component suppliers,
interacts only internally with final assembly.

Virtual
 enterprise
 activities

A0

Raw materials Finished product

Components availability

Final assembly plant
Component Supplier

Figure 2: IDEF� diagram of a virtual enterprise

Venkateswaran, Yaseen, and Son

1 20
detect_below_threshold open_transaction_as

open_transaction_ok_sa

detect_above_threshold

6

3 54
generate_order order_as12345

close_transaction_as

close_transaction_ok_sa

Ob

Ob

O

T

I

I

O

I

order_ok_sa

7 8
generate_entity

T O

I

I1

O1

M2

C1

M1

Component
 supplier
 activities

A2

Final
 assembly
 plant
 activities

A1

Raw materials

open_transaction_ok_sa
order_ok_sa
close_transaction_ok_sa
components

open_transaction_as
order_as12345
close_transaction_as
purchase order

Finished product

Component Supplier

Components availability

Final assembly plant

Figure 3: IDEF� Function Model of part of “Virtual
Enterprise Activities”

Figure 4: Finite state automata graph for assembly plant The IDEF� models in this section illustrated the

functional interactions among components. The sequence
of these interactions will be explained in the next section
using the finite state automata formalism.

0 1
open_transaction_as open_transaction_ok_sa

6

2

5

4
order_as12345

order_ok_sa close_transaction_as

close_transaction_ok_sa

O

O

O

I I

I
5

T
remove_entity

4 MODELING OF BEHAVIORS AMONG
MEMBERS USING FINITE STATE AUTOMATA

The coordination required between components suppliers
and a final assembly plant has been modeled using the
Deterministic Finite State Automata (DFSA) (Hopcroft and
Ullman, 1979). The DFSA for the final assembly plant and
the component suppliers are shown in Figures 4 and 5,
respectively. The circles with numbers indicate the states
or nodes. The arrows indicate actions that on completion
will allow the system to proceed to the next state. The “I”,
“O”, and “T” in Figures 4 and 5 denote incoming
messages, outgoing messages, and tasks carried out,
respectively. The “Ob” in Figure 4 denotes anobservation
to be performed. In addition, messages ending with “as”
denote messages from the assembly plant to a component
supplier. Similarly, messages ending with “sa” denote
messages from a component supplier to the assembly plant.

Figure 5: Finite state automata graph for supplier

Initially, both the component suppliers and the final

assembly plant are at the zero state (node). In this state,
the final assembly plant observes or checks the quantity of
components available, every given time period. If the
number is above the prescribed threshold
(detect_above_threshold), the assembly plant remains at
the same state. If the number of components falls below
the threshold (detect_below_threshold), it moves to the
next state. Once it has reached state 1, it will not check the
quantity of components again until the entire transaction is
completed and it returns to the zero state. The final
assembly plant initiates the transaction between it and the
supplier by sending the message open_transaction_as. It
then waits for the response, open_transaction_ok_sa.
Upon receiving this message it generates a purchase order
specifying the component details and supplier details. This
is represented by the task generate_order. After the
successful generation of the purchase order, the final
assembly plant sends the message order_as12345. The
number enclosed by the $ signs is the purchase order
number. The supplier, on receiving the message, seizes the
purchase order according to the purchase order
numbergiven in the message. It then removes the
requested quantity of components from its buffer,

Venkateswaran, Yaseen, and Son

represented by the task, remove_entity. It then sends back
the message order_ok_sa to the final assembly plant. On
receipt of the message, the assembly plant generates the
required quantity of components by the task
generate_entity. The tasks remove_entity and
generate_entity simulate the transportation of components
from one place to another. Note that the automata graph
needs to be accordingly changed after transportation
systems are added to the virtual enterprise. After the
generation of components, the assembly plant closes the
transaction by sending the message close_transaction_as
to the suppliers. The response close_transaction_ok_sa
returns the final assembly and the suppliers to the initial
state. Note that the supplier then remains in its initial state
until it receives the initial message from the final assembly
plant. Table 1 summarizes the messages and their
meanings.

The final assembly plant maintains a different finite
state automata graph for each supplier. The messages are
differentiated by adding the suffix “#1” or “#2”, the
numbers corresponding to suppliers.

Table 1: Messages in the finite state automata graph and
their meanings

Message Meaning
detect_below_threshold Number of components at the

final assembly plant is above
the threshold.

detect_below_threshold Number of components at the
final assembly plant is below
the threshold

open_transaction_as Message sent from assembly
to supplier. Initiates the
transaction.

open_transaction_ok_sa Message sent from supplier to
assembly. Transaction
initiation complete.

generate_order Task done by assembly. A
purchase order is created for
the required quantity of
components

order_as12345 Message sent from assembly
to supplier. The order number
is enclosed within the $ signs.

remove_entity Task done by supplier. The
required number of
components is removed.

order_ok_sa Message sent from supplier to
assembly. Confirmation of
order.

generate_entity Task done by assembly. The
required number of
components is generated.

close_transaction_as Message sent from assembly
to supplier. Initiates closure
of transaction

close_transaction_ok_sa Message sent from supplier to
assembly. Closes transaction.

5 DISTRIBUTED SIMULATION

This section presents background for distributed
simulation. The Department of Defense’s High Level
Architecture (HLA) (Kuhl et al. 1999) for modeling and
simulation can certainly be regarded as the state of the art
in distributed simulation. The HLA establishes a common
high-level simulation architecture to facilitate the
interoperability of all types of models and simulations.
The Run-Time Infrastructure (RTI) software implements
the specification and represents one of the most tangible
products of the HLA. It provides services in a manner that
is comparable to the way a distributed operating system
provides services to applications. Further details on these
services can be found in RTI 1.3-Next Generation
Programmer’s Guide, Version 3.2 (XXX 1999).

An HLA-based simulation is called a federation (Kuhl
et al. 1999). Each simulator that is integrated by the HLA
RTI is called a federate (Kuhl et al. 1999). One common
data definition is created for domain data that is shared
across the entire federation. It is called the federation
object model (FOM) (Kuhl et al. 1999). Note that the
simulation models can be legacy simulation systems
implemented in different languages. The direct interaction
of the simulation federates with the Runtime Infrastructure
is quite complex and cumbersome. An interface called
Distributed Manufacturing Simulation (DMS) Adapter has
been developed by National Institute of Standards and
Technology (NIST) to provide mechanisms for distributed
simulation similar to those provided by the HLA RTI, but
with a level of complexity that is manageable by the
development resources available in the manufacturing
community (Riddick and McLean, 2000).

6 IMPLEMENTATION

Simulations for two component suppliers and a final
assembly plant have been implemented using Arena� 4.0,
and they have been integrated into a distributed simulation
using the HLA and the DMS adapter. The implementation
is demonstrated in this section.

6.1 Assumptions

There are two component suppliers denoted by “suppliera”
and “supplierb”. The final assembly plant is denoted by
“assembly”. Assumptions and characteristics made for the
demonstration are as follows:

Venkateswaran, Yaseen, and Son

��

��

��

The assembly plant has some initial quantity of
both component A and component B. It checks
every given time interval to see if the component
level goes below the prescribed threshold level. If
it goes below, the transaction takes place as
illustrated earlier using the finite state automata
graph. Communications between the component
suppliers and final assembly plant are performed
through message exchange.
The federation time is advanced or incremented
every time interval denoted by the
‘SimulationStepSize’. The ‘SimulationStepSize’ is
a property available in the DMS Adapter. For
details on more functions and properties that are
available, refer the DMS Adapter Reference
Guide.
The component suppliers wait for the assembly to
initiate the transaction. They maintain a
minimum level of stock to ensure that the
assembly plant gets its requirements immediately.
In addition, enough raw materials are assumed to
be available for the suppliers. In the final
assembly plant, one unit each of component A and
component B is used to produce a finished
product denoted product1. As soon as these
products are produced, they are put into storage.

6.2 Modeling using Arena� 4.0

The above model has been implemented using Arena�
4.0. The implemented modules are generic, and therefore
the same modules have been used for component suppliers
and the final assembly plant, with minor customizations.
The simulation model can be broadly classified into two
parts: 1) the time management part and 2) the actual
model.

Arena modules needed for the time management part
of the model are shown in Figure 6. Even though Arena
modules are used in this presentation, exactly the same
concepts can be used when implementing models with
other discrete event simulation packages. As shown in
Figure 6, one entity is created at zero time. It invokes the
Visual Basic code contained in the VBA block, and delays
for an amount of time determined from the Visual Basic
code. This entity continues this procedure until the
simulation is terminated. The pseudo code contained in the
VBA block is shown in Figure 7. The first “if” condition
checks whether the time of the local simulation is behind
the current time of the global distributed simulation. If this
gap is larger than the simulation step size (Si), then it
advances the local simulation by Si. If the gap is smaller
than Si, then it advances the local simulation by the amount
of the gap. In the latter case, the local simulation time
becomes equal to the global distributed simulation time.
Note that time advancement in the local simulation is

performed by specifying “a_time” value and delaying the
simulation for “a_time” amount of time. When necessary,
the VBA block halts the local simulation until the
simulation advance request has been completed. In other
words, the local simulation needs to wait physically until
all of the other legacy simulations within the same
federation catch up to the current time of the global
distributed simulation.

Figure 6: Time management blocks in Arena� 4.0

 C = current time in distributed simulation

Tnow = current time in local simulation

If Tnow <= C And (simulation advance has been completed) Then
 If (this is the first time after Tnow = C) Then
 Tell the RTI that I want to move forward
 End If

 If (C - Tnow) > S Then
 a_time = s
 Else
 a_time =) = (C - Tnow)
 End If
Else
 While (simulation advance has not been completed)
 'do nothing -- physical halt
 Wend
End If

Figure 7: Pseudo code contained in VBA block in Figure 6

As discussed in Section 4, the coordination needed
between the two component suppliers and the final
assembly plant has been performed using the deterministic
finite state automata (DFSA). The DFSA has been
implemented in Arena� 4.0, using global variable and
arrays. The messages to be sent and the responses to be
received are stored in a global (public) array structure. The
pseudo code handling the message transactions is also
contained in the VBA block on Figure 6. The pseudo code
for the DFSA graph-based simulation is shown in Figure 8.
This is the generic pseudo code required to handle any
interaction between different companies, not only the
interactions in the prototype discussed here. The actions
that take place and the way they are handled are
summarized in Table 2. If the desired action does not take

Venkateswaran, Yaseen, and Son

place, it will only prevent the system from going on to the
next state; it will not stop the simulation. Note that the
‘system’ in Table 2 refers to a single DFSA graph, either a
supplier or an assembly plant. Note also that the messages
that are sent across the simulations are exactly the same as
those shown in the DFSA graph.

6.3 Testing

The entire federation described so far has been successfully
tested across platforms and versions of Arena�. Factors
used in the experiment are as follows:

Operating systems ��

��

��

 �� Windows 98, Windows NT, and Windows
2000. Initialize to state 0 of DFSA graph

Loop
 Perform the next action to be done
 Proceed to the next state

End loop when simulation stops

Network environments
�� Internet and local arena network (LAN).
Simulation packages
�� Arena� 3.0 and Arena� 4.0.

Even when the distributed simulation was conducted over
the internet, no significant delay was noticed. Applying
the proposed method in this paper to a more general virtual
enterprise with more complicated interactions is left as
future research.

Figure 8: Pseudo code for handling the interactions

Table 2: Actions associated with the DFSA

Action

s
Meaning What happens Mechanism

Input
(I)

Get an
input
message to
proceed to
the next
state

The system
waits for the
correct input
message from
the other
system.

The
systemcompare
s the messages
received with
the
messagesthat it
is waiting for. If
they match, it
proceeds to the
next state.

Output
(O)

Send an
output
message to
proceed to
the next
state

The system
sends the
required output
message

The output
message that
needs to be sent
is sent and the
system moves
to the next state.

Task
(T)

Perform a
task to
proceed to
the next
state

The system
performs a task.

The task to be
done is
performed by
the system.
Example: The
assembly
performs tasks
generate_order
and
generate_entity.

Observ
ation
(Ob)

Make a
check to
proceed to
the next
state

The system
makes a check.
The next state
the system
proceeds to
depends upon
the result of the
check.

The assembly
alone does this
action. It checks
the quantity of
components left
in order to find
out whether a
transaction is
required.

Figure 9: Animation of the assembly plant

7 CONCLUSIONS

In this paper, a prototype for a distributed simulation that
could be used to evaluate the viability of a virtual
enterprise was presented. First, information flows as well
as material flows among three members in a virtual
enterprise were identified using the IDEF�, a formal
function modeling method. Second, mechanisms have
been described to govern time management and
communications among member simulations in the
distributed simulation. Third, these mechanisms have been
implemented for a commercial simulation package, and a
sample virtual enterprise has been demonstrated. Finally,
on-going and future research activities were identified to
pursue a complete evaluation tool for virtual enterprises.
Based on the experience gained in the development of this
paper, distributed simulation over the internet environment
seems to be a promising technology for the evaluation of
virtual enterprises.

Venkateswaran, Yaseen, and Son

ACKNOWLEDGMENTS

This work was done as part of the intelligent
manufacturing systems (IMS) MISSION project
(www.ims.org), which is building an integrated
modeling and simulation platform for extended enterprises
and virtual enterprise networks.

REFERENCES

K. Cheng, D. K. Harrison, and P. Y. Pan 1998.
Implementation of agile manufacturing – an AI and
Internet based approach. Journal of Materials
Processing Technology, Vol. 76, pp. 96 - 101.

J. E. Hopcroft and J. D. Ullman 1979. Introduction to
Automata Theory, Languages and Computation,
Addison-Wesley Publishing, Reading, MA.

F. Kuhl, R. Weatherly, and J. Dahmann 1999. Creating
Computer Simulations: An Introduction to the High
Level Architecture, Prentice-Hall, Upper Saddle River,
NJ.

R. J. Mayer 1992. IDEF� Function Modeling Method
Report, Knowledge Based Systems Inc., College
Station, TX.

F. Riddick and C. McLean 2000. The IMS Mission
architecture for distributed manufacturing simulation.
In Proceedings of the 2000 Winter Simulation
Conference, Orlando, FL.

AUTHOR BIOGRAPHIES

JAYENDRAN VENKATESWARAN is a graduate
student and a teaching assistant in the Department of
Systems and Industrial Engineering at The University of
Arizona. His email address is
<jayendran_v@sie.arizona.edu>.

KALACHIKAN JAFFERALI MOHAMMED
YASEEN is a graduate student and a research assistant in
the Department of Systems and Industrial Engineering at
The University of Arizona. His email address is
<kalachik@email.arizona.edu>.

DR. YOUNG JUN SON is an assistant professor in the
Department of Systems and Industrial Engineering at The
University of Arizona. Dr. Son received his BS degree in
Industrial Engineering with honors from POSTECH in
Korea in 1996 and his MS and Ph.D. degrees in Industrial
and Manufacturing Engineering from Penn State
University in 1998 and 2000, respectively. His research
interests include computer integrated manufacturing,
simulation based shop floor control, distributed simulation,
virtual manufacturing, and virtual enterprises. Dr. Son was
the Rotary International Multi-Year Ambassadorial
Scholar in 1996, the Council of Logistics Management

Scholar in 1997, and the recipient of the Graham Endowed
Fellowship for Engineering at Penn State University in
1999. He is an associate editor of the International Journal
of Modeling and Simulation and a professional member of
ASME, IEEE, IIE, INFORMS, and SME. His email and
web addresses are <son@sie.arizona.edu> and
<www.sie.arizona.edu\faculty\son>.

http://www.ims.org/

	INTRODUCTION
	SCENARIO OF A VIRTUAL ENTERPRISE
	IDEF(FUNCTIONAL MODELING
	MODELING OF BEHAVIORS AMONG MEMBERS USING FINITE STATE AUTOMATA
	DISTRIBUTED SIMULATION
	IMPLEMENTATION
	Assumptions
	Modeling using Arena(4.0
	Testing

	CONCLUSIONS

