
FRAMEWORK FOR ADAPTIVE TIME SYNCHRONIZATION METHOD
FOR INTEGRATION OF DISTRIBUTED, HETEROGENEOUS, SUPPLY

CHAIN SIMULATIONS

Siddharth Misra, Jayendran Venkateswaran, Young-Jun Son
Systems and Industrial Engineering

The University of Arizona
Tucson, AZ 85721-0020

Abstract
In forming a federation of distributed simulations,
their simulation clocks must be synchronized to
ensure that events in each simulation are executed
correctly, resulting in correct simulation results. We
first discuss three time synchronization methods: 1)
conservative, 2) optimistic, and 3) scaled real-time.
To overcome problems of each of these static
approaches, we propose a neural network based
adaptive approach, which will react to the dynamic
federation environment. In this paper, the framework
of the neural network is discussed, and partial
experimental results conducted for a distributed
supply chain simulation are investigated which will
be used as input to train the neural network.

Introduction
Computer simulation modeling has become a
standard planning and analysis technique for complex
systems. As a system becomes more complex, the
complexity of corresponding models increases which
in turn places a burden on the computing power of a
processor. In the highly competitive environment
and market, where product life cycle times are
shortened, one critical aspect of conducting
simulations is to obtain faster results. Distributed
simulation offers a solution to obtain faster results by
splitting a simulation model into many modules (sub-
models) spread over multiple computers. A major
problem associated with this progression is the time
synchronization (TS) of these sub-simulations.
Several TS mechanisms have been developed,
including 1) the conservative method, 2) the
optimistic method, and 3) the scaled real time method
(Fujimoto, 1998). The conservative method is a
strategy where none of local simulations pertaining to
a federation advances its time until it ensures that it
can not receive any events in the past from other
simulations. The time can be advanced in fixed steps
or based on the next event time (the nearest event
among the simulations) of the federation. In
optimistic synchronization, each simulation executes
messages (events) received from other simulations
whenever they are available under the optimistic

assumption of a timestamp ordered execution. Each
time when a simulation detects a violation of the
timestamp order (i.e., a message time-stamped in the
past of its local time arrives), it rolls back to its state
(local time) immediately prior to the violation, and
the execution resumes (Jefferson and Sowizral,
1985). Under the scaled real time method, the speed
of each simulation is factors of the wall clock time
(Fujimoto, 1998). For a more detailed discussion on
these approaches, refer to Fujimoto (1995, 1999).
Each of these mechanisms works well only for a
particular type of system, which motivates the need
of an adaptive approach.

The advantage of the conservative method is the
ease of implementation and reliability (high degree of
synchronization). However, this method generates a
considerable computational overhead used to ensure
proper time advancement. Therefore, the
conservative approach is typically used for situations
where numerous messages are exchanged among
simulations and the sequences of messages are
important. The advantage of the optimistic approach
is efficient use of computational resources. On the
other hand, the disadvantage of this approach is the
overwhelmed memory requirements used to store
states for a possible rollback and technical difficulties
implementing rollbacks (Mattern, 1993; Fujimoto
and Hybinette, 1997). Therefore, the optimistic
approach is typically used for situations with less
number of message transfers. The advantage of the
scaled real time approach is considerable reduction of
simulation run times. However, it is difficult to
determine appropriate scaling factors (degree of
scaling) which will provide valid simulation results.
Therefore, this method is typically used for situations
having a dependable and reliable network, and where
missing messages does not have a significant effect
in results.

The long-term goal of this research is to enable
adaptive identification of the best TS method for
dynamically changing system configurations and
conditions. In this paper, the framework of a neural
network based adaptive choice of TS methods is
presented. To this end, we first evaluate the

quantitative performance of the different TS
approaches. For this purpose, a distributed supply
chain simulation is constructed that integrates
partners’ existing factory-level simulations. In
constructing this distributed simulation, different TS
approaches have been implemented, and the
experimental results obtained are used to train the
neural network. The neural networks will be trained
to identify the best possible TS method for a given
distributed model and conditions. A general
framework has been constructed which involves two
stages. The first stage analyzes the performance of
various TS approaches for the distributed model
under study and trains a neural network. The second
stage helps in coming up with the best possible TS
approach suited to the distributed model given the
configuration and goals of the distributed model.

Neural Network Based Adaptive Method
A neural network is used to model complex
relationships among critical dependent variables,
different TS methods, and performance measures.
Whenever there is a need to run a distributed model,
the neural network can be used to identify the most
efficient TS approach. Also, this framework can be
expanded to choose the most efficient TS approach in
a dynamic environment. That is, in the course of
execution of a distributed model, the current TS
approach can be changed using the above framework,
as need arises. The overview of the neural network is
depicted in Exhibit 1. Exhibit 1 shows the detailed
input and output layers except for the internal layers.
The input layer has five input nodes, and the output
layer has four output nodes. Several parameters must
be determined to obtain a complete neural network,
including 1) the number of hidden layers, 2) the
number of hidden neurons at each layer, and 3) the
learning rate. Additionally, all of the weights on the
arcs are empirically determined from the training
samples.

The TS approaches have been implemented so
that we can collect data regarding the performances
of each approach after conducting experiments on a
common distributed model. The distributed model
(federation) mimics a big system which is broken
down into many simulation modules (sub-models) to
reduce the complexity of the system. The modules
forming the distributed model are easy to handle, and
the working of the system is easily visible. These
modules are then run on different PC’s. The data
collected from this distributed model is used as
training samples. A training sample consists of an
input vector and a corresponding output vector.
These training samples enable the TS selection
method to be adaptive. Once a set of training
samples are collected, a neural network will be

constructed by obtaining the best weights to
minimize the system error E,

() ,min
6

1

2∑
=

−=
j

pjpj otE (1)

where tpj implies the desired output vector for the jth
component of the pth training sample and opj the
actual output value generated by an intermediate
neural network.

Exhibit 1. Overview of neural network

 Hidden Layers

 1 2 3 4

 1

 5

Rate of
Messages

Exchanged

Federation Run
Time

Number of
Processors

Accuracy of
Statistics

Conservative
Time Stepped

Number of
Local

Simulations

 2 3 4

Conservative
Event Based

Scaled Real
Time

Optimistic

To train the neural network offline, certain

variables (see Exhibit 1) have been identified, which
will be used as the inputs to the neural network.
These variables are further classified as fixed
configuration variables and performance measures.
The fixed configuration variables, such as 1) the
number of local simulations, 2) the number of
processors, and 3) the rates of messages exchanged,
are decided before the simulation runs are carried out.
On the other hand, the performance measures, such
as 1) the accuracy of statistics and 2) the federation
speed, are available only after simulations are run. It
is noted that the performance measures depend on
both the type of synchronization method and the
fixed configuration variables. The first input, the
number of local simulations is the measure of
complexity of the single simulation. In general, less
number of simulations means that each local
simulation is more complex. The number of
simulations can take on values from 2 to N. The
second input, the number of processors, is the
number of PCs on which the simulations are run.
This input is less than or equal to the number of
simulations. The third input, the rate of messages
exchanged, is a measure of how busy the network is.
It can be of either of two levels, +1 representing a
busy/high intensity network and -1 representing a low
intensity network. The fourth input, the accuracy of
the statistics, is the percentage difference between the

statistics obtained from running the distributed model
and the statistics obtained from running a single (as
opposed to distributed) base model. Details about the
base model are presented in the Experiments Section.
The fifth input, the federation run time, is the actual
time taken to complete a distributed simulation run in
the wall clock time. In general, the lesser the time
taken to complete the simulation the better. A data
set for training the neural network will represent all
the five inputs discussed here.

The output of the neural networks is one of the
four TS approaches (refer Exhibit 1). Differences
between the conservative time-stepped and the
conservative event based approaches will be
explained in Implementation Platform section. Each
data set is mapped to a particular output based on the
experiments carried out after implementing each TS
approach. The value for each of the outputs is a
binary value (0 or 1) indicating the usage of that
particular TS approach. The output can be
represented as a set: (x, y, z, w) where x represents
conservative time stepped, y represents conservative
event based, z represents scaled real time, and w
represents optimistic approach. While training, only
one of these four values will be 1, and the rest will be
0. That is, only 4 outputs sequences are possible: (1,
0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1).

Exhibit 2 shows example data sets used for
training the neural network. In Exhibit 2, the first
data set used for training the neural network is
interpreted as follows: there are 4 simulations
running on 4 processors. The distributed model is
run in a high intensity network. The accuracy
(percentage difference) of statistics is obtained from
experiments conducted and is found to be 5.5% of the
actual value. The federation run time is observed to
be 0.92 minutes. The TS approach used (output) is
the conservative time stepped approach. Training of
neural network with extensive data sets is being
conducted and is not included in this paper.

Exhibit 2: Data sets for training neural networks

No. of
Federates

No. of
Processors

Accuracy
of

Statistics

Rate of
Messages

Exchanged

Federation
Run Time Output

4 4 5.5% +1 0.92 minutes Time Stepped

4 3 19% -1 6.02 minutes Event Based

4 4 8% +1 0.15 minutes Scaled Real Time

3 3 10.5% -1 0.50 minutes Optimistic

Once the neural network is trained offline, it can
be applied to a distributed simulation online. In the
operation stage, each node of the neural network
shown in Exhibit 1 has slightly different context
compared with the training stage. In the operation
stage, the input nodes are classified into two (Exhibit
1): desired configuration inputs (inputs 1 and 2) and
desired goal inputs (inputs 3, 4 and 5). The desired
configuration inputs are the number of simulations
and the number of processors of the distributed
model. Their usage is the same as when the neural
network is trained. The desired goal inputs are the
desired accuracy of statistics, the desired federation
run time, and the desired rate of messages exchanged.
These are based on the users’ expectation from the
distributed model. Hence, the accuracy of statistics is
the expected percentage difference between the
statistics obtained from the distributed model and the
single base model; the rate of messages exchanged is
the expected measure of how busy the network is; the
federation run time is the time available with the user
to run the distributed simulation. The output of this
neural network will be one of the different TS
approaches. The outputs are anticipated not to be
exactly 0s and 1s. Instead, they will be fractions
between 0 and 1. An example data set used in the
operation stage of the neural network is depicted in
Exhibit 3. The inputs given by the user specify the
desired configuration as 4 simulations run on 4
processors in a high intensity network with the
desired goal of the distributed model to be within 5%
of actual statistics with the desired federation run
time of 1 minute. For those inputs, the output of the
neural network can be (0.91, 0.3, 0.79, 0.53). This
output suggests the best TS approach for the specific
configuration is the conservative time stepped
approach followed by the scaled real time approach.

Exhibit 3: Example data set used in the operation
stage of neural network

No. of
Federates

No. of
Processors

Accuracy
of

Statistics

Rate of
Messages

Exchanged

Federation
Run Time Output

4 4 5 % +1 1 minute
Time

Synchronization
Approach

Prototype Supply Chain
The prototype supply chain considered in this
research to evaluate the performance of different TS
approaches is a pull system composed of an assembly
plant, two suppliers, and a transportation system (see
Exhibit 4). The Assembly plant, which acts like the
Original Equipment Manufacturer (OEM), produces
the final products from the parts produced by

Supplier A and/or Supplier B. The transporter moves
the parts from the suppliers’ plants to the assembly
plant. The assembly plant maintains a buffer stock of
all the components. When the stock of any of the
components falls below a prescribed threshold, a
purchase order is issued to the corresponding
supplier. The suppliers also maintain a minimum
level of stock to ensure that the assembly plant
always gets components as quickly as possible.

Exhibit 4. Prototype supply chain

T ransporter

F inal A ssem bly
L ine

C om ponent B
S upplier

C om ponent A
S upplier

C ustom er

Supply chain m odel

The behavior of the supply chain and the messages
exchanged between the members remains the same as
described by Venkateswaran et al. (2001). It is noted
that this particular supply chain configuration is
adopted for illustration purposes, and the proposed
method in this paper can be applied to other complex
systems such as manufacturing, supply-chain
(different configurations), telecommunication and
computer network systems.

Communication Formalism and Protocol

Local simulations in a federation exchange
information with other simulations or the federation
manager through messaging. Two major purposes of
these interactions are: 1) notification of timestamps
used for the synchronization of the federation time
and 2) delivery of an event that initiates appropriate
actions (e.g., creation or disposal of entities) in a
simulation. In the case of time notification, only the
time stamp of each message is important. However,
in the case of delivery of an event, the semantics as
well as the time stamp of each message are
important. In this research, each simulation is
equipped with a formal behavior model that enables
coordinative interactions with other simulations. For
this purpose, a modified deterministic finite
automaton (MDFA) similar to a Mealy machine
(Hopcroft and Ullman, 1979) has been employed. A
modified deterministic finite automaton, M, is

defined formally as the octuple,
),,,,,,,(γδ= ΡACTΣFqQM 0
, where Q is a finite set

of states, Qq ∈0 is an initial state, QF ⊆ is a set of
final states. Σ is a finite set of federate events and
serves as the input alphabet. Additionally, Σ is
partitioned into a set of input messages (ΣI), a set of
output messages (ΣO), a set of federate tasks (ΣT),
and a set of observation tasks (ΣOb). ACT is a finite
set of federate actions, where each α ∈ ACT is a
procedure that performs some action (e.g., creation
and disposal of entities) in the federate.

QΣQ →×δ: is a state transition function. Similarly,
ACTΣΣQ TO →∪×γ)(: is a federate action

transition function. This communication protocol has
been implemented using the functions provided in the
High Level Architecture-Run Time Infrastructure
(HLA–RTI) (Venkateswaran et al., 2001). The
benefit of using a formal model is that it forms a
basis for software development. A simple
Deterministic Finite State Automata (DFSA) for a
supplier is shown in Exhibit 5. The “I”, “O” and “T”
denote the incoming messages, outgoing messages
and the tasks carried out, respectively. In addition,
“_as” messages go from the assembler to a supplier;
“_sa” messages go from the supplier to the
assembler; and, “_st” messages go from a supplier to
transporter. In the sequence shown in Exhibit 5, the
assembler initiates the transaction with the
open_tran_as message and the supplier replies with
the open_tran_ok_sa agreement message. After the
successful generation of an order, the assembler
sends the order_as message. Due to limited space,
the other messages (events) are not explicitly
explained.

Exhibit 5. Finite state automata for supplier

 open_tran_as

I

open_tran_ok_sa

O
1

order_as

I
2 0 3 …

Implementation Platform
The High Level Architecture (HLA) has been
developed by Defense Modeling and Simulation
Office (DMSO) to provide a consistent approach for
integrating distributed, heterogeneous, and defense
simulations. Run Time Infrastructure (RTI) software,
which implements the rules and specifications of
HLA, provides methods which can be called and used
by individual simulations. The direct interaction of
the simulations with the RTI is quite complex. To
respond this problem, NIST has developed the
Distributed Manufacturing Simulation (DMS)
Adaptor, a software interface, to provide mechanisms

for distributed simulation similar to those provided
by the HLA RTI, but with a level of complexity that
is manageable by the development resources
available in the manufacturing community (Riddick
and McLean, 2000). In the experiments conducted in
this research, all the local simulations are built in
ArenaTM, which have been integrated into a
federation based on the HLA/RTI and the DMS
adaptor.

The conservative method has been implemented
using two ways to advance time in a simulation: 1)
the time stepped approach and 2) the event based
approach.

1. Time Stepped: In the time-stepped approach,
each simulation advances its time by a fixed step
size. Appropriate step sizes depend on the federation
conditions. In this paper, multiples of ∆T, the
average inter-event time calculated from the base
model, are used as step sizes. A generic algorithm
(pseudo code) to calculate the ∆T has been developed
and is shown as follows:
One entity is created at time zero (this entity is used
to calculate inter-event time)
Temp_time = 0
While TNOW ≤ simulation termination time

While TNOW > Temp_time
 <<Do Nothing>>
End while
Collect an inter-event time (TNOW −
Temp_time)
Temp_time = TNOW

End while
The DMS adaptor has a constraint in the way it
handled the time-stepped approach. Time can only
be incremented in the multiples of the value 10. To
overcome this constraint, a scaling mechanism has
been added in the model code. The scaling
mechanism reports a simulation advance request in a
magnified scale while each simulation is still
progressing in the small-scale quantities. When
being fed back to the simulation, the time is scaled
down by the factor it was scaled up.

2. Event Based: In the event based conservative
approach, each simulation advances its time by going
to its next event in the federation having the smallest
logical time. In this case, each simulation announces
its next event time to the RTI, and the RTI allows its
advance to that event depending on the request of
other simulations. Therefore, whenever an event is
noticed, the step size will be changed to the
difference between the next event time and the
present simulation time.

The scaled real time approach has been
implemented using client/server applications. In the
real time approach, the simulations are executed
synchronously with the real time (wall clock). This

means that 1 minute of the simulation time
corresponds to 1 minute of the wall clock time. If
two simulations begin at the exactly same time, both
simulations times will be exactly same as they
correspond with the real time. Assuming negligible
network latency, and other system delays, the
messages sent by one simulation are assumed to
reach the other simulation instantaneously. The same
logic can be applied to N simulations running in
parallel with the exactly same simulation times. In
the case of the scaled real time, 1 minute of the wall
clock time is scaled down so that the simulation time
is less than 1 minute. That is 1 minute of the wall
clock time can be scaled to represent 0.5 minute of
the simulation time (scaling factor of 2 in this case).
However, this truly distributed arrangement requires
that each simulation keep track of information about
all the other simulations. Hence, to facilitate easier
communication between simulations, a central server
called ‘Hub’ is conceived, which stores the
information pertaining to all the simulations in the
distributed network. In this implementation, the Hub
has been used in place of the HLA/RTI to reduce the
overhead associated with the HLA/RTI. The
architecture of the system is depicted in Exhibit 6.
Multiple simulations can be run in parallel with the
same simulation time. Each simulation sends all its
messages to the ‘Hub’. The ‘Hub’ then redirects the
message to the respective receiver. The clocks on all
the simulation PC’s are synchronized before the start
of the simulations using Dimension 4® software. It is
important to note that following points:
• The Dimension 4® software handles the

coordination of the simulation PC’s time before
the start of the simulation run. Since the
simulation time is coordinated with the system
clock, the advancement of time in all simulations
is assumed to be the same.

• The work of the ‘Hub’ is restricted in redirection
of messages from one simulation to another. It
does not perform any time management or object
management.

The ‘Hub’ is coded in Java using socket
programming. The ‘Hub’ once started, will wait for
new client connections from the simulations. Once a
new connection is accepted, a separate process
(thread) is spawn, which listens for messages from
the client simulations. When all the required
simulations are connected, the ‘Hub’ sends a message
to each of the client simulations stating the real time
at which the simulations are to start execution. Since
the system time of all the simulation PC’s are
synchronized using Dimension 4® software, all
simulations will begin at the exactly same instant.
The simulations are then run. Messages are received
by the ‘Hub’ along with the destination information.

The ‘Hub’ then redirects the message to that
particular client simulation.

Exhibit 6. Architecture of real time/time scaled
distributed simulation

Simulation 1 Simulation 2 Simulation N

HUB

LAN

Clocks of all simulation PC’s are
synchronized before the start

Messages Messages Messages

Messages

The optimistic approach has not been

implemented yet. The saving and restoring of states
is of prime importance for implementing the
optimistic approach. For a possible roll back, each
simulation has to save past states. The foremost
problem encountered is that ArenaTM does not
provide functions to save and restore states. In fact,
there is limited number of software which provides
the capability to save and restore states. Some
software which claims to provide these functions
have been evaluated, however, they required users to
understand the internal structure of data used for
developing the software. As mentioned earlier, one
of the major disadvantages of the optimistic approach
is difficulty associated with implementing it.
Another issues involved in implementing the
optimistic approach are answering the following
questions: 1) how often should the states be saved
and 2) how far the simulations should be allowed to
run ahead of other simulations. All the challenges
discussed here will be continuously studied.

Experiments
Experiments have been conducted to study the
feasibility of the proposed framework to evaluate the
best TS approach for a particular network and the
given prototype supply chain model (see Exhibit 4).
The data has been collected for a base model as well
as the distributed model of the supply chain. The
base model represents a monolithic simulation model
containing all the players of the chain. The base
model is considered as the reference model for the
statistics, i.e., the statistics obtained from the base
model are considered as the true results; this
assumption was necessary since there is no such real
system. The statistics of the distributed model with
different configurations (including different TS

methods) are compared with the true values (base
model statistics).

The simulation models have been distributed
over four PC’s connected through a LAN network.
All the computers on which the experiments were
conducted are PentiumTM 4 machines. The
experiments have been conducted during a low traffic
period in the LAN. The experiments discussed in
this paper are classified in two categories: 1)
conservative runs (A) time stepped and (B) event
based and 2) real time scaled runs. After evaluating
the outputs of the conservative runs, the time step
with minimum error in statistics as compared to true
values is chosen to represent the best time step. The
data for this time step will be used to train the neural
network in the future. Similarly, after analyzing all
the real time scaled runs, the one with the minimum
execution time with insignificant discrepancy in
statistics will be used to train the neural network in
the future.

Results
The results for the base model and the distributed
model are presented here. The utilization (%) of the
assembler and transporters from different models are
presented in Exhibits 7 through 13. In Exhibits 7, 9,
and 11, the utilization of assembler and transporters
are plotted against the step size for incrementing time
(time step) whereas in Exhibits 8, 10, and 12, the
utilization of assembler and transporters are plotted
against the real time scaling factor. In each exhibit,
the thick line is the base model statistics; the dotted
lines show the conservative time stepped statistics;
and the curved dashed lines show the scaled real time
statistics.

Exhibit 7. Utilization of assembler for conservative
time stepped approach

0.73
0.735
0.74

0.745
0.75

0.755

0 200 400 600 800 1000
Time StepU

til
iz

at
io

n
of

 A
ss

em
bl

er

Utilization of Assembler for Conservative Time Step

Base Model Statistics for Assembler Utilization

Exhibit 8. Utilization of assembler for scaled real
time approach

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200

Real Time Scaling FactorU
til

iz
at

io
n

of
 A

ss
em

bl
er

Utilization of Assembler for Scaled Real Time
Approach
Base Model Statistics for Assembler Utilization

Exhibit 9. Utilization of transporter 1 for
conservative time stepped approach

0.86
0.87
0.88
0.89
0.9

0.91
0.92

0 200 400 600 800 1000

Time StepU
til

iz
at

io
n

of
 T

ra
ns

po
rt

er
1

Utilization of Transporter1 for Conservative Time
Step
Base Model Statistics for Transporter1 Utilization

Exhibit 10. Utilization of transporter 1 for scaled
real time approach

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500
Real Time Scaling FactorU

til
iz

at
io

n
of

 T
ra

ns
po

rt
er

1

Utilization of Transporter1 for Scaled Real Time
Approach
Base Model Statistics for Transporter1 Utilization

Exhibit 11. Utilization of transporter 2 for
conservative time stepped approach

0

0.2

0.4

0.6

0 200 400 600 800 1000

Time Step

Ut
ili

za
tio

n
of

Tr

an
sp

or
te

r2

Utilization of Transporter2 for Conservative
Time Step Approach
Base Model Statistics for Transporter2
Utilization

Exhibit 12. Utilization of transporter 2 for scaled
real time approach

0
0.1
0.2
0.3
0.4
0.5

0 500 1000 1500
Real Time Scaling Factor

U
til

iz
at

io
n

of

Tr
an

sp
or

te
r2

Utilization of Transporter2 for Scaled Real Time
Approach
Base Model Statistics for Transporter2 Utilization

Exhibit 13. Statistics for event based approach

 Base Model
Statistics Event Based

Utilization(Assembler) 0.75 0.45

Utilization(Transport1) 0.87 0.7456

Utilization(Transporter2) 0.40333 0.39493

In Exhibit 7, it is shown that the utilization for

the assembler coincides with the base model statistics
for time increment of the distributed model based on
a fixed step size of 400, however, a slight
discrepancy is observed as the fixed step size for time
increment of the distributed model is increased to
800. In Exhibit 9, the utilization of the transporter 1
is observed to be close to the base model statistics.
Similarly, in Exhibit 11, the utilization of the
transporter 2 is observed to be close to the base
model statistics. In Exhibits 8, 10, and 12, the
utilization for the assembler, transporter 1, and
transporter 2, appears to be close to the base model
statistics up to the real time factor of 32, however, a

significant discrepancy is observed when the real
time factor is beyond 32. Some of the statistics
obtained from the event based approach shown in
Exhibit 13 illustrate a significant deviation from the
base model statistics.

In general, we have found that the results show
little or no discrepancy from the base model results
for the time-stepped approach. Some of the results
for the event based approach show a significant
discrepancy from the base model results. It is also
seen for the scaled real time approach when the real
time factors are greater than 32 variations are
observed in the different statistics. Also, it is
observed that there is a discrepancy in the exchange
of messages, i.e., not all messages are exchanged.

In this paper, partial experimental results
conducted for a distributed supply chain simulation
have been presented. On the basis of these
experiments, extensive and comprehensive
experiments will be conducted to generate input data
to train the neural network.

Conclusion and Future Work
A framework has been developed which will identify
the best time synchronization (TS) approach for the
prototype system. In this paper, the neural network
based adaptive approach has been presented. In the
future, the neural network will be trained off-line
from the data collected from running the common
distributed model with the time stepped, event based,
optimistic and scaled real time TS approaches. For
illustration purposes, a limited set of system
configurations have been used in this paper.

Currently, we have implemented a conservative
time stepped, conservative event based, and scaled
real time approaches for TS of a distributed
simulation model and compared the results with those
(reference values) of a single base simulation model.
We have found that the results for the time-stepped
approach are closer to the reference values than the
event based approach. The results of the scaled real
time models have been found to be close to the
reference values when the real time scaling factors
are smaller than 32. The optimistic approach has
been proved to be difficult to implement as most of
the software packages do not provide the capability
to save and restore states. In the future, we will
completely implement the optimistic approach.

The proposed framework will be generalized so
that it works for various system configurations and
conditions. All the simulations in the experiments
presented in this paper are built in ArenaTM. In the
future, we will use different simulation
languages\software to introduce another experimental
factor, heterogeneity in the federation.

References
Fujimoto, Richard M, “Time Management in High

Level Architecture”, Simulation, Vol. 71, No. 6
(1998), pp. 388-400.

Jefferson, David and Sowizral, H., “Fast concurrent
simulation using the Time Warp mechanism”,
Proceedings of the SCS Multiconference on
Distributed simulation, Vol. 15, No. 2, (January
24-26, 1985), pp. 63-69.

Fujimoto, Richard M, “Parallel and Distributed
Simulation”, Proceedings of the 1995 WSC,
(December 1995), pp. 118-125.

Fujimoto, Richard M, Parallel and Distributed
Simulation Systems, Wiley Publishers (1999).

Mattern, F., “Efficient Algorithms for Distributed
Snapshots and Global Virtual Time
Approximation”, Journal of Parallel and
Distributed Computing, Vol. 18, No. 4, (1993),
pp. 423-434.

Fujimoto, Richard M, Hybinette, M., “Computing
Global Virtual Time in Shared-Memory
Multiprocessors”, ACM Transactions on
Modeling and Computer Simulation, Vol. 7, No.
2, (October 1997), pp. 425–446.

Venkateswaran, J., Yaseen, K., and Son, Y.,
“Distributed Simulation: An Enabling
Technology for the Evaluation of Virtual
Enterprises”, Proceedings of the 2001 Winter
Simulation Conference, (December 2001), pp.
856-862.

Hopcroft J.E. and Ullman J.D., Introduction to
automata theory, languages and computation,
Addison-Wesley (1979).

Riddick, F., Mclean, C., “The IMS Mission
Architecture for Distributed Manufacturing
Simulation”, Proceedings of the 2000 Winter
Simulation Conference, (December 10-13,
2000), pp. 1539-1548.

About the Authors
Siddharth Misra is a Master’s student at University
of Arizona in Tucson in Industrial Engineering. He
holds a B.E. degree in Mechanical Engineering from
the University of Pune. He is currently a research
assistant at the Computer Integrated Manufacturing
Lab of University of Arizona. His current research
focuses on time synchronization mechanisms in
distributed simulations.

Jayendran Venkateswaran is a Doctoral student at
University of Arizona in Tucson in Systems and
Industrial Engineering. He holds a M.S. degree in
Industrial Engineering. He is currently a research
assistant at the Computer Integrated Manufacturing
Lab of University of Arizona. His current research

focuses on system dynamics, distributed simulation
and supply chain management.

Dr. Young Jun Son received his Ph.D. from
Pennsylvania State University in Industrial and
Manufacturing Engineering. He holds an M.S.
degree in Industrial and Manufacturing Engineering
from the Pennsylvania State University and a B.S.
degree in Industrial Engineering from POSTECH,
Korea. He is currently an Assistant Professor in
Systems and Industrial Engineering and the director
of the Computer Integrated Manufacturing Lab at
The University of Arizona. His research work
involves distributed and hybrid simulation for
analysis and control of automated manufacturing
system and integrated supply-chain. He is an
associate editor of the International Journal of
Modeling and Simulation and a professional member
of ASME, IEEE, IIE, INFORMS, and SME.

