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Abstract 
In forming a federation of distributed simulations, 
their simulation clocks must be synchronized to 
ensure that events in each simulation are executed 
correctly, resulting in correct simulation results.  We 
first discuss three time synchronization methods: 1) 
conservative, 2) optimistic, and 3) scaled real-time.  
To overcome problems of each of these static 
approaches, we propose a neural network based 
adaptive approach, which will react to the dynamic 
federation environment.  In this paper, the framework 
of the neural network is discussed, and partial 
experimental results conducted for a distributed 
supply chain simulation are investigated which will 
be used as input to train the neural network.   
 
Introduction 
Computer simulation modeling has become a 
standard planning and analysis technique for complex 
systems.  As a system becomes more complex, the 
complexity of corresponding models increases which 
in turn places a burden on the computing power of a 
processor.  In the highly competitive environment 
and market, where product life cycle times are 
shortened, one critical aspect of conducting 
simulations is to obtain faster results.  Distributed 
simulation offers a solution to obtain faster results by 
splitting a simulation model into many modules (sub-
models) spread over multiple computers.  A major 
problem associated with this progression is the time 
synchronization (TS) of these sub-simulations.  
Several TS mechanisms have been developed, 
including 1) the conservative method, 2) the 
optimistic method, and 3) the scaled real time method 
(Fujimoto, 1998).  The conservative method is a 
strategy where none of local simulations pertaining to 
a federation advances its time until it ensures that it 
can not receive any events in the past from other 
simulations.  The time can be advanced in fixed steps 
or based on the next event time (the nearest event 
among the simulations) of the federation.  In 
optimistic synchronization, each simulation executes 
messages (events) received from other simulations 
whenever they are available under the optimistic 

assumption of a timestamp ordered execution.  Each 
time when a simulation detects a violation of the 
timestamp order (i.e., a message time-stamped in the 
past of its local time arrives), it rolls back to its state 
(local time) immediately prior to the violation, and 
the execution resumes (Jefferson and Sowizral, 
1985).  Under the scaled real time method, the speed 
of each simulation is factors of the wall clock time 
(Fujimoto, 1998).  For a more detailed discussion on 
these approaches, refer to Fujimoto (1995, 1999).  
Each of these mechanisms works well only for a 
particular type of system, which motivates the need 
of an adaptive approach. 

The advantage of the conservative method is the 
ease of implementation and reliability (high degree of 
synchronization).  However, this method generates a 
considerable computational overhead used to ensure 
proper time advancement.  Therefore, the 
conservative approach is typically used for situations 
where numerous messages are exchanged among 
simulations and the sequences of messages are 
important.  The advantage of the optimistic approach 
is efficient use of computational resources.  On the 
other hand, the disadvantage of this approach is the 
overwhelmed memory requirements used to store 
states for a possible rollback and technical difficulties 
implementing rollbacks (Mattern, 1993; Fujimoto 
and Hybinette, 1997).  Therefore, the optimistic 
approach is typically used for situations with less 
number of message transfers.  The advantage of the 
scaled real time approach is considerable reduction of 
simulation run times.  However, it is difficult to 
determine appropriate scaling factors (degree of 
scaling) which will provide valid simulation results.  
Therefore, this method is typically used for situations 
having a dependable and reliable network, and where 
missing messages does not have a significant effect 
in results.  

The long-term goal of this research is to enable 
adaptive identification of the best TS method for 
dynamically changing system configurations and 
conditions.  In this paper, the framework of a neural 
network based adaptive choice of TS methods is 
presented.  To this end, we first evaluate the 



quantitative performance of the different TS 
approaches.  For this purpose, a distributed supply 
chain simulation is constructed that integrates 
partners’ existing factory-level simulations.  In 
constructing this distributed simulation, different TS 
approaches have been implemented, and the 
experimental results obtained are used to train the 
neural network.  The neural networks will be trained 
to identify the best possible TS method for a given 
distributed model and conditions.  A general 
framework has been constructed which involves two 
stages.  The first stage analyzes the performance of 
various TS approaches for the distributed model 
under study and trains a neural network.  The second 
stage helps in coming up with the best possible TS 
approach suited to the distributed model given the 
configuration and goals of the distributed model.   
 
Neural Network Based Adaptive Method 
A neural network is used to model complex 
relationships among critical dependent variables, 
different TS methods, and performance measures.  
Whenever there is a need to run a distributed model, 
the neural network can be used to identify the most 
efficient TS approach.  Also, this framework can be 
expanded to choose the most efficient TS approach in 
a dynamic environment.  That is, in the course of 
execution of a distributed model, the current TS 
approach can be changed using the above framework, 
as need arises.  The overview of the neural network is 
depicted in Exhibit 1.  Exhibit 1 shows the detailed 
input and output layers except for the internal layers.  
The input layer has five input nodes, and the output 
layer has four output nodes.  Several parameters must 
be determined to obtain a complete neural network, 
including 1) the number of hidden layers, 2) the 
number of hidden neurons at each layer, and 3) the 
learning rate.  Additionally, all of the weights on the 
arcs are empirically determined from the training 
samples. 

The TS approaches have been implemented so 
that we can collect data regarding the performances 
of each approach after conducting experiments on a 
common distributed model.  The distributed model 
(federation) mimics a big system which is broken 
down into many simulation modules (sub-models) to 
reduce the complexity of the system.  The modules 
forming the distributed model are easy to handle, and 
the working of the system is easily visible.  These 
modules are then run on different PC’s.  The data 
collected from this distributed model is used as 
training samples.  A training sample consists of an 
input vector and a corresponding output vector.  
These training samples enable the TS selection 
method to be adaptive.  Once a set of training 
samples are collected, a neural network will be 

constructed by obtaining the best weights to 
minimize the system error E, 
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where tpj implies the desired output vector for the jth 
component of the pth training sample and opj the 
actual output value generated by an intermediate 
neural network.   
 
Exhibit 1. Overview of neural network 
 
 

                     Hidden Layers 

 1  2  3  4 

 1

 5

Rate of 
Messages 

Exchanged 

Federation Run 
Time 

Number of 
Processors 

Accuracy of 
Statistics 

Conservative 
Time Stepped 

Number of 
Local 

Simulations 

 2  3  4 

Conservative 
Event Based 

Scaled Real 
Time 

Optimistic 
 

 
To train the neural network offline, certain 

variables (see Exhibit 1) have been identified, which 
will be used as the inputs to the neural network.  
These variables are further classified as fixed 
configuration variables and performance measures.  
The fixed configuration variables, such as 1) the 
number of local simulations, 2) the number of 
processors, and 3) the rates of messages exchanged, 
are decided before the simulation runs are carried out.  
On the other hand, the performance measures, such 
as 1) the accuracy of statistics and 2) the federation 
speed, are available only after simulations are run.  It 
is noted that the performance measures depend on 
both the type of synchronization method and the 
fixed configuration variables.  The first input, the 
number of local simulations is the measure of 
complexity of the single simulation.  In general, less 
number of simulations means that each local 
simulation is more complex.  The number of 
simulations can take on values from 2 to N.  The 
second input, the number of processors, is the 
number of PCs on which the simulations are run.  
This input is less than or equal to the number of 
simulations.  The third input, the rate of messages 
exchanged, is a measure of how busy the network is.  
It can be of either of two levels, +1 representing a 
busy/high intensity network and -1 representing a low 
intensity network.  The fourth input, the accuracy of 
the statistics, is the percentage difference between the 



statistics obtained from running the distributed model 
and the statistics obtained from running a single (as 
opposed to distributed) base model.  Details about the 
base model are presented in the Experiments Section.  
The fifth input, the federation run time, is the actual 
time taken to complete a distributed simulation run in 
the wall clock time.  In general, the lesser the time 
taken to complete the simulation the better.  A data 
set for training the neural network will represent all 
the five inputs discussed here.   

The output of the neural networks is one of the 
four TS approaches (refer Exhibit 1).  Differences 
between the conservative time-stepped and the 
conservative event based approaches will be 
explained in Implementation Platform section.  Each 
data set is mapped to a particular output based on the 
experiments carried out after implementing each TS 
approach.  The value for each of the outputs is a 
binary value (0 or 1) indicating the usage of that 
particular TS approach.  The output can be 
represented as a set: (x, y, z, w) where x represents 
conservative time stepped, y represents conservative 
event based, z represents scaled real time, and w 
represents optimistic approach.  While training, only 
one of these four values will be 1, and the rest will be 
0.  That is, only 4 outputs sequences are possible: (1, 
0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). 

Exhibit 2 shows example data sets used for 
training the neural network.  In Exhibit 2, the first 
data set used for training the neural network is 
interpreted as follows: there are 4 simulations 
running on 4 processors.  The distributed model is 
run in a high intensity network.  The accuracy 
(percentage difference) of statistics is obtained from 
experiments conducted and is found to be 5.5% of the 
actual value.  The federation run time is observed to 
be 0.92 minutes.  The TS approach used (output) is 
the conservative time stepped approach.  Training of 
neural network with extensive data sets is being 
conducted and is not included in this paper. 
 
Exhibit 2: Data sets for training neural networks 
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Once the neural network is trained offline, it can 
be applied to a distributed simulation online.  In the 
operation stage, each node of the neural network 
shown in Exhibit 1 has slightly different context 
compared with the training stage.  In the operation 
stage, the input nodes are classified into two (Exhibit 
1): desired configuration inputs (inputs 1 and 2) and 
desired goal inputs (inputs 3, 4 and 5).  The desired 
configuration inputs are the number of simulations 
and the number of processors of the distributed 
model.  Their usage is the same as when the neural 
network is trained.  The desired goal inputs are the 
desired accuracy of statistics, the desired federation 
run time, and the desired rate of messages exchanged.  
These are based on the users’ expectation from the 
distributed model.  Hence, the accuracy of statistics is 
the expected percentage difference between the 
statistics obtained from the distributed model and the 
single base model; the rate of messages exchanged is 
the expected measure of how busy the network is; the 
federation run time is the time available with the user 
to run the distributed simulation.  The output of this 
neural network will be one of the different TS 
approaches.  The outputs are anticipated not to be 
exactly 0s and 1s.  Instead, they will be fractions 
between 0 and 1.  An example data set used in the 
operation stage of the neural network is depicted in 
Exhibit 3.  The inputs given by the user specify the 
desired configuration as 4 simulations run on 4 
processors in a high intensity network with the 
desired goal of the distributed model to be within 5% 
of actual statistics with the desired federation run 
time of 1 minute.  For those inputs, the output of the 
neural network can be (0.91, 0.3, 0.79, 0.53).  This 
output suggests the best TS approach for the specific 
configuration is the conservative time stepped 
approach followed by the scaled real time approach. 
 
Exhibit 3: Example data set used in the operation 
stage of neural network  
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Prototype Supply Chain 
The prototype supply chain considered in this 
research to evaluate the performance of different TS 
approaches is a pull system composed of an assembly 
plant, two suppliers, and a transportation system (see 
Exhibit 4).  The Assembly plant, which acts like the 
Original Equipment Manufacturer (OEM), produces 
the final products from the parts produced by 



Supplier A and/or Supplier B.  The transporter moves 
the parts from the suppliers’ plants to the assembly 
plant.  The assembly plant maintains a buffer stock of 
all the components.  When the stock of any of the 
components falls below a prescribed threshold, a 
purchase order is issued to the corresponding 
supplier.  The suppliers also maintain a minimum 
level of stock to ensure that the assembly plant 
always gets components as quickly as possible.   
 
Exhibit 4. Prototype supply chain 
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The behavior of the supply chain and the messages 
exchanged between the members remains the same as 
described by Venkateswaran et al. (2001).  It is noted 
that this particular supply chain configuration is 
adopted for illustration purposes, and the proposed 
method in this paper can be applied to other complex 
systems such as manufacturing, supply-chain 
(different configurations), telecommunication and 
computer network systems. 
 
Communication Formalism and Protocol 

Local simulations in a federation exchange 
information with other simulations or the federation 
manager through messaging.  Two major purposes of 
these interactions are: 1) notification of timestamps 
used for the synchronization of the federation time 
and 2) delivery of an event that initiates appropriate 
actions (e.g., creation or disposal of entities) in a 
simulation.  In the case of time notification, only the 
time stamp of each message is important.  However, 
in the case of delivery of an event, the semantics as 
well as the time stamp of each message are 
important.  In this research, each simulation is 
equipped with a formal behavior model that enables 
coordinative interactions with other simulations.  For 
this purpose, a modified deterministic finite 
automaton (MDFA) similar to a Mealy machine 
(Hopcroft and Ullman, 1979) has been employed.  A 
modified deterministic finite automaton, M, is 

defined formally as the octuple, 
),,,,,,,( γδ= ΡACTΣFqQM 0
, where Q is a finite set 

of states, Qq ∈0  is an initial state, QF ⊆  is a set of 
final states.  Σ is a finite set of federate events and 
serves as the input alphabet.  Additionally, Σ is 
partitioned into a set of input messages (ΣI), a set of 
output messages (ΣO), a set of federate tasks (ΣT), 
and a set of observation tasks (ΣOb).  ACT is a finite 
set of federate actions, where each α ∈  ACT is a 
procedure that performs some action (e.g., creation 
and disposal of entities) in the federate.  

QΣQ →×δ:  is a state transition function.  Similarly, 
ACTΣΣQ TO →∪×γ )(:  is a federate action 

transition function.  This communication protocol has 
been implemented using the functions provided in the 
High Level Architecture-Run Time Infrastructure 
(HLA–RTI) (Venkateswaran et al., 2001).  The 
benefit of using a formal model is that it forms a 
basis for software development.  A simple 
Deterministic Finite State Automata (DFSA) for a 
supplier is shown in Exhibit 5.  The “I”, “O” and “T” 
denote the incoming messages, outgoing messages 
and the tasks carried out, respectively.  In addition, 
“_as” messages go from the assembler to a supplier; 
“_sa” messages go from the supplier to the 
assembler; and, “_st” messages go from a supplier to 
transporter.  In the sequence shown in Exhibit 5, the 
assembler initiates the transaction with the 
open_tran_as message and the supplier replies with 
the open_tran_ok_sa agreement message.  After the 
successful generation of an order, the assembler 
sends the order_as message.  Due to limited space, 
the other messages (events) are not explicitly 
explained. 
 
Exhibit 5. Finite state automata for supplier 
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Implementation Platform 
The High Level Architecture (HLA) has been 
developed by Defense Modeling and Simulation 
Office (DMSO) to provide a consistent approach for 
integrating distributed, heterogeneous, and defense 
simulations.  Run Time Infrastructure (RTI) software, 
which implements the rules and specifications of 
HLA, provides methods which can be called and used 
by individual simulations.  The direct interaction of 
the simulations with the RTI is quite complex.  To 
respond this problem, NIST has developed the 
Distributed Manufacturing Simulation (DMS) 
Adaptor, a software interface, to provide mechanisms 



for distributed simulation similar to those provided 
by the HLA RTI, but with a level of complexity that 
is manageable by the development resources 
available in the manufacturing community (Riddick 
and McLean, 2000).  In the experiments conducted in 
this research, all the local simulations are built in 
ArenaTM, which have been integrated into a 
federation based on the HLA/RTI and the DMS 
adaptor. 

The conservative method has been implemented 
using two ways to advance time in a simulation: 1) 
the time stepped approach and 2) the event based 
approach.  

1. Time Stepped:  In the time-stepped approach, 
each simulation advances its time by a fixed step 
size.  Appropriate step sizes depend on the federation 
conditions.  In this paper, multiples of ∆T, the 
average inter-event time calculated from the base 
model, are used as step sizes.  A generic algorithm 
(pseudo code) to calculate the ∆T has been developed 
and is shown as follows: 
One entity is created at time zero (this entity is used 
to calculate inter-event time) 
Temp_time = 0 
While TNOW ≤ simulation termination time 

While TNOW > Temp_time 
 <<Do Nothing>> 
End while 
Collect an inter-event time (TNOW − 
Temp_time) 
Temp_time = TNOW 

End while 
The DMS adaptor has a constraint in the way it 
handled the time-stepped approach.  Time can only 
be incremented in the multiples of the value 10.  To 
overcome this constraint, a scaling mechanism has 
been added in the model code.  The scaling 
mechanism reports a simulation advance request in a 
magnified scale while each simulation is still 
progressing in the small-scale quantities.  When 
being fed back to the simulation, the time is scaled 
down by the factor it was scaled up. 

2. Event Based:  In the event based conservative 
approach, each simulation advances its time by going 
to its next event in the federation having the smallest 
logical time.  In this case, each simulation announces 
its next event time to the RTI, and the RTI allows its 
advance to that event depending on the request of 
other simulations.  Therefore, whenever an event is 
noticed, the step size will be changed to the 
difference between the next event time and the 
present simulation time.   

The scaled real time approach has been 
implemented using client/server applications.  In the 
real time approach, the simulations are executed 
synchronously with the real time (wall clock).  This 

means that 1 minute of the simulation time 
corresponds to 1 minute of the wall clock time.  If 
two simulations begin at the exactly same time, both 
simulations times will be exactly same as they 
correspond with the real time.  Assuming negligible 
network latency, and other system delays, the 
messages sent by one simulation are assumed to 
reach the other simulation instantaneously.  The same 
logic can be applied to N simulations running in 
parallel with the exactly same simulation times.  In 
the case of the scaled real time, 1 minute of the wall 
clock time is scaled down so that the simulation time 
is less than 1 minute.  That is 1 minute of the wall 
clock time can be scaled to represent 0.5 minute of 
the simulation time (scaling factor of 2 in this case).  
However, this truly distributed arrangement requires 
that each simulation keep track of information about 
all the other simulations.  Hence, to facilitate easier 
communication between simulations, a central server 
called ‘Hub’ is conceived, which stores the 
information pertaining to all the simulations in the 
distributed network.  In this implementation, the Hub 
has been used in place of the HLA/RTI to reduce the 
overhead associated with the HLA/RTI.  The 
architecture of the system is depicted in Exhibit 6.  
Multiple simulations can be run in parallel with the 
same simulation time.  Each simulation sends all its 
messages to the ‘Hub’.  The ‘Hub’ then redirects the 
message to the respective receiver.  The clocks on all 
the simulation PC’s are synchronized before the start 
of the simulations using Dimension 4® software.  It is 
important to note that following points: 
•  The Dimension 4® software handles the 

coordination of the simulation PC’s time before 
the start of the simulation run.  Since the 
simulation time is coordinated with the system 
clock, the advancement of time in all simulations 
is assumed to be the same. 

•  The work of the ‘Hub’ is restricted in redirection 
of messages from one simulation to another.  It 
does not perform any time management or object 
management. 

The ‘Hub’ is coded in Java using socket 
programming.  The ‘Hub’ once started, will wait for 
new client connections from the simulations.  Once a 
new connection is accepted, a separate process 
(thread) is spawn, which listens for messages from 
the client simulations.  When all the required 
simulations are connected, the ‘Hub’ sends a message 
to each of the client simulations stating the real time 
at which the simulations are to start execution.  Since 
the system time of all the simulation PC’s are 
synchronized using Dimension 4® software, all 
simulations will begin at the exactly same instant.  
The simulations are then run.  Messages are received 
by the ‘Hub’ along with the destination information.  



The ‘Hub’ then redirects the message to that 
particular client simulation. 

 
Exhibit 6. Architecture of real time/time scaled 
distributed simulation 
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The optimistic approach has not been 

implemented yet.  The saving and restoring of states 
is of prime importance for implementing the 
optimistic approach.  For a possible roll back, each 
simulation has to save past states.  The foremost 
problem encountered is that ArenaTM does not 
provide functions to save and restore states.  In fact, 
there is limited number of software which provides 
the capability to save and restore states.  Some 
software which claims to provide these functions 
have been evaluated, however, they required users to 
understand the internal structure of data used for 
developing the software.  As mentioned earlier, one 
of the major disadvantages of the optimistic approach 
is difficulty associated with implementing it.  
Another issues involved in implementing the 
optimistic approach are answering the following 
questions: 1) how often should the states be saved 
and 2) how far the simulations should be allowed to 
run ahead of other simulations.  All the challenges 
discussed here will be continuously studied. 
 
Experiments 
Experiments have been conducted to study the 
feasibility of the proposed framework to evaluate the 
best TS approach for a particular network and the 
given prototype supply chain model (see Exhibit 4).  
The data has been collected for a base model as well 
as the distributed model of the supply chain.  The 
base model represents a monolithic simulation model 
containing all the players of the chain.  The base 
model is considered as the reference model for the 
statistics, i.e., the statistics obtained from the base 
model are considered as the true results; this 
assumption was necessary since there is no such real 
system.  The statistics of the distributed model with 
different configurations (including different TS 

methods) are compared with the true values (base 
model statistics).   

The simulation models have been distributed 
over four PC’s connected through a LAN network.  
All the computers on which the experiments were 
conducted are PentiumTM 4 machines.  The 
experiments have been conducted during a low traffic 
period in the LAN.  The experiments discussed in 
this paper are classified in two categories: 1) 
conservative runs (A) time stepped and (B) event 
based and 2) real time scaled runs.  After evaluating 
the outputs of the conservative runs, the time step 
with minimum error in statistics as compared to true 
values is chosen to represent the best time step.  The 
data for this time step will be used to train the neural 
network in the future.  Similarly, after analyzing all 
the real time scaled runs, the one with the minimum 
execution time with insignificant discrepancy in 
statistics will be used to train the neural network in 
the future. 
 
Results 
The results for the base model and the distributed 
model are presented here.  The utilization (%) of the 
assembler and transporters from different models are 
presented in Exhibits 7 through 13.  In Exhibits 7, 9, 
and 11, the utilization of assembler and transporters 
are plotted against the step size for incrementing time 
(time step) whereas in Exhibits 8, 10, and 12, the 
utilization of assembler and transporters are plotted 
against the real time scaling factor.  In each exhibit, 
the thick line is the base model statistics; the dotted 
lines show the conservative time stepped statistics; 
and the curved dashed lines show the scaled real time 
statistics. 
 
Exhibit 7.  Utilization of assembler for conservative 
time stepped approach 
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Exhibit 8.  Utilization of assembler for scaled real 
time approach 
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Exhibit 9.  Utilization of transporter 1 for 
conservative time stepped approach 
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Exhibit 10.   Utilization of transporter 1 for scaled 
real time approach 
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Exhibit 11.  Utilization of transporter 2 for 
conservative time stepped approach 
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Exhibit 12.  Utilization of transporter 2 for scaled 
real time approach 
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Exhibit 13.   Statistics for event based approach 
 

  Base Model 
Statistics Event Based 

Utilization(Assembler) 0.75 0.45 

Utilization(Transport1) 0.87 0.7456 

Utilization(Transporter2) 0.40333 0.39493 
 
In Exhibit 7, it is shown that the utilization for 

the assembler coincides with the base model statistics 
for time increment of the distributed model based on 
a fixed step size of 400, however, a slight 
discrepancy is observed as the fixed step size for time 
increment of the distributed model is increased to 
800.  In Exhibit 9, the utilization of the transporter 1 
is observed to be close to the base model statistics.  
Similarly, in Exhibit 11, the utilization of the 
transporter 2 is observed to be close to the base 
model statistics.  In Exhibits 8, 10, and 12, the 
utilization for the assembler, transporter 1, and 
transporter 2, appears to be close to the base model 
statistics up to the real time factor of 32, however, a 



significant discrepancy is observed when the real 
time factor is beyond 32.  Some of the statistics 
obtained from the event based approach shown in 
Exhibit 13 illustrate a significant deviation from the 
base model statistics.   

In general, we have found that the results show 
little or no discrepancy from the base model results 
for the time-stepped approach.  Some of the results 
for  the event based approach show a significant 
discrepancy from the base model results.  It is also 
seen for the scaled real time approach when the real 
time factors are greater than 32 variations are 
observed in the different statistics.  Also, it is 
observed that there is a discrepancy in the exchange 
of messages, i.e., not all messages are exchanged.   

In this paper, partial experimental results 
conducted for a distributed supply chain simulation 
have been presented.  On the basis of these 
experiments, extensive and comprehensive 
experiments will be conducted to generate input data 
to train the neural network. 
 
Conclusion and Future Work 
A framework has been developed which will identify 
the best time synchronization (TS) approach for the 
prototype system.  In this paper, the neural network 
based adaptive approach has been presented.  In the 
future, the neural network will be trained off-line 
from the data collected from running the common 
distributed model with the time stepped, event based, 
optimistic and scaled real time TS approaches.  For 
illustration purposes, a limited set of system 
configurations have been used in this paper.   

Currently, we have implemented a conservative 
time stepped, conservative event based, and scaled 
real time approaches for TS of a distributed 
simulation model and compared the results with those 
(reference values) of a single base simulation model.  
We have found that the results for the time-stepped 
approach are closer to the reference values than the 
event based approach.  The results of the scaled real 
time models have been found to be close to the 
reference values when the real time scaling factors 
are smaller than 32.  The optimistic approach has 
been proved to be difficult to implement as most of 
the software packages do not provide the capability 
to save and restore states.  In the future, we will 
completely implement the optimistic approach.   

The proposed framework will be generalized so 
that it works for various system configurations and 
conditions.  All the simulations in the experiments 
presented in this paper are built in ArenaTM.  In the 
future, we will use different simulation 
languages\software to introduce another experimental 
factor, heterogeneity in the federation. 
 

References  
Fujimoto, Richard M, “Time Management in High 

Level Architecture”, Simulation, Vol. 71, No. 6 
(1998), pp. 388-400. 

Jefferson, David and Sowizral, H., “Fast  concurrent 
simulation using the Time Warp mechanism”, 
Proceedings of the SCS Multiconference on 
Distributed simulation, Vol. 15, No. 2, (January 
24-26, 1985), pp. 63-69. 

Fujimoto, Richard M, “Parallel and Distributed     
Simulation”, Proceedings of the 1995 WSC, 
(December 1995), pp. 118-125. 

Fujimoto, Richard M, Parallel and Distributed 
Simulation Systems, Wiley Publishers (1999). 

Mattern, F., “Efficient Algorithms for Distributed 
Snapshots and Global Virtual Time 
Approximation”, Journal of Parallel and 
Distributed Computing, Vol. 18, No. 4, (1993), 
pp. 423-434. 

Fujimoto, Richard M, Hybinette, M., “Computing 
Global Virtual Time in Shared-Memory 
Multiprocessors”, ACM Transactions on 
Modeling and Computer Simulation, Vol. 7, No. 
2, (October 1997), pp. 425–446. 

Venkateswaran, J., Yaseen, K., and Son, Y., 
“Distributed Simulation: An Enabling 
Technology for the Evaluation of Virtual 
Enterprises”, Proceedings of the 2001 Winter 
Simulation Conference, (December 2001), pp. 
856-862. 

Hopcroft J.E. and Ullman J.D., Introduction to 
automata theory, languages and computation, 
Addison-Wesley (1979). 

Riddick, F., Mclean, C., “The IMS Mission 
Architecture for Distributed Manufacturing 
Simulation”, Proceedings of the 2000 Winter 
Simulation Conference, (December 10-13, 
2000), pp. 1539-1548. 

 
About the Authors 
Siddharth Misra is a Master’s student at University 
of Arizona in Tucson in Industrial Engineering.  He 
holds a B.E. degree in Mechanical Engineering from 
the University of Pune.  He is currently a research 
assistant at the Computer Integrated Manufacturing 
Lab of University of Arizona.  His current research 
focuses on time synchronization mechanisms in 
distributed simulations. 
 
Jayendran Venkateswaran is a Doctoral student at 
University of Arizona in Tucson in Systems and 
Industrial Engineering.  He holds a M.S. degree in 
Industrial Engineering.  He is currently a research 
assistant at the Computer Integrated Manufacturing 
Lab of University of Arizona.  His current research 



focuses on system dynamics, distributed simulation 
and supply chain management.  
 
Dr. Young Jun Son received his Ph.D. from 
Pennsylvania State University in Industrial and 
Manufacturing Engineering.  He holds an M.S. 
degree in Industrial and Manufacturing Engineering 
from the Pennsylvania State University and a B.S. 
degree in Industrial Engineering from POSTECH, 
Korea.  He is currently an Assistant Professor in 
Systems and Industrial Engineering and the director 
of the Computer Integrated Manufacturing Lab at 
The University of Arizona.  His research work 
involves distributed and hybrid simulation for 
analysis and control of automated manufacturing 
system and integrated supply-chain.  He is an 
associate editor of the International Journal of 
Modeling and Simulation and a professional member 
of ASME, IEEE, IIE, INFORMS, and SME. 
 


