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ABSTRACT 
2 OUTPUT DATA ANALYSIS 

This paper presents some preliminary results from the on-
going work on output analysis in distributed simulation.  A 
scheme to analyze system performance using the distrib-
uted simulation models’ output is discussed.  Also, the im-
portance on the choice of random number streams is illus-
trated. 

Classical statistical techniques cannot be directly applied to 
the output of a single replication of a simulation model 
since the output processes of all simulations (even non-
distributed) are non-stationary and autocorrelated. Hence, 
the concept of independence across runs is used to obtain 
independent and identically distributed (IID) observations. 
That is, in each run (or replications) different random 
numbers are used, resulting in different IID realizations of 
the output random process. Let Xj be the sample random 
variable observed on the jth replication. Suppose n replica-
tions are made. The 100(1–α)% confidence interval (CI) 
estimate of the true mean μ = E(X) can be given as: 

1 INTRODUCTION 

In the past few decades there has been growing interest in 
the area of distributed simulation to analyze system of sys-
tems.  Since the early 1980s efforts had been directed to-
wards enabling distributed simulation by tackling issues of 
data and time management, culminating in the develop-
ment of IEEE Standard 1516 High Level Architecture 
(HLA) in 2000. Since 2000, the focus of works include 
enabling infrastructure for manufacturing simulations 
(McLean and Riddick 2000;), interface specifications for 
Commercial-Off-The-Shelf (COTS) simulation packages 
(Taylor 2003, Garg et al. 2009), and case studies (Mustafee 
et al. 2006, Cao et al. 2007).  Mustafee et al. (2006) have 
compared the performance of conventional (single) simula-
tion and distributed simulation with respect to execution 
time as the number of modules increases.  

nSX nt /2/1,1 α−−±  

where X is the sample mean and S is the sample standard 
deviation. 
 Broadly the measures of interest are classified as tally 
statistics, time persistent statistics or counter statistics 
(Law and Kelton 2000).  Tally or observation based statis-
tics are obtained using a list of discrete observations.  For 
example average time spent in system, maximum time in 
queue.  Time-persistent or duration statistics is obtained by 
taking time average value of the variable. For example av-
erage number in queue, machine utilization.  Counter sta-
tistics are accumulated sums of the variable.  For example, 
number of parts produced. 

The main purpose of any simulation (single or parallel 
or distributed) of stochastic systems is to help estimate the 
‘true’ characteristics of the system.  Schemes for proper 
statistical analysis of single (non-distributed) simulation 
output process has been well established (Law and Kelton 
2000). One key aspect which has not been discussed 
enough in academic circles is the issues related with the 
analysis of distributed simulation output data. Kremien et 
al. (1989) had presented some statistical guidelines for ana-
lyzing output data of distributed system implementing 
load-sharing algorithms.  However, their work is more ap-
plicable to a parallel simulation rather than geographically 
distributed simulation systems.  

2.1 Analyzing Output in Distributed Simulation 

Now, suppose a system (say, manufacturing shop floor) is 
modeled as k distributed simulation sub-models that inter-
act with each other dynamically.  If the measure of interest 
wholly resides within a single sub-model (say, utilization 
of an unshared resource) then the exact same methodology 
for statistical analysis can be employed as done when ana-
lyzing data from a single simulation model. Taylor (2003) 
and Garg et al. (2009) have specified several modes in 
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which distributed simulation models interface with each 
other.  Broadly, these interfacing can be to transfer entities, 
share resources, share buffer space / conveyors, share data 
and events between the different models.  Due to the pres-
ence of such interfaces between the multiple distributed 
simulation models, additional care is required in analyzing 
distributed simulation output data. 
 Consider a case where one is interested in estimating 
the average time spent in system of entities flowing across 
multiple models. One way to estimate the time spent is to 
record each entity’s arrival time into the system in 
Model_1 and the time it leaves the system in Model_k.  
This method will provide an estimate of the average time 
in system only if all the entities have the exact same pre-
determined flow.  However, entities can enter and/or leave 
the system from more than one model.  In such cases, a 
central coordinator may be required for statistical data 
analysis, which defeats the purpose of distributed simula-
tion. 
 A straightforward method will be to separately meas-
ure the statistics for each of the distributed models, and 
then sum the measures to obtain the system-wide perform-
ance. For instance, let a system be distributed into two 
simulation models: Model A and Model B. Let Xa

j and Xb
j 

be (say) the average time in system measure on the jth rep-
lication from Model A and B respectively.  Now, the aver-
age time in system Xj can be simply obtained by summing 
the variables, Xj = Xa

j + Xb
j.  Further,  
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where maj and mbj are the number of observations in jth 
replication in Model A and Model B, respectively.  Simi-
larly, let Ua

j and Ub
j be (say) the measure of utilization of a 

shared resource on the jth replication from Model A and B 
respectively.  Now, the total utilization Uj of the shared re-
source can be given as, Uj = Ua

j + Ub
j, with 
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where Taj and Tbj are the simulation duration in the jth rep-
lication in Model A and Model B, respectively.   
 This above proposed scheme, though straightforward, 
raises two issues: 
 

• The number of observations in case of tally statis-
tics, or the duration in case of time persistent sta-
tistics maybe different for the different models.  
Statistically, this should not have significant im-
pact on the system measure.   

• The choice of random numbers used in Model A 
and Model B could induce correlation on the sys-
tem performance measure.  That is, Var(Xj) = 
Var(Xa

j + Xb
j) = Var(Xa

j) + Var(Xb
j) + 2Cov(Xa

j, 
Xb

j). The issue of the choice of random number on 

the results of the distributed simulation is further 
investigated in this paper. 

3 SCHEMES FOR USE OF RANDOM NUMBERS  

Generation of IID Unifom(0, 1) random numbers and its 
use in generating random variates form the basic step in 
capturing randomness in stochastic simulations.  In distrib-
uted simulation, the following three types of use of random 
numbers arise: 
 

• Use of default random number streams:  This re-
fers to the use of the ‘simulation package default’ 
random number streams in each model.  That is, if 
two simulation models A and B are built using the 
same package, then by default, both models will 
use the exact same stream of random numbers al-
beit for different purposes.  Intuitively, the use of 
such common random numbers can induce corre-
lation in the simulation models’ outputs. 

• Use of dedicated random number streams:  This 
refers to the use of distinct non-overlapping 
stream of random numbers for capturing each 
source of randomness across all models. That is, if 
Model A has 7 sources of randomness (say arrival 
times) then random number streams 1 to 7 are as-
signed to the 7 arrival times.  If Model B has 3 
other sources of randomness (say processing 
times), then random number streams 8 to 10 are 
assigned to the 3 process times.  This may be dif-
ficult to implement since the number of stochastic 
variables in the system may be quite large, and 
requires a central coordination mechanism which 
may not be possible in distributed setting 

• Use of separate random number streams:  This re-
fers to the use of separate ‘simulation package de-
fault’ random number streams for each model 
such that each model uses non-overlapping ran-
dom streams.  This reduces wastage of random 
numbers. 

 
Each of the above schemes is tested for a simplistic dis-
tributed queuing scenario, as discussed in the following 
section.  It is noted that the above schemes should have no 
significant effect in a single (non-distributed) model, and is 
applicable to distributed models only. 

4 SAMPLE QUEUEING SCENARIO 

A production line with 3 M/M/1 queues in series is consid-
ered, as shown in Figure 1. Each server is of unit capacity 
and the queues are of infinite capacity. Entities arrive at the 
first queue at an average rate λ=3/hr, and the serviced at the 
rates of μ1=5/hr, μ2=10/hr and μ3=60/hr at the three servers 
respectively. The departure process of an M/M/1 type 
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queue is also Poisson with the same rate as the arrival 
process, as t →∞.  The performance of the tandem queuing 
system can be computed analytically.  The steady state 
utilizations of the 3 servers are found to be 0.6, 0.3 and 
0.05 respectively.  And the steady state average time spent 
in system is 39.83 minutes.   
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Figure 1: Sample queuing scenario 

5 DISTRIBUTED SIMULATION 

The queuing scenario is implemented in distributed simula-
tion, with the arrival process and server 1 in Model A, and 
server 2, server 3 and departures in Model B; as shown in 
Figure 2. Entity transfer takes places from Model A to 
Model B. The interface specification between Model A and 
Model B used is asynchronous entity transfer (Garg et al. 
2009). Sequence diagram for asynchronous entity transfer 
is shown in Figure 3, where Model A considered as Sender 
model and Model B as Receiver model.  
 When Model A is ready to transfer an entity, the 
Model A sends an ‘Entity Transfer’ message to Model B. 
The ‘Entity Transfer’ message contains all the required in-
formation about the entity and its attributes. Model B de-
codes the message and creates the entity with mentioned 
attributes. At same instant, the entity is deleted from the 
Sender model. 
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Figure 2: Distributed models 
 

  
Figure 3: Sequence diagram for asynchronous entity trans-
fer 

5.1 Enabling Distributed Simulation 

A client server based infrastructure has been used for the 
integration of distributed simulation models. The compo-
nents of the infrastructure are: (1) Simulation models or 
federates, (2) Interface DLL, and (3) Transaction Coordi-
nator.  The simulation federates communicate with each 
other using XML-based messages via the Transaction Co-
ordinator. Federates, distributed across the internet, inter-
face with the Transaction Coordinator using an Interface 
DLL. The main function of the Transaction Coordinator 
(implemented in Java) is to facilitate time and message 
management between the distributed models. A conserva-
tive event based time synchronization scheme has been 
implemented. 

6 RESULTS AND ANALYSIS 

The statistics as obtained from a single simulation model is 
compared with that obtained from the distributed simula-
tion models. For the given example, there are four sources 
of randomness in the system: inter-arrival times – 
Expo(20), Server 1 service time – Expo(12), Server 2 ser-
vice time – Expo(6),   Server 3 service time – Expo(1).  All 
times are in minutes. In distributed simulation there will be 
two sources of randomness each in Model A and Model B. 
The key statistic of interest is the average time spent in 
system. In case of single simulation, the average time spent 
in system is determined directly from simulation. In dis-
tributed simulation, the outputs ‘time spent in Model A’ 
and ‘time spent in Model B’ are obtained, using which the 
time in system is computed as explained in Section 2.1. 
The results have been obtained over 5 replications, with 
each replication of 20000 minutes length.  All simulation 
models are built using the COTS package ArenaTM.   
 Output from single simulation and distributed simula-
tion are discussed for the three different cases of random 
numbers streams used for generating input values. 

6.1 Output from use of Default Streams 

The simulation package is allowed to use the default 
stream of random numbers in both single simulation as 
well as distributed simulation.  A stream refers to a particu-
lar sequence of random numbers. In the case of single 
simulation model, the default stream is used for all 4 input 
distributions.  In the case of distributed simulation, Model 
A and Model B uses the default stream for their 2 inputs 
respectively.  
 The 95% CI for time in system statistic for single and 
distributed models in case of default streams is as shown in 
Table 1. The average time spent in system computed ana-
lytically (see Section 4) is 39.83 minutes.  This steady state 
value falls within the 95% CI as obtained from single 
simulation and distributed simulation.  Further, it is ob-
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served that the expected average time in system obtained 
from distributed simulation is 41.07 is much larger than 
that obtained from single simulation (35.76). 
 
Table 1: Average time in system results (default streams) 

Distributed Simulation  
Time in 
Model A 

Time in 
Model B 

Time in 
system 

Single simu-
lation: Time 

in system 
Mean 32.14 8.93 41.07 35.76 
Std.Dev 3.56 0.21 3.57 3.34 
95% CI (27.71, 

36.56) 
(9.18, 
8.68) 

(36.64, 
45.50) 

(31.61, 39.91)

6.2 Output from use of Dedicated Streams 

In the simulation models, each input distribution is as-
signed different non-overlapping random streams for use.  
Expo(λ, <stream>) represents an exponential distribution 
with mean λ using specified stream of random numbers for 
the purpose of generating variates.  In the single and dis-
tributed simulations, the input distributions are specified as 
follows: inter-arrival times – Expo(20, 7), Server 1 service 
time – Expo(12, 8), Server 2 service time – Expo(6, 9),   
Server 3 service time – Expo(1, 10).  
 The 95% CI for time in system statistic for single and 
distributed models in case of dedicated streams is as shown 
in Table 2.  Since dedicated streams are used, it is to be 
expected that the results from single simulation and dis-
tributed simulation should be exactly the same.  However, 
there is a slight difference in the results which is attributed 
to the message communication lag. Also, the analytical 
steady state value (39.83) falls within the 95% CI as ob-
tained from single simulation and distributed simulation, 
with the mean quite close to the analytical value.   
 
Table 2: Average time in system results (dedicated 
streams) 

Distributed Simulation  
Time in 
Model A 

Time in 
Model B 

Time in 
system 

Single simu-
lation: Time 

in system 
Mean 29.95 9.69 39.65 39.43 
Std.Dev 3.57 0.59 3.62 3.25 
95% CI (25.51, 

34.39) 
(8.95, 
10.43) 

(35.14, 
44.15) 

(35.38, 43.47)

 
 It is also noted that the mean utilization of the servers 
obtained from single and distributed simulation were the 
same (server 1 – 0.65, server 2 – 0.30, server 3 – 0.05). 

6.3 Output from use of Separate Streams 

In single simulation models, same stream (stream 8) of ran-
dom numbers is used for all the four input distributions.  In 
case of distributed simulation, Model A samples from 

stream 7 and Model B samples from stream 9 for all their 
respective input distributions. 
 The 95% CI for time in system statistic for single and 
distributed models in case of separate streams is as shown 
in Table 3. The analytical steady state value (39.83) falls 
within the 95% CI as obtained from single simulation and 
distributed simulation, with the mean quite close to the 
analytical value.  The mean utilizations as obtained from 
distributed simulation are:  server 1 – 0.60, server 2 – 0.29, 
server 3 – 0.05.  
 
Table 3: Average time in system results (separate streams) 

Distributed Simulation  
Time in 
Model A 

Time in 
Model B 

Time in 
system 

Single simu-
lation: Time 

in system 
Mean 29.43 9.78 39.21 40.063 
Std.Dev 2.98 0.78 3.08 3.76 
95% CI (25.73, 

33.13) 
(8.80, 
10.75) 

(35.39, 
43.04) 

(35.39, 44.73)

6.4 Correlation between Distributed Models 

Based on the results presented in Tables 1 – 3 it is seen that 
the analytical steady state time in system value (39.83) 
falls within the 95% CI for all the three random number 
cases.  It not obvious to say which method gives the accu-
rate results.  Now, in the tandem queue scenario consid-
ered, the inter-arrival times and services times are IID. 
Hence, for an entity the time spent in downstream servers 
should be independent (i.e. correlation negligible) of the 
time spent in upstream servers.  The correlation between 
the time spent in Model A and time spent in Model B ob-
servations has been computed, as shown in Table 4.   
 
Table 4: Correlation of Time in Model A and Time in 
Model B 

Repli-
cations

Default 
stream 

Dedicated 
streams 

Separate 
streams 

1 0.345 0.087 0.090 
2 0.425 0.089 0.229 
3 0.326 0.069 0.059 
4 0.396 –0.009 0.126 
5 0.332 0.111 0.061 

 
 In the case of default streams, the average correlation 
is found to be 0.365, which is quite large.  Since Model A 
and Model B uses the same default streams, a large service 
time in Model A for an entity could imply a large service 
time in Model B, thus increasing their time spent in sys-
tem.  Thus the use of default streams induces correlation in 
the output measure.  This can be expected to increase the 
overall mean time in system, which is confirmed by the re-
sults shown in Table 1.  In the case of dedicated streams, 
the average correlation (0.069) between time spent in 
Model A and time spent in Model B is found to be negligi-
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ble.  In the case of separate streams, the average correlation 
is 0.113. 
 The surest way of determining the effect of random 
numbers on the simulation output is to analyze the random 
numbers used by the distributed simulation models.  In the 
case of COTS packages (viz., ArenaTM) determining the 
exact sequence of random numbers used during a simula-
tion run is not straightforward.  However, in the tandem 
queueing scenario considered, all its input distributions are 
exponential.  It is known that exponential random variates 
are generated using inverse transform method (Law and 
Kelton 2000), with one-to-one mapping of random num-
bers and the variates generated.  In the current work, a par-
tial set of random numbers used in Model A (for generat-
ing inter-arrival times) and those used Model B (for 
generating service times for server_2) are determined.  
Based on the observations from 5 replications it is found 
that the average correlation among the partial set of ran-
dom number used in Model A and Model B are (i) 0.571 
for default stream, (ii) 0.022 for dedicated stream and (iii) 
–0.0009 for separate streams.  This clearly illustrates that 
the use of default random number streams result in corre-
lated output data in distributed simulation. 

7 CONCLUSIONS AND FUTURE RESEARCH 

To measure the system performance in distributed simula-
tion, a straightforward method will be to separately meas-
ure the statistics for each of the distributed models, and 
then sum these measures to obtain the system performance. 
Preliminary investigations using a simplistic queuing sce-
nario also revealed the importance of the appropriate use of 
random number in distributed simulation.  Use of default 
random number streams results in correlated data between 
the different models of distributed simulation, and hence 
classical statistical methods cannot be used on those re-
sults. Typically dedicated streams of random numbers are 
assigned to each input distribution over all models. This 
may be difficult to implement since the number of stochas-
tic variables in the system may be quite large, and requires 
a central coordination mechanism which may not be possi-
ble in distributed setting.  A tradeoff between the two is 
suggested (i.e. use of separate streams) where it is suffi-
cient to ensure that the distributed models use non-
overlapping streams of random numbers. 
 Work is currently being carried out to validate the out-
put analysis methodology for more complex distributed 
simulations involving resource sharing, multiple entities 
routings, shared buffer/ conveyor, etc.  Also, valid output 
analysis of non-terminating or steady state distributed 
simulations pose interesting challenges. Work is underway 
to develop add-in modules for COTS packages to support 
and speed up distributed simulation output analysis. The 
effect of multiple COTS packages interfacing in distributed 
simulation and their impact on output analysis is also to be 

investigated. Eventually, this work is expected to lead to 
general scheme for output analysis of terminating and non-
terminating distributed simulations. 
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