
Proceedings of the 2009 INFORMS Simulation Society Research Workshop
L.H. Lee, M.E. Kuhl, J.W. Fowler, and S. Robinson, eds.

ANALYSIS OF OUTPUT DATA IN DISTRIBUTED SIMULATION

B. Vinod Kumar Reddy
Jayendran Venkateswaran

Industrial Engineering and Operations Research

Indian Institute of Technology Bombay
Powai, Mumbai 400076, INDIA

ABSTRACT
2 OUTPUT DATA ANALYSIS

This paper presents some preliminary results from the on-
going work on output analysis in distributed simulation. A
scheme to analyze system performance using the distrib-
uted simulation models’ output is discussed. Also, the im-
portance on the choice of random number streams is illus-
trated.

Classical statistical techniques cannot be directly applied to
the output of a single replication of a simulation model
since the output processes of all simulations (even non-
distributed) are non-stationary and autocorrelated. Hence,
the concept of independence across runs is used to obtain
independent and identically distributed (IID) observations.
That is, in each run (or replications) different random
numbers are used, resulting in different IID realizations of
the output random process. Let Xj be the sample random
variable observed on the jth replication. Suppose n replica-
tions are made. The 100(1–α)% confidence interval (CI)
estimate of the true mean μ = E(X) can be given as:

1 INTRODUCTION

In the past few decades there has been growing interest in
the area of distributed simulation to analyze system of sys-
tems. Since the early 1980s efforts had been directed to-
wards enabling distributed simulation by tackling issues of
data and time management, culminating in the develop-
ment of IEEE Standard 1516 High Level Architecture
(HLA) in 2000. Since 2000, the focus of works include
enabling infrastructure for manufacturing simulations
(McLean and Riddick 2000;), interface specifications for
Commercial-Off-The-Shelf (COTS) simulation packages
(Taylor 2003, Garg et al. 2009), and case studies (Mustafee
et al. 2006, Cao et al. 2007). Mustafee et al. (2006) have
compared the performance of conventional (single) simula-
tion and distributed simulation with respect to execution
time as the number of modules increases.

nSX nt /2/1,1 α−−±

where X is the sample mean and S is the sample standard
deviation.
 Broadly the measures of interest are classified as tally
statistics, time persistent statistics or counter statistics
(Law and Kelton 2000). Tally or observation based statis-
tics are obtained using a list of discrete observations. For
example average time spent in system, maximum time in
queue. Time-persistent or duration statistics is obtained by
taking time average value of the variable. For example av-
erage number in queue, machine utilization. Counter sta-
tistics are accumulated sums of the variable. For example,
number of parts produced.

The main purpose of any simulation (single or parallel
or distributed) of stochastic systems is to help estimate the
‘true’ characteristics of the system. Schemes for proper
statistical analysis of single (non-distributed) simulation
output process has been well established (Law and Kelton
2000). One key aspect which has not been discussed
enough in academic circles is the issues related with the
analysis of distributed simulation output data. Kremien et
al. (1989) had presented some statistical guidelines for ana-
lyzing output data of distributed system implementing
load-sharing algorithms. However, their work is more ap-
plicable to a parallel simulation rather than geographically
distributed simulation systems.

2.1 Analyzing Output in Distributed Simulation

Now, suppose a system (say, manufacturing shop floor) is
modeled as k distributed simulation sub-models that inter-
act with each other dynamically. If the measure of interest
wholly resides within a single sub-model (say, utilization
of an unshared resource) then the exact same methodology
for statistical analysis can be employed as done when ana-
lyzing data from a single simulation model. Taylor (2003)
and Garg et al. (2009) have specified several modes in

Reddy and Venkateswaran

which distributed simulation models interface with each
other. Broadly, these interfacing can be to transfer entities,
share resources, share buffer space / conveyors, share data
and events between the different models. Due to the pres-
ence of such interfaces between the multiple distributed
simulation models, additional care is required in analyzing
distributed simulation output data.
 Consider a case where one is interested in estimating
the average time spent in system of entities flowing across
multiple models. One way to estimate the time spent is to
record each entity’s arrival time into the system in
Model_1 and the time it leaves the system in Model_k.
This method will provide an estimate of the average time
in system only if all the entities have the exact same pre-
determined flow. However, entities can enter and/or leave
the system from more than one model. In such cases, a
central coordinator may be required for statistical data
analysis, which defeats the purpose of distributed simula-
tion.
 A straightforward method will be to separately meas-
ure the statistics for each of the distributed models, and
then sum the measures to obtain the system-wide perform-
ance. For instance, let a system be distributed into two
simulation models: Model A and Model B. Let Xa

j and Xb
j

be (say) the average time in system measure on the jth rep-
lication from Model A and B respectively. Now, the aver-
age time in system Xj can be simply obtained by summing
the variables, Xj = Xa

j + Xb
j. Further,

j

ma

i

a
ij

a
j maXX

j

/
1
∑
=

= and , j

mb

i

b
ij

b
j mbXX

j

/
1
∑
=

=

where maj and mbj are the number of observations in jth
replication in Model A and Model B, respectively. Simi-
larly, let Ua

j and Ub
j be (say) the measure of utilization of a

shared resource on the jth replication from Model A and B
respectively. Now, the total utilization Uj of the shared re-
source can be given as, Uj = Ua

j + Ub
j, with

j

Ta
a
j

a
j TatUU

j

/
0

)(∫= and , j

Tb
b
j

b
j TbtUU

j

/
0

)(∫=

where Taj and Tbj are the simulation duration in the jth rep-
lication in Model A and Model B, respectively.
 This above proposed scheme, though straightforward,
raises two issues:

• The number of observations in case of tally statis-
tics, or the duration in case of time persistent sta-
tistics maybe different for the different models.
Statistically, this should not have significant im-
pact on the system measure.

• The choice of random numbers used in Model A
and Model B could induce correlation on the sys-
tem performance measure. That is, Var(Xj) =
Var(Xa

j + Xb
j) = Var(Xa

j) + Var(Xb
j) + 2Cov(Xa

j,
Xb

j). The issue of the choice of random number on

the results of the distributed simulation is further
investigated in this paper.

3 SCHEMES FOR USE OF RANDOM NUMBERS

Generation of IID Unifom(0, 1) random numbers and its
use in generating random variates form the basic step in
capturing randomness in stochastic simulations. In distrib-
uted simulation, the following three types of use of random
numbers arise:

• Use of default random number streams: This re-
fers to the use of the ‘simulation package default’
random number streams in each model. That is, if
two simulation models A and B are built using the
same package, then by default, both models will
use the exact same stream of random numbers al-
beit for different purposes. Intuitively, the use of
such common random numbers can induce corre-
lation in the simulation models’ outputs.

• Use of dedicated random number streams: This
refers to the use of distinct non-overlapping
stream of random numbers for capturing each
source of randomness across all models. That is, if
Model A has 7 sources of randomness (say arrival
times) then random number streams 1 to 7 are as-
signed to the 7 arrival times. If Model B has 3
other sources of randomness (say processing
times), then random number streams 8 to 10 are
assigned to the 3 process times. This may be dif-
ficult to implement since the number of stochastic
variables in the system may be quite large, and
requires a central coordination mechanism which
may not be possible in distributed setting

• Use of separate random number streams: This re-
fers to the use of separate ‘simulation package de-
fault’ random number streams for each model
such that each model uses non-overlapping ran-
dom streams. This reduces wastage of random
numbers.

Each of the above schemes is tested for a simplistic dis-
tributed queuing scenario, as discussed in the following
section. It is noted that the above schemes should have no
significant effect in a single (non-distributed) model, and is
applicable to distributed models only.

4 SAMPLE QUEUEING SCENARIO

A production line with 3 M/M/1 queues in series is consid-
ered, as shown in Figure 1. Each server is of unit capacity
and the queues are of infinite capacity. Entities arrive at the
first queue at an average rate λ=3/hr, and the serviced at the
rates of μ1=5/hr, μ2=10/hr and μ3=60/hr at the three servers
respectively. The departure process of an M/M/1 type

Reddy and Venkateswaran

queue is also Poisson with the same rate as the arrival
process, as t →∞. The performance of the tandem queuing
system can be computed analytically. The steady state
utilizations of the 3 servers are found to be 0.6, 0.3 and
0.05 respectively. And the steady state average time spent
in system is 39.83 minutes.

 S

1
S
2

S
3

Arrivals Departures

Figure 1: Sample queuing scenario

5 DISTRIBUTED SIMULATION

The queuing scenario is implemented in distributed simula-
tion, with the arrival process and server 1 in Model A, and
server 2, server 3 and departures in Model B; as shown in
Figure 2. Entity transfer takes places from Model A to
Model B. The interface specification between Model A and
Model B used is asynchronous entity transfer (Garg et al.
2009). Sequence diagram for asynchronous entity transfer
is shown in Figure 3, where Model A considered as Sender
model and Model B as Receiver model.
 When Model A is ready to transfer an entity, the
Model A sends an ‘Entity Transfer’ message to Model B.
The ‘Entity Transfer’ message contains all the required in-
formation about the entity and its attributes. Model B de-
codes the message and creates the entity with mentioned
attributes. At same instant, the entity is deleted from the
Sender model.

S
1

S
2

S
3

Arrivals Departures

Model A Model B

Figure 2: Distributed models

Figure 3: Sequence diagram for asynchronous entity trans-
fer

5.1 Enabling Distributed Simulation

A client server based infrastructure has been used for the
integration of distributed simulation models. The compo-
nents of the infrastructure are: (1) Simulation models or
federates, (2) Interface DLL, and (3) Transaction Coordi-
nator. The simulation federates communicate with each
other using XML-based messages via the Transaction Co-
ordinator. Federates, distributed across the internet, inter-
face with the Transaction Coordinator using an Interface
DLL. The main function of the Transaction Coordinator
(implemented in Java) is to facilitate time and message
management between the distributed models. A conserva-
tive event based time synchronization scheme has been
implemented.

6 RESULTS AND ANALYSIS

The statistics as obtained from a single simulation model is
compared with that obtained from the distributed simula-
tion models. For the given example, there are four sources
of randomness in the system: inter-arrival times –
Expo(20), Server 1 service time – Expo(12), Server 2 ser-
vice time – Expo(6), Server 3 service time – Expo(1). All
times are in minutes. In distributed simulation there will be
two sources of randomness each in Model A and Model B.
The key statistic of interest is the average time spent in
system. In case of single simulation, the average time spent
in system is determined directly from simulation. In dis-
tributed simulation, the outputs ‘time spent in Model A’
and ‘time spent in Model B’ are obtained, using which the
time in system is computed as explained in Section 2.1.
The results have been obtained over 5 replications, with
each replication of 20000 minutes length. All simulation
models are built using the COTS package ArenaTM.
 Output from single simulation and distributed simula-
tion are discussed for the three different cases of random
numbers streams used for generating input values.

6.1 Output from use of Default Streams

The simulation package is allowed to use the default
stream of random numbers in both single simulation as
well as distributed simulation. A stream refers to a particu-
lar sequence of random numbers. In the case of single
simulation model, the default stream is used for all 4 input
distributions. In the case of distributed simulation, Model
A and Model B uses the default stream for their 2 inputs
respectively.
 The 95% CI for time in system statistic for single and
distributed models in case of default streams is as shown in
Table 1. The average time spent in system computed ana-
lytically (see Section 4) is 39.83 minutes. This steady state
value falls within the 95% CI as obtained from single
simulation and distributed simulation. Further, it is ob-

Reddy and Venkateswaran

served that the expected average time in system obtained
from distributed simulation is 41.07 is much larger than
that obtained from single simulation (35.76).

Table 1: Average time in system results (default streams)

Distributed Simulation
Time in
Model A

Time in
Model B

Time in
system

Single simu-
lation: Time

in system
Mean 32.14 8.93 41.07 35.76
Std.Dev 3.56 0.21 3.57 3.34
95% CI (27.71,

36.56)
(9.18,
8.68)

(36.64,
45.50)

(31.61, 39.91)

6.2 Output from use of Dedicated Streams

In the simulation models, each input distribution is as-
signed different non-overlapping random streams for use.
Expo(λ, <stream>) represents an exponential distribution
with mean λ using specified stream of random numbers for
the purpose of generating variates. In the single and dis-
tributed simulations, the input distributions are specified as
follows: inter-arrival times – Expo(20, 7), Server 1 service
time – Expo(12, 8), Server 2 service time – Expo(6, 9),
Server 3 service time – Expo(1, 10).
 The 95% CI for time in system statistic for single and
distributed models in case of dedicated streams is as shown
in Table 2. Since dedicated streams are used, it is to be
expected that the results from single simulation and dis-
tributed simulation should be exactly the same. However,
there is a slight difference in the results which is attributed
to the message communication lag. Also, the analytical
steady state value (39.83) falls within the 95% CI as ob-
tained from single simulation and distributed simulation,
with the mean quite close to the analytical value.

Table 2: Average time in system results (dedicated
streams)

Distributed Simulation
Time in
Model A

Time in
Model B

Time in
system

Single simu-
lation: Time

in system
Mean 29.95 9.69 39.65 39.43
Std.Dev 3.57 0.59 3.62 3.25
95% CI (25.51,

34.39)
(8.95,
10.43)

(35.14,
44.15)

(35.38, 43.47)

 It is also noted that the mean utilization of the servers
obtained from single and distributed simulation were the
same (server 1 – 0.65, server 2 – 0.30, server 3 – 0.05).

6.3 Output from use of Separate Streams

In single simulation models, same stream (stream 8) of ran-
dom numbers is used for all the four input distributions. In
case of distributed simulation, Model A samples from

stream 7 and Model B samples from stream 9 for all their
respective input distributions.
 The 95% CI for time in system statistic for single and
distributed models in case of separate streams is as shown
in Table 3. The analytical steady state value (39.83) falls
within the 95% CI as obtained from single simulation and
distributed simulation, with the mean quite close to the
analytical value. The mean utilizations as obtained from
distributed simulation are: server 1 – 0.60, server 2 – 0.29,
server 3 – 0.05.

Table 3: Average time in system results (separate streams)

Distributed Simulation
Time in
Model A

Time in
Model B

Time in
system

Single simu-
lation: Time

in system
Mean 29.43 9.78 39.21 40.063
Std.Dev 2.98 0.78 3.08 3.76
95% CI (25.73,

33.13)
(8.80,
10.75)

(35.39,
43.04)

(35.39, 44.73)

6.4 Correlation between Distributed Models

Based on the results presented in Tables 1 – 3 it is seen that
the analytical steady state time in system value (39.83)
falls within the 95% CI for all the three random number
cases. It not obvious to say which method gives the accu-
rate results. Now, in the tandem queue scenario consid-
ered, the inter-arrival times and services times are IID.
Hence, for an entity the time spent in downstream servers
should be independent (i.e. correlation negligible) of the
time spent in upstream servers. The correlation between
the time spent in Model A and time spent in Model B ob-
servations has been computed, as shown in Table 4.

Table 4: Correlation of Time in Model A and Time in
Model B

Repli-
cations

Default
stream

Dedicated
streams

Separate
streams

1 0.345 0.087 0.090
2 0.425 0.089 0.229
3 0.326 0.069 0.059
4 0.396 –0.009 0.126
5 0.332 0.111 0.061

 In the case of default streams, the average correlation
is found to be 0.365, which is quite large. Since Model A
and Model B uses the same default streams, a large service
time in Model A for an entity could imply a large service
time in Model B, thus increasing their time spent in sys-
tem. Thus the use of default streams induces correlation in
the output measure. This can be expected to increase the
overall mean time in system, which is confirmed by the re-
sults shown in Table 1. In the case of dedicated streams,
the average correlation (0.069) between time spent in
Model A and time spent in Model B is found to be negligi-

Reddy and Venkateswaran

ble. In the case of separate streams, the average correlation
is 0.113.
 The surest way of determining the effect of random
numbers on the simulation output is to analyze the random
numbers used by the distributed simulation models. In the
case of COTS packages (viz., ArenaTM) determining the
exact sequence of random numbers used during a simula-
tion run is not straightforward. However, in the tandem
queueing scenario considered, all its input distributions are
exponential. It is known that exponential random variates
are generated using inverse transform method (Law and
Kelton 2000), with one-to-one mapping of random num-
bers and the variates generated. In the current work, a par-
tial set of random numbers used in Model A (for generat-
ing inter-arrival times) and those used Model B (for
generating service times for server_2) are determined.
Based on the observations from 5 replications it is found
that the average correlation among the partial set of ran-
dom number used in Model A and Model B are (i) 0.571
for default stream, (ii) 0.022 for dedicated stream and (iii)
–0.0009 for separate streams. This clearly illustrates that
the use of default random number streams result in corre-
lated output data in distributed simulation.

7 CONCLUSIONS AND FUTURE RESEARCH

To measure the system performance in distributed simula-
tion, a straightforward method will be to separately meas-
ure the statistics for each of the distributed models, and
then sum these measures to obtain the system performance.
Preliminary investigations using a simplistic queuing sce-
nario also revealed the importance of the appropriate use of
random number in distributed simulation. Use of default
random number streams results in correlated data between
the different models of distributed simulation, and hence
classical statistical methods cannot be used on those re-
sults. Typically dedicated streams of random numbers are
assigned to each input distribution over all models. This
may be difficult to implement since the number of stochas-
tic variables in the system may be quite large, and requires
a central coordination mechanism which may not be possi-
ble in distributed setting. A tradeoff between the two is
suggested (i.e. use of separate streams) where it is suffi-
cient to ensure that the distributed models use non-
overlapping streams of random numbers.
 Work is currently being carried out to validate the out-
put analysis methodology for more complex distributed
simulations involving resource sharing, multiple entities
routings, shared buffer/ conveyor, etc. Also, valid output
analysis of non-terminating or steady state distributed
simulations pose interesting challenges. Work is underway
to develop add-in modules for COTS packages to support
and speed up distributed simulation output analysis. The
effect of multiple COTS packages interfacing in distributed
simulation and their impact on output analysis is also to be

investigated. Eventually, this work is expected to lead to
general scheme for output analysis of terminating and non-
terminating distributed simulations.

REFERENCES

Cao Y, X. Jin and Z. Li. 2007. A distributed simulation
system and its application. Simulation Modelling
Practice and Theory 15(1): 21–31.

Garg, A., J. Venkateswaran and Y.J. Son. 2009. Generic
interface specifications for integrating distributed dis-
crete event simulation models. Journal of Simulation.
(proof)

Kremien, O., J. Kramer and M. Kapelevich. 1989. Rigor-
ous analysis of (Distributed) simulation results. Avail-
able via <http://citeseer.ist.psu.edu
/92829.html>

Law, A.M. and W.D. Kelton. 2000. Simulation Modeling
and Analysis, 3rd ed. New York: McGraw-Hill.

Mustafee, N., S.J.E. Taylor, K. Katsaliaki, S. Brailsford.
2006. Distributed simulation with COTS simulation
packages: A case study in heath case supply chain
simulation. In Proceedings of the 2006 Winter Simula-
tion Conference, ed. L.F. Perrone, F.P. Wieland, J.
Liu, B.G. Lawson, D.M. Nicol and R.M. Fujimoto
1136-1142. Available via <www.informs-
cs.org/wsc00papers/prog06.htm>.

McLean, C. and F. Riddick. 2000. The IMS MISSION Ar-
chitecture of Distributed Manufacturing Simulation. In
Proceedings of 2000 Winter Simulation Conference,
ed. J.A. Joines, R.R. Barton, K. Kang and P.A. Fish-
wick, 1539-1548. Available via <www.informs-
cs.org/wsc00papers/prog00.htm>.

Taylor, S.J.E. 2003. HLA-CSPIF: The high level architec-
ture COTS simulation package interoperability forum.
In Proceedings of the 2003 Simulation Interoperability
Workshop. Orlando, Florida, USA.

AUTHOR BIOGRAPHIES

B. VINOD KUMAR REDDY is currently a Masters’ stu-
dent of Industrial Engineering and Operations Research at
Indian Institute of Technology Bombay. His e-mail address
is <vinodreddy@iitb.ac.in>.

JAYENDRAN VENKATESWARAN is currently an as-
sistant professor in Industrial Engineering and Operations
Research at Indian Institute of Technology Bombay. He
received his M.S. and Ph.D degrees in Systems and Indus-
trial Engineering from The University of Arizona. His re-
search interest lies in hybrid and distributed simulations,
system dynamics methodology, and distributed decision
making within integrated supply chains. He is a profes-
sional member of IIE, ORSI, SOM and SDS. His e-mail
address is <jayendran@iitb.ac.in>.

mailto:vinodreddy@iitb.ac.in
mailto:jayendran@iitb.ac.in

	1 INTRODUCTION
	2 OUTPUT DATA ANALYSIS
	2.1 Analyzing Output in Distributed Simulation
	3 SCHEMES FOR USE OF RANDOM NUMBERS
	4 SAMPLE QUEUEING SCENARIO
	5 DISTRIBUTED SIMULATION
	5.1 Enabling Distributed Simulation

	6 RESULTS AND ANALYSIS
	6.1 Output from use of Default Streams
	6.2 Output from use of Dedicated Streams
	6.3 Output from use of Separate Streams
	6.4 Correlation between Distributed Models

	7 CONCLUSIONS AND FUTURE RESEARCH

