
Optimal Control of Bunching and Serve on Move WLANs in

Intelligent Transportation Systems

A thesis

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

M.Venkateswararao.K
(Roll No. 11I190012)

Under the guidance of

Prof. Veeraruna Kavitha

Industrial Engineering and Operations Research

Indian Institute of Technology Bombay

November 2019





I dedicate this thesis to

My Parents
(Amma Nanna)





Declaration

I declare that this written submission represents my ideas in my own words and where others

ideas or words have been included, I have adequately cited and referenced the original sources.

I also declare that I have adhered to all principles of academic honesty and integrity and have

not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I un-

derstand that any violation of the above will be cause for disciplinary action by the Institute and

can also evoke penal action from the sources which have thus not been properly cited or from

whom proper permission has not been taken when needed.

Signature

————————————–

Name of the Student

————————————–

Roll No.

————————————–

Date :—————————





Thesis Approval

The thesis entitled

Optimal Control of Bunching and Serve on Move WLANs in Intelligent
Transportation Systems

by

M.Venkateswararao.K
(Roll No. 11I190012)

is approved for the degree of

Doctor of Philosophy

Krishna Jagannathan K.S.Mallikarjuna Rao

(Examiner) (Examiner)

Veeraruna Kavitha

(Supervisor)

D. Manjunath

(Chairman)

Date: 26-11-2019

Place: IIT Bombay, Mumbai

vii



viii



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, INDIA

CERTIFICATE OF COURSE WORK

This is to certify that Mr. M.Venkateswararao.K (Roll No. 11I190012) was admitted to the

candidacy of the M.Sc-Ph.D Degree on July 17, 2011 and confirmed his PhD registration on

July 12, 2013. He has successfully completed all the courses required for Ph.D Degree. The

details of the course work done are given below.

S. No. Course Code Course Name Credits

1 IE 802 Topics in Industrial Engineering and Operations Research 6

2 IE 708 Markov Decision Processes 6

3 IE 606 Analysis & Control of Queues 6

4 MA 408 Measure Theory 8

5 HS 699 Communication and Presentation Skills 4

IIT Bombay

Date: Dy. Registrar (Academic)

ix



x



Abstract

This report contributes towards two problems related to intelligent transportation systems. We

first study the ‘bus bunching’ problem. In a bus transportation system, the time gap between

two successive buses is called headway. When the headways are small (high-frequency bus

routes), any perturbation (e.g., variability in load and or traffic conditions) makes the system

unstable: the headway variance tends to increase along the route. Eventually the buses can end

up bunching, i.e., they start travelling together. One also needs to consider the waiting times

of the passengers. The main aim of this thesis is to derive Pareto frontier (a notion of optimal-

ity for multi-objective problems) of the two performance measures, bunching probability and

passenger average waiting times, under static/stationary, ‘partially dynamic’ and fully dynamic

policies.

Under stationary policies we consider that the buses depart from the depot after equal

intervals of time and the aim is to design this constant headway (Pareto) optimally. We derive

the required performance under fluid arrival and fluid boarding assumption and obtained optimal

policies. Further using Monte-Carlo simulations, we demonstrate that the performance with

Poisson arrivals is well approximated by the theoretical results. As the traffic variance increases

we observe, it is optimal to reduce the bus frequency. More interestingly even with the increase

in load (passenger arrival rates), it is optimal to reduce the bus frequency. This is true in the

low load regimes; while for higher loads it is optimal to increase the frequency with increase in

load.

In practice, in majority of cases stationary headway policies are used. However when the

randomness of the traffic (or load) increases, the static policies may not suffice (bunching might

become significantly more). We propose ‘partially dynamic’ policies that depend upon easily

available state information; just consider that the current headway depends upon the headways

of the previous trips and you would see significant improvement in both (bunching probability

and passenger average waiting times) the performances. We refer them as partially dynamic
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policies, since they do not depend upon more elaborate and more expensive state information,

e.g., load waiting at various stops in the previous trip or the round trip delays of previous bus etc.

On solving an appropriate dynamic programming equations, we derive closed form expressions

for (Pareto) optimal headway policies. The optimal headway is linear in previous-trip headways.

Using Monte-Carlo simulations we compare the performance under partially dynamic and static

policies; partially dynamic policies perform significantly better in most of the scenarios that we

studied.

We then derive dynamic headways which control the bus frequency based on the observed

system state. The observation is a delayed information of the time gaps between successive bus

arrivals at various stops, corresponding to some previous trips. We solve the relevant dynamic

programming equations to obtain near-optimal policies, and the approximation improves as the

load factor reduces. The near-optimal policy turns out to be linear in previous trip headways

and the earlier bus-inter-arrival times at various stops corresponding to the latest trip whose in-

formation is available. Using Monte Carlo based simulations, we demonstrate that the proposed

dynamic policies significantly improve (both) the performance measures, in comparison with

the previously proposed partial dynamic policies.

The other problem is performance analysis of serve on the move wireless LANs. Recently

proposals are made to mount wireless transceivers on periodically moving vehicles (e.g., pub-

lic transport system). These vehicles were primarily meant to facilitate human transportation in

places like large universities. The idea was to design economical networks using the already ex-

isting infrastructure, when delays can be tolerated. The salient feature of these networks is that

the wireless server does not stop, rather provides the service to the users while on the move and

as long as the contact is available. Thus the service of various users waiting on such networks

is interlinked. One cannot model this system with existing continuous/discrete polling models,

as the later assume the server to stop and serve before resuming with its journey. We obtain

the conditions for stability and then the workload analysis. We also discuss optimal scheduling

policies.

Key words: Bus bunching, Pareto frontier, bunching probability, waiting times, dynamic pro-

gramming, fluid arrivals, polling models, stability, workload, Monte-Carlo simulation
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Chapter 1

Introduction

This thesis contributes to the field of intelligent transportation systems. Broadly, the contri-

bution of the thesis is in two parts. The first and major part of the thesis deals with the bus

bunching problem in (public) transportation system. We obtained optimal headway policies,

i.e., the optimal bus dispatch policies at depot under different (available information) scenarios.

The last part of the thesis is about the performance analysis of a wireless LAN, which is

mounted on a public transport system. These systems are commonly referred to as Ferry based

Wireless LANs (Bin Tariq et al. (2006); Kavitha and Altman (2009); Boon et al. (2011)). These

are introduced as a economic alternative network which utilizes the existing public transport

system, to transfer the data between locations (wireless) covered by the path of the vehicle and

when the data to be transferred is delay tolerant. The salient part of this work is to obtain

optimal scheduling policies, specific to the situation where the wireless service is provided

while on move.

1.1 Bus bunching

We consider (public) transport systems like that of buses, trams, metros, local trains etc, for

brevity we refer them as bus transport systems. Majority of people in a city rely on such a

transport for their daily activities. However, these systems tend to become inefficient due to

various factors like variable demands and or variable traffic conditions etc. Some of the major

issues faced by these systems are significant delays in arrival times at various stops, bunching

of buses (two or more buses start travelling together) which in turn can lead to huge variations

in bus occupancies (some buses are heavily loaded followed by almost empty buses), traffic
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congestion, pollution etc. There is a huge requirement to design the bus schedules/routes in

such a way so as to minimize the above mentioned issues to the best possible extent.

Typically, most popular bus routes have high frequency of buses and the buses keep cir-

culating around the same route repeatedly. The buses are scheduled to depart from the depot

(where the buses start their journey), one after the other according to a pre-designed scheule. It

is well-known that such transit routes without any intervention or control are unstable (Newell

and Potts (1964)). Any perturbation, typically, in the number of passengers arriving (demand)

at the bus stops and or in the traffic conditions, can lead to bunching of two or more buses.

Sometimes two (or more subsequent) buses get together somewhere along the route (or at some

stop) and would start travelling together. The perturbations (variabilities in traffic conditions,

demands etc) are inevitable, but the bus schedule should be robust, in the sense one should

design the (bus) schedules which minimize the above inefficiency to the best extent possible.

Headway is defined as the time gap between two consecutive buses. This headway is

predetermined at the depot and hence is known. However the headways at the other bus-stops,

encountered en-route, have random fluctuations as discussed. When a bus is delayed for a

long period at a particular stop (due to larger demand and or larger transit times from previous

stops), it has to cater to the increased number of passengers at the next stop. Hence it gets

further delayed. Whereas, the following bus observes less passengers than anticipated, as the

time gap between the buses is reduced. Hence it further speeds up due to lesser dwell times (the

boarding and de-boarding time). Eventually, the headway becomes zero at a certain point along

the route and the buses start travelling together. This phenomenon is called ‘Bus bunching’. As

a result of these variable headways (and probable bunching), passengers waiting at various bus

stops experience large variance in their waiting times (and in the bus occupancies) leading to an

unreliable transport service. Further, this results in an inefficient usage of resources (as some

bunched buses run almost empty) even for bus operators. Thus efficient control of bunching

of buses is important from the perspective of both the public using the service, as well as the

operator.

Bus bunching is a critical issue faced by bus agencies and this problem has been thor-

oughly investigated over past few decades. However, it is still an active area of research as it is

still challenging to provide a generic, practical, and effective solution. Existing control strate-

gies are based on ideas like skipping the forthcoming bus stops (e.g., Suh et al. (2002); Fu et al.

(2003); Sun and Hickman (2005); Cortés et al. (2010)), limited boarding (e.g., Delgado et al.
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(2009, 2012)), holding buses at specific locations (e.g., Yu and Yang (2009); Delgado et al.

(2009); Cortés et al. (2010); Xuan et al. (2011); Sánchez-Martı́nez et al. (2016)) etc. Holding

control applied at intermediate bus-stops and or skipping of stops may not be comfortable from

the perspective of the passengers travelling in the bus. Hence our focus is on the holding control

strategy only at depot. In papers like Delgado et al. (2009, 2012); Xuan et al. (2011) etc., au-

thors discuss and control the eventual variance of the error between the ideal schedule and the

schedule considering random fluctuations, when the number of stops and buses tends to infinity.

They assume no bunching. However in many scenarios it is not possible to completely avoid

bunching. Further when the randomness is very high, it is almost impossible to adhere to the

ideal schedules. In such scenarios, it is rather important to reduce the probability of bunching,

and we precisely consider this probability. For such highly random scenarios, it is also impor-

tant to consider the passenger waiting times. Further in all scenarios the number of stops and

the number of trips is finite, hence such a modelling is more realistic.

In Cortés et al. (2010), authors consider finite number of buses looping continuously in

a circular path and covering finite number of stops. However they work with expected value

of the squared difference between the actual headway and the supposed headway, and not with

the probability of bunching. Further the average passenger waiting times are defined as the

expected value of the product of the headway and the number of passengers arrived during the

headway. This definition does not consider the influence of passenger arrivals spread over the

entire (bus inter-arrival) interval. We consider (customer) average of the waiting times of the

passengers; we define waiting time of a passenger as the exact time gap between the arrival

epoch of that passenger (to the stop) and the arrival epoch of the bus that the passenger boards.

We derive theoretical expression for fluid arrivals, we also demonstrate through simulations that

the derived expressions well approximate that corresponding to Poisson arrivals.

The aim of this thesis is to derive a policy of optimal headways between departure epochs

of successive buses at depot, that minimizes a weighted combination of the two costs: a) the

average passenger waiting times; and b) the probability of bunching. We derived optimal bus

frequency (a stationary policy), optimal partially dynamic (control depends upon the readily

available information, the previous-trip headways) policies and optimal fully dynamic (control

depends upon headways used for few previous trips and the bus-inter-arrival times at various

stops corresponding to a previous trip whose information is available) policies. Note that the last

case corresponds to that of a problem with delayed information. We thus obtained the Pareto
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frontier1 of bunching probability and the expected waiting times, under three type of policies.

Partially dynamic policies using cheap information

We obtained the partially dynamic policies under independent and as well as correlated travel

times. We showed that these optimal policies depend linearly upon the headways of the pre-

vious trips for both correlated as well as independent travel times. We demonstrated huge

improvement with these policies (in comparison with stationary policies): a) with correlated

travel times and for low traffic variability conditions, the improvement is between 13% to 23%;

while b) for the rest of the conditions the improvement is significantly high (greater than 30%

and upto 80%). We refer these policies as partially dynamic policies, since they do not depend

upon more elaborate and more expensive state information, e.g., load waiting at various stops

in the previous trip or the round trip delays of previous bus etc.

Fully Dynamic policies

One can do much better if one has access to a more informative system state that is influenced

by the random fluctuations governing the system. For example, if one can observe the number

of passengers waiting in various stops (at bus arrival instances) or an equivalent information

in the previous trips, a better headway policy can be designed using this knowledge. In this

thesis we consider that the bus-inter-arrival times between various stops (of previous trips) are

observable, based on which the headway times of the future trips are decided.

The natural tool to design such policies is the theory of Markov decision processes. How-

ever in this system, one will have access only to delayed information: the headway decision

for the current bus has to be made immediately after the previous bus departs the depot, the

information related to the previous bus trajectory (no delay) is obviously not available for this

decision epoch. Further one may not even have the information about some of the trips, previ-

ous to the trip that just started. We assume that d-delay information is available and derive the

optimal policies.

We obtained closed form expressions for an ε-optimal policy, that is near optimal under

1 In any multi-objective problem like ours, a pair of performance measures (e.g., achieved through a headway-

policy) is said to be efficient/Pareto optimal, if there exists no other policy which can strictly improve one of

the performance measures, without degrading the other. A Pareto frontier is the set of all efficient pairs of

performance measures.
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small load factors. Interestingly the policy is linear in the previous trip headways and the bus-

inter-arrival times at various stops of the previous trip (information about which is available).

We showed numerically that this dynamic policy has significant improvement in comparison

with respect to the partially dynamic optimal policies in all the example scenarios that we stud-

ied. This improvement is significant even for considerable load factors (upto 0.5). We used

Monte-Carlo based simulations to estimate the two performance measures. The observation

process (getting access to the required state process) might be complicated and expensive, but

the complexity of the proposed policy is negligible. Thus cost to be paid is only for procuring

the information.

In summary, both the versions of the dynamic policies are linear in the (available)

state/information and hence are simple to implement (we also have simple expressions for coef-

ficients). Both of them improve significantly in comparison with the commonly used schedules

of constant headways between successive buses. One can do much better with fully dynamic

policies, if one has access to more information (exact bus-inter-arrival times at various stops).

1.2 Ferry based wireless LANs: Serve on Move

In applications like Ferry Based Wireless LANs (FWLAN), service is offered by a moving

server in distributed fashion, whenever it encounters a waiting customer on/near its path. The

Ferries are originally meant for carrying human beings (or goods) in a cyclic path repeatedly

(e.g., public transportation systems) and the idea was to construct economic communication

networks exploiting its repeated journey. Wireless LANs are fitted into such ferries which serve

the wireless users in the background. One of the important techniques to analyze such systems

is via polling models. However FWLAN offers the service while on the move, where as in

existing polling models (Bin Tariq et al. (2006); Kavitha and Combes (2013) and references

therein) the server stops to attend the encountered customer. We consider the analysis of the

former. Thus our system models the FWLANs realistically.

Of all the polling models, studied so far in literature, the one nearest to the serve on the

move (SoM) FWLAN would be the time limited polling system, in which the queue visit times

are limited. The time limited polling systems are studied under the assumptions of exponential

visit times (e.g., Leung (1994); De Souza e Silva et al. (1995); Frigui and Alfa (1998); Eliazar

and Yechiali (1998); Al Hanbali et al. (2012) etc.,), where as the visit times of the SoM FWLAN
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hardly exhibit any memoryless property. In fact they result because of traversing more or less the

same length of interval in all the cycles and hence the random variations in the visit times can be

better modeled using either constant times, or using bounded random variables with moderate

values of variance. We consider an autonomous version of time limited system (Al Hanbali

et al. (2008); de Haan et al. (2009) etc.,), wherein the server visit times are independent of the

workload conditions in the queue visited. And this is exactly how a visit by the server to a queue

occurs in the FWLAN.

The performance of SoM FWLAN predominantly depends upon the service intervals of

various queues and their intersections. We showed that the system is stable when the combined

load into a set of the intersecting queues is less than the load drained out per cycle, while the

server is traversing over the combined service interval. We would also require stability condition

of any subset of the intersecting queues. Further, we obtain approximate workload analysis

of general time limited polling systems, and demonstrate the accuracy of the approximation

using simulations. Finally, we obtain workload analysis of SoM FWLAN for some scheduling

policies and also discuss optimality.

1.3 Organisation of the thesis

This thesis is organised as follows. Chapter 2 presents the system description and prelimi-

nary analysis. Sections 2.1-2.2 describe the model and related performance measures, bunching

probability and passenger waiting times are discussed. Chapter 3 presents the stationary policies

of bus bunching problem. Stationary analysis is considered in section 3.1. Important observa-

tions are made by using Monte Carlo based simulations in section 3.1.4.

Chapter 4 presents partially dynamic optimal dispatch policies. Time varying policies

that do not depend upon system state are considered. We view the previous (trip) decisions

as state and obtain policies which we refer as partially dynamic policies. Performance mea-

sures and overall cost are discussed in section 4.1. The optimal depot head way policy is

obtained by solving appropriate dynamic programming equations using backward induction

method. Monte-Carlo based study of the derived policies and their comparison is in section 4.3.

The analysis corresponding to correlated travel times is in section 4.4.

Chapter 5 presents the fully dynamic policies related to bus bunching problem. We derived

a near-optimal dynamic policy for small load factors by solving the corresponding finite horizon
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dynamic programming equations, using backward induction algorithm. These depend linearly

upon the previous trip headways and the bus-inter arrival times at various stops corresponding

to the latest trip whose information is available.

Chapter 6 presents the performance analysis of a serve on the move FWLAN. We derived

the stability conditions when the service intervals (visibility interval of the user) are intersecting

as well as for the case when they are not intersecting. We discussed the workload analysis of

general time limited polling systems and obtained the workload under different optimal policies.

Conclusions and future research directions were presented in Chapter 7. Proofs and some

relevant theorems and lemmas are in the Appendices A and B.
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Chapter 2

Bus bunching: System description and

preliminary analysis

In this chapter, we describe the system and derive some important preliminary performance

measures: passenger waiting times and bunching probability.

2.1 System Model

We consider buses moving on a single route and this route has M number of stops represented

by Q1, Q2, . . . , QM . Each stop has infinite waiting capacity. Any bus starts at the depot (Q0)

and travels along a predefined cyclic path, while boarding/de-boarding passengers at the en-

countered bus stops. Passengers arrive independently of others in each stop Qi according to a

fluid process with rate λ. We also consider Poisson arrivals and show that the fluid model can

well approximate the system with Poisson arrivals, using simulations. The passengers board the

bus at ‘fluid’ rate. That is, the time taken to board x number of passengers equals bx, where b is

the boarding time per passenger at any stop. Let Sik be the time taken by k-th bus to travel from

(i − 1)- th stop Qi−1 to i-th stop Qi. These random travel times, {Sik}k (for each stop Qi), are

independent and identically distributed (IID). The buses start at the depot after given headway

times (interval between two successive bus departures) and traverse through the M stops before

concluding their trip. The total number of trips equal T , where we consider T > M . The

main purpose of this Chapter is to obtain the sequence of ‘depot-headways’ (one for each trip)

optimally. We further make the following assumptions to study the problem:

R.1) Surplus number of buses: the next bus can start at any specified headway in the depot,
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without having to wait for the return of the previous bus.

R.2) Parallel boarding and de-boarding: the time taken for de-boarding is smaller with proba-

bility one.

R.3) Gated service: Only the passengers that arrived before the arrival of the bus can board the

bus. Passengers arrived during the boarding process, will wait for the next bus.

R.4) If buses are bunched at any stop then the second bus will wait till the previous bus departs,

before it starts boarding its passengers. Thus overtaking of buses does not happen.

R.5) There is no constraint on the capacity of the buses.

In most of the cities the buses have two doors, boarding and de-boarding happens in paral-

lel, and hence, one can neglect the de-boarding times. Boarding times are negligible compared

to bus travel times. Thus we will have negligible number of arrivals during a boarding time,

and hence gated service is a reasonable assumption. Assumption R.1 simplifies the model suf-

ficiently and is instrumental in deriving closed-form expressions for performance measures of

this kind of a complicated system. Without this assumption one would have to take care of the

looping effects. Assumption of availability of few extra buses can easily ensure R.1 is satisfied.

Even availability of one/two extra buses can ensure such a condition is satisfied with sufficiently

large probability, and is often a well practised method to care of some eventualities. The systems

usually operate with small bunching probabilities, and so the event in assumption R.4 is a rare

event. Further this is a common practice in many transportation systems like Trams, metros,

local train etc and to a large extent even in bus transportation systems. Assumption R.5 can be

restrictive, but is a commonly made assumption in literature (Hickman (2001); Fu et al. (2003);

Sun and Hickman (2005); Xuan et al. (2011); He (2015)) and one can consider relaxation of

this for the future work.

Bunching

Because of variability in demand and traffic conditions, some buses are delayed. They arrive

later than their scheduled time at some stop. Delay of the bus results in more number of pas-

sengers to be boarded, and hence longer dwell time at the stop. Thus it gets delayed further for

the next stops. This would also imply smaller dwell time for the following bus at the same stop,

as it has to board lesser number of passengers. This can continue for the following bus-stops,

the bus-stop headway times (time gap between two consequent buses at the same stop) become

smaller and can eventually become zero. This phenomenon is called Bus bunching. We define
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bunching probability as the probability of occurrence of this event. Bunching probability for

the k-th trip at i-th stop, bik, is defined as the probability that the dwell time of (k − 1)-th bus at

stop Qi is greater than the inter arrival time between (k − 1) and k-th buses to the same stop.

Waiting times

Passengers wait for the bus at every bus stop. When a bus is delayed their waiting time increases.

If the delay results in bunching, the waiting times can be longer. Further the waiting times also

depend upon the depot-headway time. The larger this headway is, the longer are the waiting

times. We define the (passenger) waiting times as the time difference between their arrival

instance (at their stop) and the arrival instance of the bus in which they board. Let W i
n,k be

the waiting time of the n-th passenger that arrived to bus stop Qi in the k-th trip and let X i
k be

the number of passengers that arrived to stop Qi which board the k-th bus. Thus the number

of passengers that availed service in the first T trips at stop Qi equals
∑

k≤T X
i
k, and hence the

customer average of these waiting times specific to stop Qi over T trips equals:

∑
k≤T

∑Xi
k

n=1W
i
n,k∑

k≤T X
i
k

. (2.1)

When the depot-headway increases bunching happens less often. However the passengers

have to wait longer. We precisely study this trade-off. We derive the required performance mea-

sures, and, obtain headway times that optimize a weighted combination of the two performance

measures with an aim to obtain the ‘Pareto frontier’.

2.2 System Dynamics and Trip-wise Performance

We define φ = {hk}1≤k≤T as the headway policy, which is a sequence of headway gaps between

consequent trips at depot; hk is the time gap between (k−1)-th and k-th bus departures at depot.

We first derive the trip-wise performance for a given (deterministic) headway policy1.

Dwell time is the amount of time spent by a bus in the stop. By R.2, it equals total boarding

time of passengers waiting at the bus stop. Recall X i
k is the number of passengers waiting at

stop Qi, at the arrival instance of k-th bus. Because of gated service and fluid boarding at rate b

the dwell time equals:

1 Performance under fully dynamic (true-state dependent) headway policies is considered in Chapter 5.
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V i
k = X i

kb. (2.2)

By assumption R.4, the buses serve one after the other. That is, in the event of bunching,

the trailing bus starts boarding its customers only after the preceding one departs. In such

events the dwell times would be bigger than X i
kb. However transport systems typically operate

with small bunching chances (typically less than 10%) and hence we neglect the influence of

these extra terms in the dwell times. We will in fact show via simulation that in-spite of this

inaccurate modelling the theoretical performance well matches the one estimated using Monte

Carlo simulations in (sub) sections 3.1.4 from Chapter 3 and 4.3 from Chapter 4.

2.2.1 Bus inter-arrival times

Let N i(I) be the number of passengers that arrived in an interval of length I at Qi for any

i ≤ M . For fluid arrivals this equals N i(I) = λI , while, for Poisson arrivals N i(I) is Poisson

distributed with parameter λI .

We now describe the inter-arrival times of the buses at various stops and for various trips.

We begin with stop Q1 and trips other than the first trip. The k-th bus departs the depot after

(k − 1)-th bus, with a time gap equal to the (depot) headway time hk (see Figure 2.1), and

it reaches stop Q1 after further travelling for S1
k amount of time. Thus the inter arrival time

between (k − 1)-th bus and k-th bus at Q1 equals,

I1
k = hk + S1

k − S1
k−1.

By Gated service, the number of passengers served by k-th bus atQ1 exactly equals the number

that arrived during this inter-arrival time, i.e., X1
k = N 1(I1

k). Also, note that the passengers that

arrived during the dwell time (V i
k = X i

kb) of k-th bus would be served by (k + 1)-th bus.

It is clear that the k-th bus takes an amount of time given by∑
1≤j≤i

Sjk +
∑

1<j<i

V j
k ,

to reach stop Qi after its departure at depot, and the headway (time gap) between k-th and

(k− 1)-th buses at the depot equals hk. Thus the inter-arrival time between k-th and (k− 1)-th

buses at stop Qi,

I ik = hk +
∑

1≤j≤i

Sjk +
∑

1<j<i

V j
k −

(∑
1≤j≤i

Sjk−1 +
∑

1<j<i

V j
k−1

)
. (2.3)
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  - Arrival of bus

   - Departure of bus 

Figure 2.1: System model

Hence the number of passengers waiting at stop Qi at the arrival instance of k-th bus equals,

X i
k = N i(I ik).

There are random fluctuations in travel times based on traffic conditions. We model these

fluctuations by Gaussian random variables. To be precise we assume the travel time by k-th

bus between i and (i − 1)-th bus stop to be Sik = si + N i
k, where {N i

k}i,k are IID Gaussian

random variables with mean zero and variance β2 and {si}i are constants. For fluid arrivals2

and Gaussian travel times, the inter arrival times from equation (2.3) are (with ρ := λb):

I ik = hk +
∑

1≤j≤i

N j
k +

∑
1≤j<i

V j
k −

∑
1≤j≤i

N j
k−1 −

∑
1<j<i

V j
k−1,

= hk +
∑

1≤j≤i

N j
k + ρ

∑
1≤j<i

(
Ijk − I

j
k−1

)
−
∑

1≤j≤i

N j
k−1. (2.4)

In the above, by notation, we set N i
k = 0 for all k ≤ 0.

The above model considers independent travel times across various trips. In section 4.4

we consider analysis with correlated travel times.

2 This is approximately true even for Poisson arrivals, as the inter bus-arrival times (at the same stop) are usually

large, and then the number of passengers that arrived during this inter bus-arrival time can be approximated by

λ times the inter-arrival time by elementary renewal theorem.
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First trip details:

These details are different from the other trips and we describe the same now. Assume the

system starts at time 0. The passenger arrivals start at time 0 as well as the first bus leaves

the depot at time 0. Inter-arrival times {I ik} were defined to facilitate computing the number of

passengers boarding at respective stops and in respective trips. For the first trip, the equivalent of

inter-arrival times is the arrival instance of the first bus at respective stops. This is appropriate

because the first bus has to serve all the waiting passengers, that have arrived since the system

started. In other words the first bus serves, at any stop, those passengers that have arrived

between time 0 and the arrival instance of the first bus at that stop. Thus we define {I i1} (for

simplicity the same notation is used) as actually the bus arrival time w.r.t 0 at different stops, as

below:

I i1 = h1 +
∑

1≤j≤i

(
N j

1 + s(j)
)

+ ρ
∑

1≤j<i

Ij1 , (2.5)

where by definition of the starting process we set h1 = 0 and N i
k = 0 for all k ≤ 0 and for any

i ≤ M . We would like to stress again that these are not inter-arrival times, but are the arrival

instances corresponding to the first trip.

From the above discussions, even with independent travel times (and passenger arrivals),

the bus inter-arrival times and hence the dwell times are correlated for all trips. One needs to

study these correlations to obtain the performance, and we begin with the following:

Lemma 2.1. Assume N i
k = 0 when k ≤ 0 and h1 = 0. The inter-arrival times (or the arrival

times for the first trip) can be expressed in terms of the relevant Gaussian walking components

{N i
k} and the fixed inter-stop distances {sj} as below (for any trip k and for any stop i):

I ik =

min{i−1,k−1}∑
l=0

γilhk−l + 1i≥k

i−k+1∑
j=1

γi−j+1
k−1 s(j) +

i−1∑
r=0

[
(1 + ρ)rN i−r

k +
r+1∑
l=1

µrlN
i−r
k−l

]
,(2.6)

where

γil , (−1)l
(
i− 1

l

)
ρl(1 + ρ)i−1−l, (2.7)

µrl , (−1)l
r∑

u=0

(
r

u+ l − 1

)(
u+ l

l

)
ρu+l−1, with

(
n
r

)
:= 0 when n < r. (2.8)

Thus the mean and variance of inter arrival time for any stop i (1 ≤ i ≤M ) and for any trip k
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are given by,

E[I ik] =

min{i−1,k−1}∑
l=0

γilhk−l + 1i≥k

i−k+1∑
j=1

γi−j+1
k−1 s(j) and (2.9)

(
%ik
)2

:= E
(
I ik − E[I ik]

)2
= β2

i−1∑
r=0

[
(1 + ρ)2r +

min{r+1,k−1}∑
l=1

(µrl )
2

]
.

Proof is in Appendix A. �

2.2.2 Passenger waiting times

As already mentioned, waiting times are the times for which a typical passenger waits, before

its bus arrives. We first discuss the trip-wise passenger waiting times. Towards this we gather

together the waiting times of the passengers that arrived during one (bus) inter-arrival time. Let

the sum of the waiting times of the passengers that arrived during this trip and their customer

average respectively be (notations as used in (2.1)):

W̄ i
k ,

Xi
k∑

n=1

W i
n,k and w̄ik ,

∑Xi
k

n=1W
i
n,k

X i
k

.

Fluid arrivals: The customers are assumed to arrive at regular intervals (of length 1/λ) with

large λ. The waiting time of the first passenger during bus inter-arrival period (I ik) is approxi-

mately3 I ik, that of the second passenger is approximately I ik − 1/λ and so on. Further, if the

time duration I ik is large in comparison with 1/λ thenX i
k ≈ λI ik. Thus as λ→∞, the following

(observe it is a Riemann sum) converges:

W̄ i
k

λ
=

1

λ

λIik∑
n=0

(
I ik −

n

λ

)
→
∫ Iik

0

(I ik − x)dx =
(I ik)

2

2
. (2.10)

Thus for large λ,

X i
k = N i(I ik) ≈ λI ik, W̄ i

k ≈ λ
(I ik)

2

2
and w̄ik ≈

I ik
2
, (2.11)

and we use this approximation throughout as the fluid approximation.

Poisson arrivals: For Poisson arrivals, due to memoryless property, the conditional expectation

as given by Lemma 8.1 of Appendix A,

E
[
W̄ i
k

∣∣∣I ik] = λ
(I ik)

2

2
and E

[
w̄ik

∣∣∣I ik] =
I ik
2
. (2.12)

3 The residual passenger inter-arrival times at bus-arrival epochs get negligible as λ→∞.
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In all (for Poisson as well as Fluid arrivals), the expected values of the trip-wise quantities

corresponding to waiting times of passengers of stop Qi in the k-trip equal

E
[
W̄ i
k

]
= λ

E (I ik)
2

2
and E[w̄ik] =

E[I ik]

2
. (2.13)

The quantityE[w̄ik] is the expected value of the customer average of the passenger waiting times

corresponding to trip k and stop i. Thus these performance measures are the same for fluid as

well as Poisson arrivals, however the analysis of the inter-arrival times {I ik} is available only

for fluid arrivals.

Reaching stationarity: From Lemma 2.1, we observe that the variance of I ik and its expected

value depend upon the trip number. The system is in transient behaviour for the firstM trips and

reaches a kind of (variance) stationarity afterM trips: for the firstM trips the variance changes

with trip, while the variance is the same for the rest. When one considers constant/deterministic

headway times (as required for stationary analysis) then the process becomes completely sta-

tionary after the first M trips. To be precise from (2.13) and Lemma 2.1, the trip-wise waiting

time performance measures are the same for all trips k > M , under constant headways.

2.2.3 Bunching probability

Bunching is said to occur at a stop when two buses meet, i.e., when the headway time (time

gap between buses) of consequent buses becomes zero at that stop. Bunching probability, bik, of

k-th bus at i-th stop is the probability that the dwell time V i
k−1 (equation (2.2)) of (k− 1)-th bus

is greater than the inter arrival time (equation (2.4)) between (k − 1) and k-th buses. Thus for

fluid arrivals (by (2.11)):

bik = P (N i(I ik−1)b > I ik) = P (I ik − ρI ik−1 < 0). (2.14)

By first conditioning on (I ik, I
i
k−1) and simplifying, we get the same expression for bunching

probability with Poisson arrivals4. The above expression is true because of assumption R.4.

Thus we require the (marginal) distribution of (I ik − ρI ik−1) for computing the bunching proba-

bility at any stop Qi and for any trip k:

4 However, as already mentioned, further analysis is applicable only for fluid arrivals. Thus to extend the analysis

to Poisson arrivals, one needs to first study the inter-arrival times {Iik} given by (2.4) with Poisson arrivals, for

which the dwell times do not satisfy V ik = ρIik.
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Lemma 2.2. Recall the constants from equations (2.7) and assumeN i
k = 0 when k ≤ 0, h1 = 0.

Then

I ik − ρI ik−1 =

min{i,k−1}∑
l=0

γ̃ilhk−l +$i
k +

i−1∑
r=0

(
(1 + ρ)rN i−r

k +
r+1∑
l=1

µrlN
i−r
k−l

)

−ρ
i−1∑
r=0

(
(1 + ρ)rN i−r

k−1 +
r+1∑
l=1

µrlN
i−r
k−1−l

)
, (2.15)

where, γ̃il , γil − ργil−11l>0 and

$i
k =



1i≥k
∑i−k+1

j=1 γi−j+1
k−1 s(j) − 1i≥k−1ρ

∑i−k+2
j=1 γi−j+1

k−2 s(j) if k ≤M

ρ
∑i−M+1

j=1 γi−j+1
M−1 s

(j) if k = M + 1

0 if k > M + 1.

(2.16)

The mean and variance for k ≥ 2 respectively given by,

E[I ik]− ρE[I ik−1] =

min{i−1,k−1}∑
l=0

γ̃ilhk−l +$i
k and

(
σik
)2

= β2

i−1∑
r=0

{
(1 + ρ)2r +

min{r+2,k−1}∑
l=1

(µ̃rl )
2

}
. (2.17)

where (see 6.2),

µ̃rl , µrl − ρµrl−11l>0.

Proof: is direct from Lemma 2.1. �

From equation (2.14) and Lemma 2.2, the bunching probability for any 2 ≤ k ≤ T and 1 ≤

i ≤M is equals to,

bik = 1− Φi
k

(
E[I ik]− ρE[I ik−1]

)
, (2.18)

where Φi
k is the cdf of a normal random variable with mean 0 and variance (σik)

2 given by

(2.17):

Φi
k(x) :=

∫ x

−∞

1√
2π (σik)

2
exp

(
−t2

2 (σik)
2

)
dt.

Once again the variances {σik}k are the same for trips k > M+1 (we need one more trip because

of dependency on I ik−1) and hence observe that Φi
k = Φi

M for all trips greater than, k > M + 1.

Once again under constant/stationary deterministic headways, the bunching probability is the

same for all trips with k > M + 1.
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In this chapter, we described the system and obtained stationary as well as transient (suit-

able for finite trip problems) performance measures. We will refer the analysis with constant

headways as stationary analysis and the same is considered in Chapter 3, while the analysis

with general head-way policies (headways depend on trips) is referred to as transient analysis

and the corresponding study is available from Chapter 4 onwards.
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Chapter 3

Bus bunching: stationary policies

In this chapter, we primarily derive the optimal stationary headway between successive buses at

depot, that minimizes the given weighted combination of the two costs: a) the average passenger

waiting times; and b) the probability of bunching. By a stationary policy of headways, we

meant that the buses are dispatched at equal intervals of times from the depot and by optimal

stationary policy we meant the time gap between successive bus departures that minimizes the

given weighted combination of the two costs.

3.1 Stationary Analysis (Trip/Customer averages)

When T , the total number of trips, is sufficiently large in comparison with M , the number

of stops, the stationary analysis might be sufficient. For this case, it is sufficient to consider

constant/stationary headway policies (i.e., hk = h for some h < ∞ and for all trips k). In

Chapter 4 (section 4.2.2) we will show (for the case with large number of trips T ) that the

optimal among stationary policies provides (sufficiently) near optimal performance, even when

optimized among non-stationary headway policies. However this observation is true for very

limited cases, for e.g., the case with small load factors and high traffic variability (see Figure 4.3,

in section 4.3 from Chapter 4). Further, the stationary policies have independent importance:

practically it is more convenient to implement stationary policies which is a common practice

in many systems. In all, we begin with analysis using stationary policies.

Under such stationary policies, from (2.6) and (2.9) of Lemma 2.1 from Chapter 2 the

inter-arrival times and their moments for trips (k > M + 1), simplify as below (from Lemmas

Results of this chapter have been published in the proceedings of COMSNETS-2018 (Koppisetti et al. (2018)).
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2.1-2.2 and equation (2.18) from Chapter 2 with constant headways and note
∑i

l=0 γ̃
i
l = 1− ρ

etc.):

I ik = h+
i−1∑
r=0

[
(1 + ρ)rN i−r

k +
r+1∑
l=1

µrlN
i−r
k−l

]
, with expected value, (3.1)

E[I ik] = h and variance,
(
%ik
)2

= %2
i with

%2
i := β2

i−1∑
r=0

[
(1 + ρ)2r +

r+1∑
l=1

(µrl )
2

]
and further,

I ik − ρI ik−1 = h(1− ρ) +
i−1∑
r=0

(
(1 + ρ)rN i−r

k +
r+1∑
l=1

µrlN
i−r
k−l

)

−ρ
i−1∑
r=0

(
(1 + ρ)rN i−r

k−1 +
r+1∑
l=1

µrlN
i−r
k−1−l

)
E[I ik − ρI ik−1] = h(1− ρ) and

(
σik
)2

=
(
σi
)2 with(

σi
)2

:= β2

i−1∑
r=0

{
(1 + ρ)2r +

r+2∑
l=1

(µ̃rl )
2

}
.

It is important to observe here that all the above moments do not depend upon the trip number for

trips k > M + 1. In other words, {I ik}k>M+1 and {I ik − ρI ik−1}k>M+1 form stationary Gaussian

sequences for any stop Qi. In fact {I ik}k>M itself is stationary, however it is convenient to

consider common set of indices {k ≥M + 1}.

Thus the system is in transience only for the first M + 1 trips, under stationary headway

policies. To be more precise, any expected performance measure related to a single trip is the

same for all trips other than the firstM trips. Passenger waiting times related to a trip can be one

such example. On the other hand for performance measures like bunching probability, which

depend upon two consecutive trips, the stationarity is reached after M + 1 trips. Hence again

the bunching probability of k-th trip equals stationary bunching probability, for all k > M + 1.

Define the following Gaussian vectors, corresponding to trip k and trips k to l respectively

as below,

Nk := [N1
k , N

2
k , · · · , NM

k ] and Nk
l := [Nk,Nk−1, · · · ,Nl] .

The bus inter-arrival times {I ik}k>M+1, for any given stop Qi, are stationary but are not inde-

pendent as seen from equation (3.1). Nevertheless, from the same equations, inter-arrival times

of a trip, Ik := [I1
k , I

2
k , · · · , IMk ], depend only upon Nk

k−M and so the sampled inter-arrival times

{I ij+kl}k≥1 = I il+j, I
i
2l+j · · · ( for any stop Qi),

with l > M + 1 and for any 0 ≤ j ≤ l − 1 form an IID Gaussian sequence.
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One can also derive the time (trip) average of any performance measure, using the above

‘block’ IID characteristics. By Law of large numbers, for any (integrable) performance f that

depends (for example) upon one trip (almost surely (a.s.)):

f̄ := lim
K→∞

1

K

K∑
k=1

f(Ik) (3.2)

= lim
K→∞

1

K(M + 1)

M+1∑
j=1

K∑
k=1

f(Ij+k(M+1))
a.s.
= E[f(IM+1)].

In the above the expectation is with respect to the Gaussian random variables of equation (3.1).

One can derive trip average of the performance measures that depend upon finite number of

consecutive trips (e.g., bunching probability) in a similar way.

We find the stationary optimal depot headway time and the non stationary case is discussed

in the next section.

3.1.1 Customer average of Waiting times

This performance is important from the perspective of passengers and hence it is more appro-

priate to consider the ‘passenger’ average of the waiting times defined in (2.1) from Chapter

2. Observe that equation (2.1) from Chapter 2 refers to the customer average corresponding to

all the T trips. We however consider the average defined in the second term of the equation

(2.13) from Chapter 2, i.e., consider the averages {w̄ik}i. These terms are the customer average

corresponding to a specific trip k, and we later consider the average of these averages across all

T trips. This is done because of the following two reasons: a) it will be seen that it is relatively

easier to handle these second averages in optimization problems; b) the two sets of optimiza-

tion problems are approximately equivalent, as shown in the following (for Poisson as well as

Fluid arrivals, the two expected values are approximately the same, as (%i)
2 /2h is typically

negligible).
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Lemma 3.1. For any stop Qi, under any stationary policy {h}:

W̄ i = lim
T→∞

∑T
k=1 W̄

i
k∑T

k=1X
i
k

= lim
T→∞

T∑T
k=1 X

i
k

∑T
k=1 W̄

i
k

T
a.s.
=

E[(I ik)
2]

2E[I ik]
=

(%ik)
2

+ (E[I ik])
2

2E[I ik]

=
(%ik)

2

2E[I ik]
+
E[I ik]

2
and thus (3.3)

W̄ i =
(%i)

2

2h
+
h

2
and similarly, (3.4)

w̄i = lim
T→∞

1

T

∑
k≤T

w̄ik = lim
T→∞

1

T

∑
k≤T

W̄ i
k

X i
k

=
E[I ik]

2
=
h

2
a.s. (3.5)

Proof: is in Appendix A. �

Remarks: 1) Under suitable conditions, for example when the depot headway time is

large and/or the small traffic variability (β), one can neglect the first term in the equation (3.4).

Hence, W̄ i ≈ w̄i = h/2;

2) We would like to give equal importance to passengers of all stops. Hence we consider the

following for optimization purposes:

w̄ =
M∑
i=1

w̄i =
M∑
i=1

E[I ik]

2
. (3.6)

3.1.2 Bunching probability under stationarity

As already discussed, various trips can be correlated, however the bunching probabilities in

different trips remains the same. This is because the bunching probabilities depend only upon

I ik − ρI ik−1 and because these are identically distributed for all k > M + 1, under stationarity.

For all such trips the bunching probability of a stop in a trip is the same and equals (see (3.1)),

bik = bi with bi := 1− Φi
M (h(1− ρ)) . (3.7)

As mentioned already, this also represents the bunching probability of a trip under stationarity.

Note that the bunching probabilities of initial trips can be different, and this is considered in

section 4.1 of Chapter 4.

3.1.3 Total cost and optimization

Our aim is to minimize a joint cost that considers both the components given by (3.6) and (3.7).

Towards this we consider a weighted average of the two costs with α representing the trade-off

parameter:
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r =
M∑
i=1

h

2
+ α

(
1− ΦM

M (h(1− ρ))
)

=
Mh

2
+ α

(
1− ΦM

M (h(1− ρ))
)
. (3.8)

Bunching probability is maximum at last stop, other stops have much lesser probability1 and

hence we consider only bunching probability of the last stop. To simplify the notation we refer

ΦM
M by ΦM . The performance at optimizers for different α gives Pareto frontier as will be

discussed in sub section 4.1.3 of Chapter 4. Let h∗s be the minimizer for total cost (3.8). The

total cost is a differentiable function and hence h∗s is either the zero of the following derivative

(obtained using Leibniz rule) or is on the boundary:

dr(h)

dh
=
M

2
−
(

α√
2π

exp

(
−h2(1− ρ)2

2 (σM)2

)
1− ρ
σM

)
. (3.9)

If α < M
√

2πσM/2(1− ρ) then the first derivative is always positive and hence the optimizer

is at lower boundary 0. Otherwise, there exists a zero of the derivative h∗s as below. One can

easily verify that d2r(h)/dh2 > 0 for all h and α > M
√

2πσM/2(1 − ρ), hence that h∗s is the

unique minimizer.

h∗s =


√
− log(C1)

C2
, with C1 = M

√
2πσM

2α(1−ρ)
and C2 = (1−ρ)2

2(σM )2
, if α ≥M

√
2πσM/2(1− ρ)

0 else.
(3.10)

We use sub-script h∗s to indicate that this is the ‘stationary optimal policy’.

Remarks: It is immediately clear that the optimal bus frequency (inverse of h∗s) decreases as

the number of stops increase. Similarly, the optimal frequency decreases with increase in traffic

variability factor β (see (3.10)).

3.1.4 Monte-Carlo Simulations

In this section, we verify the derived performance measures of the proposed model through

Monte-Carlo (MC) simulations. We emulate the buses travelling on a single route with 8 bus

stops, boarding a random number of passengers using gated service and avoiding parallel board-

ing (into two or more buses simultaneously) of passengers at any stop. The travelling times

between stops are perturbed by normally distributed noise with zero mean and variance β2.

Passenger arrivals are either due to fluid arrivals or due to Poisson arrivals, and we consider

1 Note that the bunching probability is low at initial stops and increases with stop number; as seen from Lemma

2.2 of Chapter 2 (with constant headway policy), the bunching probability Φik(h(1− ρ)) is increasing with stop,

i. This is true for any trip k. Hence forth, we consider only bunching probability of last stop.
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fluid boarding. We conduct the simulations with M = 8, λ = 200, ρ = 0.3, s = 50 and

α = 150 in Figure 3.1.
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Figure 3.1: Bunching probability, Waiting time and Total cost vs headway

In Figure 3.1, we compared the theoretical quantities with the ones estimated through sim-

ulations. We plot bunching probability, average passenger waiting times and total cost respec-

tively as a function of headway. We find a good match between theory (curves without markers)

and simulations considering Poisson arrivals (curves with circular markers). We also conducted

simulations using fluid arrivals. The simulation results with fluid arrivals better match the the-

oretical counterparts. We included the simulation based results for fluid arrivals (curves with

diamond markers) in the third sub-figure, i.e., for total cost. We notice a good match between

(both) the simulated quantities and the theoretical expressions in majority of the cases. These

observations affirm the theory derived.

From the sub-figures of Figure 3.1, we observe that the bunching probability improves (de-

creases) with depot-headway (h), while, the passenger waiting times degrade (increase). This is
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the inherent trade-off that needs to be considered to design an efficient system. We plot optimal

depot-headways for some examples in Figures 3.2-3.3, which are estimated using numerical

simulations (dashed curves with circular markers). We also plot h∗s given by (3.10) in the same

figures (solid curves). We observe that theoretically derived h∗s well matches the optimizers

estimated using numerical simulations, for small load factors (ρ) and or small traffic variability

(β). When variability increases the theoretical h∗s (3.10) is not a very good approximation (for

load factors bigger than 0.5 in Figure 3.2 and traffic variance β > 5 in Figure 3.3). Neverthe-

less, the error is significant only for β > 10 and approximation error is not very big for all ρ

plotted in Figure 3.2.
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Figure 3.2: Optimal h∗ versus load
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Figure 3.3: h∗ versus traffic variability

Recall the passenger/customer average of waiting times corresponding to all the T trips

is given by (2.1) from Chapter 2 and its expected value is given by (3.4). The MC simulations

capture this average. However, as already discussed, we instead consider the two level average

defined using (3.5). The difference between the two types of averages for the last stop equals

%Mk /(2h) (see Lemma 3.1), which becomes significant when the load factor/traffic variability is

high. This is the reason for large approximation errors of Figures 3.2-3.3.

As the load factor increases, or equivalently when the customer arrival rates increase, one

would anticipate an increased bus-frequency to be optimal. On the contrary we notice that

the optimal headway increases (initially) with increase in load-factor in Figure 3.2. This is

because the passenger waiting times for any given headway h, approximately equal h/2 when

the variability components ({%ik}i) due to traffic and or load conditions) are negligible (see
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(3.4)). Thus with increase in load factor, the bunching probabilities increase sharply, while

waiting times are less influenced and hence an increase in optimal depot-headway. However as

seen in the same figure, when load increases beyond 0.5, the variability components in waiting

times also become significant and now we notice that the optimal depot-headways are smaller.

To summarize, the optimal frequency of the buses decreases initially with increase in load, but

for higher range of load factors it increases with load.

3.2 Summary

We modelled the bus bunching problem with Gaussian bus travel times and fluid arrivals. We

studied the related performance measures under stationary policies. Using numerical simula-

tions, we showed that the performance of the system with Poisson arrivals can be well approx-

imated with the derived theoretical expressions, when the arrival rates are large. We obtained

the optimal depot headway time, i.e., the optimal bus frequency as a function of parameters

like load conditions (passenger arrival rates), number of bus stops, traffic variability conditions

(variance of the travel times) etc. We made the following observations using the theoretical as

well as numerical study: a) When bus frequency decreases, bunching probability decreases and

passenger waiting times increase; b) Optimal bus frequency decreases with increase in traffic

variability and load conditions; and c) If the load is significantly larger, then the optimal bus

frequency actually increases with load.
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Chapter 4

Bus bunching: partially dynamic policies

We now consider non-stationary policies. In particular, we consider partially dynamic policies

in this chapter1; the policies that depend upon the headways of the previous trips. Further we

consider independent (as in previous chapter) as well as the correlated travel times. The rest

of the details of the system model are the same as that in the previous chapters. we compare

the Pareto frontier of both stationary policies (derived in last chapter) and the partially dynamic

policies of this chapter. We observed huge improvement with partially dynamic policies in

comparison with the stationary policies.

4.1 Finite Horizon (Transient) Problem

As opposed to the case study in the previous Chapter 3, we now consider the case when the

number of trips T is not very large in comparison with M , the number of stops. As discussed

previously, even with stationary policies, system is in transience behaviour for the first M + 1

trips and stationary performance is reached only after M + 1 trips. Further it may not be

sufficient to consider stationary policies, when T is comparable with M . We actually notice,

using numerical simulations, that the stationary optimal policy performs significantly inferior

to the dynamic optimal policy (under nominal traffic variabilities and or when the load factors

are significant) in section 4.3. Thus we consider headway policies that vary with time, however

these do not depend upon (any) system state. Thus in a way these are dynamic policies that

Results of this Chapter and Chapter 3 are submitted to Transportaion Research:B (Koppisetti and Kavitha

(2019)).
1 Fully dynamic policies are in the next chapter.
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For all 0 ≤ l ≤M, 0 ≤ r ≤M, 1 ≤ i ≤M, 0 ≤ k ≤ T − 1

γil , (−1)l
(
i−1
l

)
ρl(1 + ρ)i−1−l,

µrl , (−1)l
∑r

u=0

(
r

u+l−1

)(
u+l
l

)
ρu+l−1, with

(
n
r

)
:= 0 when n < r.

γ̄l := 1
2

∑M
i=l+1 γ

i
l and ϑMk :=

∑M
i=1

1
2

(
1i≥k

∑i−k+1
j=1 γi−j+1

k−1 s(j)
)
,

γ̃il , γil − ργil−11l>0 and $i
k =



1i≥k
∑i−k+1

j=1 γi−j+1
k−1 s(j)

−1i≥k−1ρ
∑i−k+2

j=1 γi−j+1
k−2 s(j) if k ≤M

ρ
∑i−M+1

j=1 γi−j+1
M−1 s

(j) if k = M + 1

0 if k > M + 1.

ηT−kl = ηT−k+1
l+1 − ηT−k+1

0

γ̃Ml+1

γ̃M0
+ γ̄l, aT−k = σMT−k

√
−2 log

(
ηT−k
0

√
2πσMT−k

γ̃M0 α

)
,

(
σMT−k

)2
= β2

∑M−1
r=0

{
(1 + ρ)2r +

∑min{r+2,T−k−1}
l=1 (µ̃rl )

2

}
δT−k = α

(
1− ΦM

k (aT−k)
)

+ ϑMk +
ηT−k
0 (aT−k−$MT−k)

γ̃M0
+ δT−k+1.

Table 4.1: Notations and coefficients summarized

depend upon economic/cheap/readily available information, the headways corresponding to the

previous buses/trips.

In all, we have time varying policies φ := {hk}1≤k≤T with hk representing the depot head-

way between trip (k − 1) and k, and, we seek the optimal among such policies that minimizes

a total cost, similar to the one defined in the previous chapter.

We require optimal policies among non-stationary (but state independent) policies, thus

we pose it as a finite horizon (T ) sequential control problem. We begin with derivation of

the performance measures under these non-stationary (and finite horizon) policies. That is, we

define the running cost corresponding to each trip and eventually the cost corresponding to all

the trips. The main consideration of this chapter is to obtain optimal policies that depend just

upon the headways of the previous trips and nothing else. Thus these are not stationary (the

headway is not the same for all trips), nor, are they fully dynamic (the headway of a trip does

not depend upon any system state other than the previous trip headways).
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4.1.1 Passenger waiting times

The customer average (and the corresponding expected value) of the waiting times of the pas-

sengers belonging to Qi and corresponding to the T trips equals:∑T
k=1

∑Xi
k

n=1W
i
n,k∑T

k=1X
i
k

and Eφ

∑T
k=1

∑Xi
k

n=1 W
i
n,k∑T

k=1 X
i
k

 ,
whereEφ is the expectation with respect to probability measure P φ that is resultant when policy

φ is used. In view of the Remarks following Lemma 3.1 from Chapter 3, we consider the

following modified (approximate) average which also makes it mathematically tractable:

Eφ

[∑T
k=1

(∑Xik
n=1W

i
n,k

Xi
k

)]
T

=
1

T

T∑
k=1

Eφ
[
w̄ik
]
.

Thus the waiting time-component of the running cost corresponding to trip k (corresponding

to all stops) equals,
∑M

i=1E [w̄ik]. From Lemma 2.1 and equation (2.13) from Chapter 2, this

component equals,

M∑
i=1

Eφ
[
w̄ik
]

=
M∑
i=1

1

2
Eφ
[
I ik
]

=
M∑
i=1

1

2

min{i−1,k−1}∑
l=0

γilhk−l + 1i≥k

i−k+1∑
j=1

γi−j+1
k−1 s(j)

 . (4.1)

4.1.2 Bunching probability

The other component of running cost, under any given policy φ, is related to bunching. The

average bunching cost across all the T trips at stop Qi can be defined as the expected value of

the fraction of trips that resulted in bunching at stop Qi, i.e., as the following:

Eφ

[∑T
k=11V ik−1>I

i
k

T

]
=

∑T
k=1 P

φ
(
I ik − ρI ik−1 < 0

)
T

.

Thus the bunching component of the running cost corresponding to trip k (and stop Qi) equals

the corresponding bunching probability, P
(
I ik − ρI ik−1 < 0

)
(see (2.14 from Chapter 2)). From

Lemma 2.2 and equation (2.18) from Chapter 2, this component equals,

P φ
(
I ik − ρI ik−1 < 0

)
= 1− Φi

k

min{i,k−1}∑
l=0

γ̃ilhk−l +$i
k

 . (4.2)

As discussed in the previous section, the chances of bunching at initial stops is low, while that

at later stops is significant. Thus the running cost component corresponding to bunching, for
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trip k is given by:

1− ΦM
k

min{M,k−1}∑
l=0

γ̃Ml hk−l +$M
k

 . (4.3)

4.1.3 Pareto frontier and overall running cost

We thus have multiple objective functions, which are time averages of the bunching probability

of last stop,

PB(φ) :=
1

T

T∑
k=1

P φ
(
IMk − ρIMk−1 < 0

)
,

and passenger average waiting times at all stops is equal to:

EW (φ) :=
1

T

T∑
k=1

M∑
i=1

Eφ
[
w̄ik
]
.

We are naturally interested in the Pareto frontier, the space of all ‘efficient’ points.

Pareto frontier is the efficient sub-region of any achievable region which consists of

dominating performance vectors. In our context we say (PB(φ∗), E∗W (φ∗)), corresponding to

policy φ∗, is a dominating pair of performance measures, if there exists no other policy φ which

achieves a strictly better performance pair, i.e., such that

PB(φ) < PB(φ∗), and EW (φ) ≤ EW (φ∗) or vice versa.

One of the common technique to obtain Pareto frontier is to solve a weighted combination of the

two costs. Thus we consider the equivalent optimization of the following weighted combination,

parametrized by α (from equations (4.1)-(4.3)):

PB(φ) + αEW (φ) =
1

T

T∑
k=1

rk with

rk :=
M∑
i=1

1

2

min{i−1,k−1}∑
l=0

γilhk−l + 1i≥k

i−k+1∑
j=1

γi−j+1
k−1 s(j)


+α

1− ΦM
k

min{M,k−1}∑
l=0

γ̃Ml hk−l +$M
k

 ,

where rk represents the overall running cost of trip k. This running cost depends upon the
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headway policy φ = {hk}k≤T and can be re-written as,

rk(φ;α) =
M∑
i=1

1

2

min{i−1,k−1}∑
l=0

γilhk−l + 1i≥k

i−k+1∑
j=1

γi−j+1
k−1 s(j)


+α

1− ΦM
k

min{M,k−1}∑
l=0

γ̃Ml hk−l +$M
k


=

min{k,M}−1∑
l=0

γ̄lhk−l + ϑMk + α

1− ΦM
k

min{k−1,M}∑
l=0

γ̃Ml hk−l +$M
k

 with,(4.4)

γ̄l :=
1

2

M∑
i=l+1

γil and ϑMk :=
M∑
i=1

1

2

(
1i≥k

i−k+1∑
j=1

γi−j+1
k−1 s(j)

)
. (4.5)

The coefficients are summarized in Table 4.1. Our objective is to equivalently optimize the

summation of running costs (as T is a fixed number) corresponding to all trips in consideration

(recall h1 is set to 0, as the first bus starts immediately by convention):

min
φ={h2,··· ,hT }

T∑
k=1

rk(φ;α). (4.6)

This is like the well known sequential control problem and the most convenient solution concept

for this is the Dynamic Programming equations. We follow the same approach to solve this

problem.

4.1.4 Dynamic Programming equations, solved by backward induction

We are interested to find the optimal policy i.e., the optimal headway times between the buses

at the depot for all trips considered, which optimizes (4.6). As already mentioned, the opti-

mal policy can be obtained by solving Dynamic Programming (DP) equations using backward

induction. Towards this we discuss the necessary ingredients, like running cost, transition prob-

abilities etc.

From (4.4), the running cost of any trip depends (at maximum) only upon the headways of

the last M trips, to be specific for trip k it depends upon hk := [hk−M , · · ·hk] when k > M and

hk := [0, · · · , 0, h1, h2, · · · , hk] when k ≤ M (required number of zeros are inserted to make

them same length vectors). Note that h1 = [0, · · · , 0, h1] = [0, · · · , 0, 0] (as h1 set to 0 without

loss of generality), h2 = [0, · · · , 0, h2] and h3 = [0, · · · , 0, h2, h3] and so on. The dynamic

programming equations, for any k ≤ T are given by (Puterman (2014)):

vk(hk−1) = min
hk

(
rk(hk) + vk+1(hk)

)
and vT+1(hT ) = 0. (4.7)
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In the above vk(hk−1) represents the optimal cost from trip k till the last trip (T ), when the

previous trip depot-headways are given by hk−1. The running/trip-wise costs are given by (4.4)

and hence these equations can be rewritten as (for any k ≤M + 1):

vk(hk−1) = min
hk

{
k−1∑
l=0

hk−lγ̄l + ϑMk + α

(
1− ΦM

k

(
k−1∑
l=0

γ̃Ml hk−l +$M
k

))
+ vk+1(hk)

}
.(4.8)

We solved these optimality equations for a special case (mentioned in the hypothesis) and

derived the optimal policy (see Table 4.1 for coefficients):

Theorem 4.1. Assume T > M + 1. Define the following constants backward recursively for all

0 ≤ k < T − 1: first set δT+1 = 0, ηT+1
l = 0 for all 0 ≤ l ≤M and then set

ηT−kl = ηT−k+1
l+1 − ηT−k+1

0

γ̃Ml+1

γ̃M0
+ γ̄l, aT−k = σMT−k

√√√√−2 log

(
ηT−k0

√
2πσMT−k

γ̃M0 α

)
,(4.9)

δT−k = α
(
1− ΦM

k (aT−k)
)

+ ϑMk +
ηT−k0 (aT−k −$M

T−k)

γ̃M0
+ δT−k+1.

If for any trip k, the following condition is satisfied

α > e(
∑M
l=1 hT−j−lγ̃

M
l )

2 ηT−j0

√
2πσMT−j
γ̃M0

for all 0 ≤ j < k and ηT−k0 > 0, (4.10)

then the optimal policy and the value function are respectively given by:

h∗T−k(hT−k−1) =
1

γ̃M0

[
−

M∑
l=1

hT−k−lγ̃
M
l −$M

T−k + aT−k

]
, and (4.11)

v∗T−k(hT−k−1) =
M∑
l=1

hT−k−l

(
γ̃M0 ηT−kl − ηT−k0 γ̃Ml

γ̃M0

)
+ δT−k. (4.12)

Proof: is in Appendix A. �

From (4.11), the optimal policy (once the hypothesis is satisfied) is linear in previous trip

depot-headways and depends only on values of previous M trips. The coefficients of this linear

dependence {γ̃Ml /γ̃M0 }l are the same for all trips. The affine component $M
T−k disappears for

later trips (i.e., for trips k > M + 1). Interestingly the only component that depends upon the

trip number are the constants {aT−k}k, which is the main element of non-stationarity in the

optimal policy.

Low load factors

We will now prove that the hypothesis of the above theorem are satisfied for low load factors,

under some simple assumptions. Typical operating conditions work under such low load factors.
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We obtained the optimal depot headway policy (see (4.11)) under the condition (4.10), and the

following lemma proves that the condition (4.10) is satisfied under low load factors.

Lemma 4.2. Assume α > βM
√

2π/2. Then there exists an upper bound, ρ̄η ∈ [0, 1], such that

condition (4.10) is satisfied (for all k) for all load factors ρ ≤ ρ̄η. For all such ρ the optimal

policy is completely defined by Theorem 4.1, i.e., by equations (4.11)-(4.12) with h∗1 = 0.

Proof: is in Appendix A. �

Algorithm 1 Defined using Theorem 4.1

1. Input parameters: M (number of stops), T (number of trips), ρ (load factor),

α (trade-off factor) , β (traffic variability) and {si} (inter-stop walking times)

2. Compute coefficients γik, γ̃
i
k, γ̄

i
k, $

i
k for all k, i, using equations (2.7), (2.16)

from Chapter 2 and (4.5) also given in Table 4.1.

3. Compute iterative coefficients (backward recursion)

• Initial values: Set ηT+1
l = 0 for each l

• for k = 0 to T -1

– Compute ηT−kl for each l, using (4.9) of Theorem 4.1

– Compute aT−k using ηT−k0 and the other coefficients

4. Computation of Optimal policy (forward manner)

• Set initial trip bus headways to zero, i.e., h1 = 0. By notation set

even hl = 0 for all l ≤ 0.

• for k = 2 to T -1

– Compute trip k headway, hk from (4.11), using the previous trip headways hk−1

and coefficients calculated above

4.2 Algorithms

The Lemma 4.2 guarantees the applicability of Theorem 4.1, for low load factors which are

more relevant for practical scenarios. And then, one can obtain the optimal policy using the

algorithm defined in Algorithm 1, constructed using Theorem 4.1.
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Using DP equations directly :

For general conditions, one needs to solve the DP equations (4.8) using well known numeri-

cal techniques (see e.g., Puterman (2014)). We will need to consider discrete choices for the

headways.

4.2.1 Asymptotic (T →∞) analysis and Simplified algorithm

From Theorem 4.1, it is a complicated procedure to compute the trip-wise-constants, {ηt0}t and

{at}t required for Algorithm 1. One can have a much simplified (approximate) algorithm if

there is a possibility to (well) approximate these by appropriate constants. We attempt this

using large trips (T →∞) approximation: compute the required coefficients under this limit.

Proposition 4.3. As T →∞ then,

lim
T→∞

ηT0 = η∗0 =
M(1 + ρ)M−1

2(1− ρ)
, (4.13)

lim
t→∞

aT = a∗ = σMM

√√√√−2 log

(
M
√

2πσMM
2(1− ρ)α

)
. (4.14)

Proof: is in Appendix A. �

One can propose an approximate algorithm using this limit, which is much more simpli-

fied than Algorithm 1. The approximate algorithm is provided as Algorithm 2. We verify the

accuracy of this approximation, later using numerical examples.

4.2.2 Comparison with Stationary analysis

In section 3.1 from Chapter 3, we derived optimal stationary policy, wherein the same depot-

headway is applicable for all trips. This policy is optimal when the number of trips tends

to infinity; the system reaches stationarity, and hence the system performance is close to the

stationary performance. That is, the performance with huge number of trips does not depend

upon initial trips (i.e., on transient behaviour). In this chapter, we are working with finite/small

number of trips; here, the performance of all trips (including initial transient trips) is significant.

As anticipated we have an optimal policy that is non-stationary, the headway depends upon the

trip number and the headways of the previous trips (equation (4.11) of Theorem 4.1).

We now investigate if the optimal partially dynamic policy of this chapter approaches

the stationary policy of Chapter 3 in some suitable sense. To be more precise, we study the
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Algorithm 2 Using approximate iterative co-efficients

1. Input parameters: M,T, ρ, α, σMM

2. Approximate iterative coefficients ηT−j0 ≈ η∗0 and aT−j ≈ a∗ for all j, using

η∗0 , a∗ defined in (4.13)-(4.14)

3. Computation of Optimal policy (forward manner)

• Set initial trip bus headways to zero, i.e., h1 = 0. By notation set

even hl = 0 for all l ≤ 0.

• for k = 2 to T -1

– Compute trip k headway, hk from (4.11), using the previous trip headways hk−1

and coefficients calculated above

headways related to the last trips (i.e., h∗T−k, for k small) given by Theorem 4.1 as T → ∞.

Our aim is to verify if these headways approximately coincide with the stationary headway h∗s

(3.10) obtained from Chapter 3.

In the previous subsection, we computed the limits of the iterative coefficients defining the

optimal policy (4.11), and the idea is to use these asymptotic constants for the above mentioned

verification. From (4.11), the headway policy update equation is a difference equation (with

time varying co-efficients) and our question is related to the settling/limit point of this equation.

It is well known that the stationary points of the difference equation can become the required

limits. We will first show that the stationary point of this equation is h∗s given by equation

(3.10) from Chapter 3. One requires extra technical arguments to prove that the updates hk

indeed converge to this stationary point, however, this aspect is not considered in the thesis as

of now.

Stationary point of (4.11): We would now verify that h∗s defined in (3.10) of Chapter 3

as the stationary point, by direct substitution; we reproduce h∗s here for ease of reference:

h∗s =
a∗

1− ρ
=

σMM
1− ρ

√√√√−2 log

(
M
√

2πσMM
2(1− ρ)α

)
. (4.15)

By substituting hT−k = h∗s (for all k), and after replacing iterative coefficients with their ap-
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proximations given in (4.13)-(4.14) one can easily verify the following:

hT =
1

γ̃M0

(
−

M∑
l=1

h∗sγ̃
M
l + a∗

)
= h∗s. (4.16)

From the above, one can observe that the optimal stationary policy h∗s of Chapter 3 is a stationary

point of the iterative (non-stationary) partial dynamic optimal policy of this chapter; we would

further show that this stationary point is indeed the limit of the partial-dynamic policy using

some numerical examples in the next section.

4.3 Numerical Analysis

We now consider few numerical examples to study and compare the policies derived in previous

sections. We study various aspects related to the optimal policies like, the structure of the policy,

the performance comparison of different policies etc. In Figure 3.1 from Chapter 3 we observed

that the theoretical performance (derived after simplifying assumptions) well approximates the

MC estimates for practical values of load factors (even upto ρ = 0.5). The approximation is

good even for Poisson (passenger) arrivals, however only when the arrival rate is large. Thus

we anticipate the optimal policies (derived using those theoretical expressions) to improve the

performance even for real systems. Towards this, in all the experiments described in this sec-

tion, we have compared the performance improvement obtained using MC simulation based

estimates. These simulations are carried using a similar procedure as explained in subsection

3.1.4 from Chapter 3. In all these experiments, we observed that the theoretical estimates under

the optimal stationary policy (when computed) well approximates (well within 10% error) the

MC based estimates. Further all these experiments are for nominal values of λ in the range

of [10, 20], which again reinforces that the theoretical expressions well approximate that of the

actual system (with fluid arrivals) under nominal values of λ.

4.3.1 Structure of optimal policy

In Figure 4.1, we plot the optimal policy for small load factors, which is computed using Al-

gorithm 1 (and given by Theorem 4.1). Basically we plot the optimal depot headway h∗k (time

gap between starting instances of k and (k− 1) buses at depot), as a function of the trip number

k. As observed from the figure, the structure of the optimal policy is different for different

load factors. For very small loads (ρ = 0.1 in Figure 4.1) the depot headway is decreasing and
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Figure 4.1: Trip number versus optimal depot headway

finally converges to the corresponding stationary optimal headway (h∗s). And for larger load

factors (ρ ≥ 0.2), the depot headway is increasing initially and then starts decreasing to optimal

h∗s. For low load factors, the number of passengers waiting for the initial trip may not be signif-

icant, hence it starts with smaller frequency (higher headway) of operation. However when the

load factors are high, the people waiting for the first bus might be significant, which is probably

the reason for increased frequency of operation for these initial trips (see Figure 4.1).

The transient behaviour is different for different regimes of load factors, however in all

cases the headway settles down (as the trip number increases) to the corresponding stationary

optimal value h∗s given by (3.10) from Chapter 3. Recall that this stationary optimal value is

also the limit of non-stationary policy as derived in (4.16), thus the observation of the Figure

4.1 reinforces the discussion of subsection 4.2.2.

The policy might settle down eventually to h∗s, however as noticed we have significant (load

factor dependent) transience prior to this and this leads to substantial improvement. We will

observe in subsequent examples a significant improvement in both the performance measures

(bunching probability as well as expected waiting times), when one uses optimal non-stationary

policies in place of optimal stationary policies.
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4.3.2 Comparison of the Algorithms

In this subsection, we compare the performance measures obtained under various algorithms;

Algorithm 1, Algorithm 2. We show that the much simpler (approximate) Algorithm 2 works

almost as good as the exact Algorithm 1.

ρ
Exact DP Approximate DP Error(%)

BP WT BP WT BP WT

0.05 0.00066 1.459 0.00068 1.459 3.03 0

0.1 0.00124 2.230 0.00123 2.235 0.81 0.22

0.2 0.00479 6.038 0.00483 6.078 0.84 0.66

0.3 0.01942 16.399 0.01953 16.494 0.57 0.58

0.35 0.03910 25.730 0.03981 25.783 1.82 0.21

0.4 0.07976 37.930 0.08262 37.668 3.59 0.69

Table 4.2: Solutions and Performance of Exact and Approximate DP equations, β = 0.1

ρ
Exact DP Approximate DP Error(%)

BP WT BP WT BP WT

0.05 0.00141 2.377 0.00142 2.377 0.71 0

0.1 0.00265 3.790 0.00262 3.794 1.13 0.11

0.2 0.01042 10.596 0.01045 10.631 0.29 0.33

0.3 0.04352 27.542 0.04427 27.538 1.72 0.01

0.35 0.09274 40.423 0.09445 40.078 1.84 0.85

0.4 0.20972 50.542 0.21544 48.417 2.73 4.2

Table 4.3: Solutions and Performance of Exact and Approximate DP equations, β = 0.2

In Tables 4.2 and 4.3 we compare the performance measures corresponding to Algorithm 1

and Algorithm 2 through numerical simulations for different load factors (ρ), which is tabulated

in the first column. The performance measures obtained using exact dynamic programming

equations (Algorithm 1) are tabulated in the next two columns, while that with the approximate

algorithm (Algorithm 2) are in the fourth and fifth columns. The percentage errors are calculated

and tabulated in the last two columns. For both the tables, we setM = 10, T = 35, λ = 20, α =

2000. We consider different traffic variabilities in the two tables; we set β = 0.1 in Table 4.2
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and β = 0.2 in Table 4.3. We notice from both the Tables that the performance measures with

approximate algorithm well matches that obtained by solving exact DP equations. By Lemma

4.2 and related discussions, we proved that the approximation is good for low load factors.

However we notice from the tables that the approximation is good even for load factors upto

ρ = 0.4. In fact the approximation error is well within 5%, where the percentage error is

calculated as below:

percentage error =
|approximate value− exact value|

exact value
× 100.

Thus the approximate algorithm is a good substitute for sufficiently large range of load factors.

Further these simulations also indicate that the DP solutions given by Theorem 4.1 are good for

a large range of load factors.

4.3.3 Pareto Frontier and comparison with stationary policies

We now compare the two dynamic policies with the optimal stationary policy h∗s. Towards

this, we plot the Pareto frontier of performance measures in Figures 4.2 and 4.3. The Pareto

frontier is obtained by the MC estimates of both the performance measures, basically using the

optimal policies given by (4.6), for different α. The figure also shows the performance under

various optimal stationary policies (3.10 from Chapter 3), corresponding to the same set of

trade-off factors α. We conduct the experiment with M = 5, T = 30, s = 1, β = 0.1, λ = 20

and ρ = 0.1 in Figure 4.2 and ρ = 0.01 and T = 200 in Figure 4.3. We first observe that

the approximate algorithm (Algorithm 2, given by straight line) once again well matches the

Algorithm 1 (given by stars) in all examples.

We can also observe that the performance corresponding to both the algorithms is signif-

icantly better than the corresponding stationary optimal performance in Figure 4.2. However

in Figure 4.3 the performance under stationary policy is almost similar to that under dynamic

policies. For this example case, the number of trips T = 200, which is significantly high and

ρ = 0.01 the load factor is significantly small. We conducted many more such experiments and

found similar observations. Some more examples are discussed below.

In Table 4.4 we compare the optimal average waiting time of passengers corresponding to

stationary and partially dynamic policies (Algorithm 1), while maintaining the same bunching

probability. Basically we choose/tune different α for the two cases such that their bunching

probabilities are (almost) the same and then compare the respective passenger average waiting
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Figure 4.3: Expected waiting time versus bunching probability

times. We conduct the experiment with M = 10, T = 35, λ = 20 and s = 5. The parameters

traffic variability (β) and load factor (ρ) are tabulated in the first column. As already mentioned,

we choose different values of α for the two policies such that the bunching probabilities are

almost equal (under both the policies) and these values are reported in the next two columns.

We then tabulate the corresponding average passenger waiting times in the fourth and fifth

columns. We compare any two policies using an index call N.P.I (Normalised Performance

Improvement) of appropriate performance measures (e.g., waiting in this case study), which is

defined as below:

N.P.I. =
|dynamic performance -stationary performance |

dynamic performance
× 100.

The performance index N.P.I. is tabulated in the last column and is a large positive value for all
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β, ρ
Bunching probability Waiting time N.P.I (%)

Stationary Dynamic Stationary Dynamic WT

4,0.05 0.0418 0.0418 30.41 28.76 5.7

4,0.1 0.1133 0.1129 44.5 38.18 16.5

4,0.15 0.2584 0.2562 60.03 46.04 30.4

2,0.1 0.0741 0.0738 28.19 22.03 27.9

2,0.2 0.3255 0.326 63.95 36.07 77.3

1,0.1 0.0735 0.0731 17.46 12 45.5

1,0.2 0.2427 0.244 47.23 23.51 100

Table 4.4: Performance of Dynamic and stationary analysis

row, quantifying the (huge) improvement provided by the dynamic policies. When the traffic

variability is high and the load is small (see first two rows of Table 4.4), the stationary perfor-

mance is comparable (N.P.I. is within 16% ). But at high loads, the dynamic policies are far

superior.

4.3.4 Performance at high load factors

As already discussed, our performance analysis of the transportation system is accurate when

the bunching probabilities are small. Further Theorem 4.1, providing the optimal dynamic

policy, is accurate under low load conditions. We now consider the sub-cases/examples in

which the above mentioned assumptions are not valid. For example we consider the cases with

moderate/high load factors. One can easily extend the policy defined by Theorem 4.1 (or given

by Algorithm 1) to this case, but we are not clear if this policy would perform well? Basically,

in this sub-section we would like to verify that our dynamic policies improve (in comparison

with the ’best’ static policies), even for the case studies for which the policy may not be optimal.

As shown in Figure 3.2 or 3.3 from Chapter 3, as the load/traffic variability increases,

the stationary policy (3.10) from Chapter 3 is no more close to the optimal one obtained using

MC simulations. Hence one can not use stationary policy (3.10) from Chapter 3 for comput-

ing the N.P.I. (with the purpose of comparing dynamic policy with a ‘good’ stationary policy).

We instead estimate the optimal stationary policy using the MC based estimates (of the perfor-
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mance) exactly as in Figure 3.1 from Chapter 3, and compare its performance with that under

the dynamic policy given by Algorithm 1. The following is the exact procedure of comparison.

• Choose a value of α and obtain the MC estimates of the performances under the dynamic

(Algorithm 1) policy, PBdy and EWdy
.

• Consider a fine grid of [0, 1000], where each value in the grid can represent a stationary

headway policy. Compute MC performance when the successive buses depart from the

depot after fixed headway given by one of the grid values. Choose the ĥ∗ for which the

MC estimate of PB is close to PBdy .

• Find the MC based estimate of the expected passenger waiting time, EWst at ĥ∗.

• Compare the dynamic waiting time EWdy
with the best MC-based expected waiting time

EWst by computing the corresponding N.P.I.

By this procedure we obtained (an estimate of) the best average passenger waiting time under a

static policy, further under the constraint that the bunching probability is within PBdy .

ρ
Bunching probability Waiting time N.P.I. (%)

MC Stationary Dynamic MC Stationary Dynamic WT

0.4 0.2076 0.2152 24.93 13.52 84.4

0.5 0.2795 0.2799 54.05 17.34 211.7

0.6 0.4049 0.4054 187.35 23.94 682.6

Table 4.5: Performance of Dynamic and stationary analysis, the optimal stationary policy ob-

tained using MC based estimates

In Table 4.5, we tabulate the N.P.I.s as obtained by the procedure given above for different

case studies with high load factors. We conduct the experiment with M = 5, T = 35, λ = 20,

β = 0.2 and s = 10. The load factor is tabulated in the first column. All the relevant perfor-

mance measures are tabulated in various columns as indicated in the Table. The N.P.I. compar-

ing the average waiting times under the dynamic policy and the MC based optimal stationary

policy is tabulated in the last column. The N.P.I is a large positive quantity (above 84%) demon-

strating that our dynamic policy performs significantly better than any ‘good’ stationary/static

policy, even under large road factors.
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We conclude that the dynamic policies perform significantly better than the stationary

policies under normal operating conditions. However analysis/study of the stationary policies

is still important: a) because they are much simpler to implement; and b) because these policies

are widely used in practice as of now.

4.4 Correlated Travel times

Previously we considered independent travel times, i.e., we had the following model:

Sjk+1 = sj +N j
k+1,

where sj was fixed across various trips. In certain scenarios, especially when the frequency

of buses is high, it is more appropriate to consider correlated travel times as below: recall

{N j
k+1}k, j are IID random variables which are normally distributed with mean 0 and variance

β2 and Sjk is the k-th bus travel time to stop j,

Sjk+1 = Sjk +N j
k+1.

One can easily extend the analysis to this case and we mention the required changes. Firstly we

have the following result regarding the inter-arrival times:

Lemma 4.4. For correlated travel times, we have:

I ik =

min{k−1,i−1}∑
l=0

γilhk−l +

min{k−1,i−1}∑
l=0

i−l∑
j=1

γi−j+1
l W j

k−l

I ik − ρI ik−1 =

min{k−1,i−1}∑
l=0

γilhk−l +

min{k−1,i−1}∑
l=0

i−l∑
j=1

γi−j+1
l W j

k−l − ρ
min{k−2,i−1}∑

l=0

γilhk−1−l

−ρ
min{k−2,i−1}∑

l=0

i−l∑
j=1

γi−j+1
l W j

k−1−l

E[I ik] =

min{k−1,i−1}∑
l=0

γilhk−l

(σic,k)
2 = variance

(
I ik − ρI ik−1

)
= β2

min{k−1,i−1}∑
l=0

i−l∑
j=1

(
γ̃i−j+1
l

)2
+
ρ2(1− ρ2i)

1− ρ2

 .

Proof: is in Appendix A. �

As with independent travel times, the inter-arrival times and the difference {I ik − ρI ik−1}k
become stationary with constant headways (i.e., when hk ≡ h for some h > 0), once k > M .

43



Further the dependency of various terms on the history is almost as in Lemmas 2.1-2.2 from

Chapter 2 for independent travel times, except for the variances. One can notice that (σik)
2

(variance
(
I ik − ρI ik−1

)
corresponding to independent travel times given in Lemma 2.2 from

Chapter 2) is different from (σic,k)
2 given in the above lemma, but the rest of the coefficients are

exactly the same.

4.4.1 Stationary policies

One can obtain the optimal head way policy among stationary policies as in section 3.1 from

Chapter 3:

h∗s =


√
− log(C1)

C2
, with C1 = M

√
2πσMc

2α(1−ρ)
and C2 = (1−ρ)2

2(σMc )2
, if α ≥M

√
2πσMc /2(1− ρ)

0 else.
(4.17)

The above optimal policy is structurally the same as the optimal policy (3.10) of section 3.1.3

from Chapter 3, the only difference being in variance.

4.4.2 Partially dynamic policies

As in section 4.1, one can consider the analysis of first few trips and derive optimal control

when one starts with the first trip. In this sub-section we present a slightly different alternative

which is of independent importance. We consider control of some T -trips after some t0 initial

uncontrolled trips with t0 > M . There could be more turbulences after some initial period and

control may become important after t0 trips. For this case the optimal control policy can be

computed as in the previous case and we have the following:

Theorem 4.5. Assume t0 > M and T ≥ 1. Define the following constants using the variance(
I ik − ρI ik−1

)
corresponding to correlated travel times (with remaining coefficients as in Table

4.1) for all T − t0 − 1 ≥ k ≥ 1

ac,T−k = σMc,T−k

√√√√−2 log

(
ηT−k0

√
2πσMc,T−k
γ̃M0 α

)
, (4.18)

δT−kc = α
(
1− ΦM

k (ac,T−k)
)

+ ϑMk +
ηT−k0 (ac,T−k −$M

T−k)

γ̃M0
+ δT−k+1

c .

If for any trip T − k (with T − t0 − 1 ≥ k ≥ 1), the following condition is satisfied

α > e(
∑M
l=1 hT−k−lγ̃

M
l )

2 ηT−j0

√
2πσMc,T−j
γ̃M0

for all 0 ≤ j < k and ηT−k0 > 0, (4.19)
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then the optimal policy and the value function are respectively given by:

h∗T−k(hT−k−1) =
1

γ̃M0

[
−

M∑
l=1

hT−k−lγ̃
M
l −$M

T−k + ac,T−k

]
, and (4.20)

v∗T−k(hT−k−1) =
M∑
l=1

hT−k−l

(
γ̃M0 ηT−kl − ηT−k0 γ̃Ml

γ̃M0

)
+ δT−kc . (4.21)

Proof: The constants and the hypothesis is similar to Theorem 4.1. The only difference is

variance. Hence the proof is in similar lines as with the proof of Theorem 4.1. �

One can again prove the validation of the hypothesis of this theorem for low-load factors

exactly as in Lemma 4.2. We finally conclude that the optimal policy for the case with corre-

lated travel times is similar to the ones in Algorithms 1-2, except for the variance term and its

influence on the coefficients {ac,T−k}k. It is trivial to realize that Algorithms 1-2 can also work

with intermediate trips control (i.e., for the case t0 > M ), for which the terms like {$T−k}k are

excluded in (4.11).

ρ
Bunching probability Waiting time

N.P.I. (%)
Stationary Dynamic Stationary Dynamic

0.1 0.0011 0.0009 1.14 1.14 22.2

0.2 0.0044 0.0039 3.16 3.13 12.8

0.3 0.1065 0.0923 5.45 5.4 15.4

0.4 0.2676 0.2164 20.19 20.08 23.7

Table 4.6: Performance of Dynamic and stationary analysis under correlated travel times

4.4.3 Numerical analysis

In Table 4.6, we compare the bunching probabilities corresponding to stationary and dynamic

policies while maintaining the same average waiting time. We set M = 10, T = 40, λ =

20, β = 0.1 and s = 1. The load factor (ρ) is tabulated in the first column. The bunching

probabilities corresponding to both the policies are tabulated in the next two columns. We

choose different values of α for the two cases such that the corresponding passenger average

waiting times are almost equal and these values are tabulated in the fourth and fifth columns.

The N.P.I. (in bunching probability) of dynamic policy when compared to stationary policy
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is tabulated in the last column. The performance is always better with the dynamic policy.

The N.P.I. is less when compared to independent travel times, however this is because of low

traffic variability (β). We will observe in the next example ( Figure 4.4) that the N.P.I. is a

huge positive quantity, and this example has large β (traffic variability). In fact we considered

many more case studies and found huge improvement, for all cases with medium/high traffic

variability. For the cases with low traffic variability, we still have improvement, in the range of

13% to 23%.
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Figure 4.4: Expected waiting time versus bunching probability under correlated travel times

In Figure 4.4, we plot the Pareto frontier of both the performance measures, under both the

type of policies. The Pareto frontier is obtained by MC estimates of both the performance mea-

sures for different α. We conduct the experiment with M = 10, T = 40, s = 10, λ = 20, β = 2

and ρ = 0.3. One can observe from the Figure 4.4 that the dynamic policies significantly out-

perform the stationary policies.

4.5 Summary

We considered a bus transport system, where the buses start their journey from the depot and

traverse along a cyclic route repeatedly. We considered fluid arrivals and boarding times, Gaus-

sian (bus) travel times and derived two important performance measures, bunching probability

and passenger-average waiting time. We derive these performance measures ‘partially’ dynamic

46



policies (headway of any trip depends upon some information related to previous trips). In these

policies, the headway decision depends upon the headways of the previous trips; it is indepen-

dent of other details of previous trips (e.g., trip times, number of waiting passengers at various

stops etc). Thus our partially dynamic policies depend upon easily available (cheap) informa-

tion, nevertheless, they perform significantly better than (commonly used) stationary policies

discussed in Chapter 3.

We obtained (stationary) Pareto frontier, the set of all efficient points; each efficient point

is a pair of performance measures obtained by a stationary policy, such that there exists no other

stationary policy which can simultaneously improve both the performances. The Pareto frontier

is obtained by solving several optimization problems: a) each problem optimizes a weighted

combination of the two performance measures; and b) the complete frontier is obtained by

considering all possible trade-off parameters/weights.

We also derived partially dynamic Pareto frontier, by optimizing over the partially dy-

namic policies. We derived this dynamic frontier by minimizing the weighted-combined costs

using corresponding dynamic programming equations. We obtained closed form expressions

for the optimal policies under low load conditions; the optimal policies depend linearly upon

the previous headway times. Using Monte-Carlo based simulations we demonstrated that our

linear (dynamic) policies significantly outperform the best static/stationary policy under all load

conditions; the stationary Pareto frontier is significantly away from the dynamic Pareto frontier.

By using asymptotic analysis, we further proposed a simplified algorithm to implement the

optimal policy. The simplified algorithm has almost similar performance as that of the exact

algorithm implementing the optimal policy.

We derived the optimal policies under correlated as well as independent (bus) travel times.

The optimal policies are structurally (linearly depends upon previous headways) the same, for

both the types of travel times; the only difference is in (some) constants/coefficients defining

the policy.
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Chapter 5

Bus bunching: dynamic policies

In this chapter, we discuss the fully dynamic policies. These are the actual closed loop policies,

while the previous two types of policies are open loop policies. In Chapter 4 we viewed the

previous (trip) decisions as state and derived the optimal policies, as result we referred them as

partially dynamic policies. In reality these are again open-loop, (but) time varying policies.

The system model and related performance measures are similar to previous chapters ex-

cept for the following: we consider Markovian travel times (as in previous chapter 4) and further

extend the results to the case with different passenger arrival rates at different bus-stops. Be-

cause of these two significant differences, for ease of clarity, we choose to describe the system

completely in this chapter (also repeating some of the modelling details of Chapter 2).

We obtain near optimal policies; these depend linearly upon the previous trip headways

and the bus-inter arrival times at various stops corresponding to the latest trip whose information

is available.

5.1 Problem description

We consider a bus-transport system with M bus stops; one of them is a depot at which all the

buses start. The journey of any bus starts at the depot, it traverses through the entire path board-

ing and de-boarding the passengers at various stops en-route and finally stops at the depot. In

most of the systems, the successive buses depart from the depot at equal intervals of time; these

time gaps are referred to as depot-headways. These (equal/constant) headways are designed

based on the operating time of the day, the expected demand for the service at the given time,

Results of this chapter are ready to be submitted.
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the traffic conditions etc, according to some practice rules.

As already mentioned, our aim is to design the depot-headways according to the sense

of optimality (as in previous chapters), but now the ‘optimal’ headways also depend upon ‘true

system state’. To be more precise, we consider that the system has to choose T headways, which

determine the starting time points of T number of consequent trips. The design of these head-

ways can depend upon the details of some of the previous trips (if any), trips that occured just

before the controllable part of the trips, and these are discussed in the coming sections. Thus to

summarize, we would like to design dynamic headway policies, that decide the headway/time-

gap before the next bus departure, based on the information available at the departure time of

the previous bus.

We now (re)describe the notion of optimality considered in this Chapter. We are interested

in the two performance measures; a) Bunching probability: We consider bunching probability,

the probability that two buses start travelling together somewhere along the path; b) Passenger-

average of the waiting times: We consider the average of waiting times of all the passengers.

Thus we have a multi-objective problem and hence consider the well known Pareto optimal

solutions, by optimizing a weighted sum of the two performance measures. To begin with, we

describe the precise details of the system model and the required assumptions.

5.1.1 System model

Let Sik be the time taken by the k-th bus to travel between the stops (i− 1) and i. We consider

Markovian (correlated) travel times, between any two stops. To be precise we assume that

Sik = Sik−1 +W i
k, for any, k ≥ 0, and Si0 = si,

where W i
k is the random difference between two successive travel times and {si}i are the so-

journ times of the first trip. We assume {W i
k}k are IID (Independent and Identically distributed)

Gaussian random variables with mean 0 and variance β2 and this is true for all stops i. Further

these are independent across the stops.

To analyse this system, one needs to study the dwell/visit times of various buses at various

stops, inter-arrival times between successive buses at different stops etc. Towards this we make

some assumptions R.1 to R.5 from Chapter 2 along with the following assumption.

A. Fluid arrivals and boarding: The number of passengers arrived to a stop, during a period

t equals λt, where λ > 0 is the arrival rate. More details about this modelling is provided in
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the next section. The time taken to board X number of passengers equals bX , where b > 0 is

the boarding rate.

These assumptions are not very restrictive, and are satisfied by most of the commonly

used practices in bus transport systems. The fluid arrivals can be justified owing to Elementary

Renewal theorem, and because typical (bus) inter-arrival times at any stop would be significant;

passenger arrival (e.g., Poisson) process can be modelled as renewal process with rate λ and

then the number of passenger arrivals in a large time interval [0, t] (during one bus inter-arrival

time), approximately equal λt.

5.1.2 Bus (stop) inter-arrival times

Because of the above assumptions, the number of passengers boarding a bus in any trip k and at

any stop i equals the ones that arrived during the bus-inter arrival time I ik := Aik −Aik−1, where

Aik is the arrival instance of k-bus at stop i. Thus the total number of passengers X i
k waiting at

stop i, at bus arrival instance, equals λiI ik. Thus the dwell time of k−th bus at stop i equals1:

V i
k = X i

kb = bλiI ik = ρ(i)I ik with ρ(i) := λib. (5.1)

In the above, ρ(i) represents the load factor of the stop i, for all 1 ≤ i ≤M .

Let hk be the headway between (k − 1)-th and k-th bus at depot. Then the inter-arrival

times are given by:

I1
k =

(
hk + S1

k

)
− S1

k−1 = hk +W 1
k for first stop, similarly

I ik = hk +
∑

1≤j≤i

Sjk +
∑

1≤j<i

V j
k −

(∑
j≤i

Sjk−1 +
∑
j<i

V j
k−1

)
= hk +

∑
1≤j≤i

W j
k +

∑
1≤j<i

ρ(j)
(
Ijk − I

j
k−1

)
for any stop i. (5.2)

The last equality follows by fluid arrival and gated service assumptions as in (5.1).

The analysis of these inter-arrival times are instrumental in obtaining the results of this

Chapter. In Lemmas 9.1-9.2 provided in Appendix B, it is shown that the inter-arrival times are

Gaussian and their expectations, variances are computed.

We now describe the Markov decision process based problem formulation that optimizes

a given weighted combination of the two performance measures, the bunching probability and

the passenger-average waiting times.
1 Since bunching is a rare event we neglect the affects of A.5 in this part of the modelling. Further this is a

common practice in many transportation systems like Trams, metros, local train etc

51



5.2 Markov Decision Process (MDP)

5.2.1 Decision epochs, State and Action spaces

When the (k − 1)-th bus leaves the depot, the system needs to determine the headway for the

k-th bus. A decision at this epoch, can depend upon the available system state. One will have

access only to delayed information: the headway decision for the current bus has to be made

immediately after the previous bus departs the depot, the information related to the previous bus

trajectory (no delay) is obviously not available. Further one may not even have the information

about some of the trips, previous to the trip that just started.

We assume the availability of d-delayed (with d ≥ 1) information; the bus-inter-arrival

times {Ijk−d−1}1≤j≤M−1−d at various stops related to (k−d−1)-th trip are known at k-th decision

epoch. As in previous chapter, one can also have access to the information about the headways

of all the previous trips {hk−l}l≥1; there is no delay in this component of the information. We

will observe later that one requires only the headways of the unobserved trips, that of d-previous

trips. Thus, in all, at (k − 1)-th bus departure (i.e., at k-th decision epoch), we have access to

the following state (see equation (5.2)):

Yk = (hk−1, . . . , hk−d, {Ijk−d−1}1≤j≤M−1−d). (5.3)

By fluid arrivals and gated boarding, this state is equivalent to the number of passengers board-

ing the bus at various stops corresponding to the latest available trip (see equation (5.1)).

Remarks: In (5.3), it is interesting to observe that we require only the information related to

first (M−1−d) stops of the (k−d−1)-th trip; it becomes evident from Theorem 5.1 (given be-

low) that such a state is sufficient if one has access (at maximum) to d-delay information. From

Lemmas 9.1-9.2 of Appendix B the random components (I ik and I ik − ρ(i)I), that define the re-

quired performance measures related to the k-th trip, depend at maximum upon the information

related to stops 1, 2 · · · i− 1− d, when d-delay information is available.

It is easy to observe that the random vector sequence {Yk}k forms a Markov Chain, whose

evolution depends upon the headway (of the current trip that needs to be decided) and the

previous state and hence is a controlled chain.
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Trips prior to the controlled trips

Initial trips may have light load conditions (passenger arrival rates) and can be subjected to

small variations in traffic, load conditions. Alternatively, in some cases the initial trips can be

subjected to high load conditions. Further, one may consider controlling some of the trips and

not all, probably ones that have maximum fluctuations. It is clear that some of the trips (just

prior) to the controlled ones also influence the performance.

By abuse of notation, we call all the previous trips that influence the controlled trips (the

one whose headways are to be controlled) as initial trips. As in Chapter 3, one can show that

only some t0 (to be more precise (at maximum) previous (M + 1)-trips can influence) previous

trips would influence. We assume that the buses operate during these initial trips (say t0 of

them) at some fixed headway h0. We consider controlling the depot-headway starting from trip

t0 + 2, and to keep the notations simple, we refer (t0 + 2 + k)-th trip by index k. Alternatively

one can consider controlling the buses starting from the first trip as in our previous Chapter 4.

More details about these two varieties of initial trips are provided in Remarks after Theorem

5.1.

5.2.2 Performance measures

Passenger waiting times

We compute the passenger waiting times as in Chapter 2. Recall, the waiting time of a typical

passenger is the time gap between its arrival instance at the stop and the arrival instance of

its bus (to the same stop). Let W i
n,k be the waiting time of the n-th passenger that boards the

k-th bus at stop i. The customer average of the waiting times corresponding to trip k and stop i

equals (e.g., Chapters 3,4):

w̄ik ,
W̄ i
k

X i
k

with W̄ i
k :=

Xi
k∑

n=1

W i
n,k.

Fluid approximation/arrivals: The passengers are assumed to arrive at regular intervals (of

length 1/λ), with λ large. The waiting time of the first passenger during bus inter-arrival period

(I ik) is approximately2 W i
1,k ≈ I ik, that of the second passenger is approximately W i

2,k ≈ I ik −

1/λi and so on. Thus as λi → ∞, 1 ≤ i ≤ M , the following (observe it is a Riemann sum)

2 The residual passenger inter-arrival times at bus-arrival epochs get negligible as λ→∞.
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(
i
l

)
= 0 when i < l, for all 1 ≤ i ≤M , 0 ≤ l ≤ d,

for all 1 ≤ j ≤M, 0 ≤ d ≤M

γi−1
l = (−1)l

(
1l=0 +

(
1
l

)∑i−1
j1=1 ρ

(j1) +
(

2
l

)∑i−1
j1<j2

ρ(j1)ρ(j2) + . . .

+
(
i−1
l

)∑i−1
j1<j2<...ji−1

ρ(j1)ρ(j2) . . . ρ(ji−1)

)
,

γ̄l = 1
2

∑M
i=1 γ

i−1
l , γ̃i−1

l = γi−1
l − ρ(i)γi−1

l−11l>0,

$i−1
l,r = (−1)l

(
1l=0 +

(
1
l

)∑i−1
j1=r ρ

(j1) +
(

2
l

)∑i−1
j1<j2

ρ(j1)ρ(j2) + . . .

+
(
i−1
l

)∑i−1
j1<j2<...ji−1

ρ(j1)ρ(j2) . . . ρ(ji−1)

)
,

$̄d,j+1 =
∑M

i=j+1$
i−1
d,j+1,

$̃i−1
d,j+1 = ρ(j)$i−1

d,j+11j<i−d − ρ(i)ρ(j)$i−1
d−1,j+1,

µ̃i−1
l,r = $i−1

l,r 1r<i−l+1 − ρ(i)$i−1
l−1,r1l>0,

ω2 = β2
(∑d

l=0

∑M−l+1
r=1

(
µ̃M−1
l,r

)2
)

ηlT−k = 1

γ̃M−1
0

((
γ̄l + 1l<dη

l+1
T−k+1 − 1l=d

∑M−d
j=1 ψjT−k+1γ

j−1
0

)
γ̃M−1

0

−
(
γ̄0 + η1

T−k+1

)
γ̃M−1
l

)
and ηlT+1 = 0 for all k ≥ 0

ψjT−k =

(
ρ(j)$̄d,j+1 +

∑M−1−d
r=j ψr+1

T−k+1ρ
(j)$r

0,j+1

)
1j<M−d − $̃M−1

d,j+1

(γ̄0+η1T−k+1)
γ̃M−1
0

and ψjT+1 = 0 for all k ≥ 0,

aT−k = ω

√
−2 log

(
(γ̄0+η1T−k+1)

√
2πω

γ̃M−1
0 α

)
,

δT−k
(γ̄0+η1T−k+1)aT−k

γ̃M−1
0

+ α [1− Φ (aT−k)] + δT−k+1, and δT+1 = 0 for all k ≥ 0 .

Table 5.1: Notations and constants

converges:

W̄ i
k

λi
=

1

λi

λiIik∑
n=0

(
I ik −

n

λi

)
→
∫ Iik

0

(I ik − x)dx =
(I ik)

2

2
. (5.4)

Thus for large λi,

w̄ik ≈
I ik
2

because W̄ i
k ≈ λi

(I ik)
2

2
and X i

k ≈ λiI ik. (5.5)

We refer this approximation throughout, as the fluid approximation. One gets the same ex-

pressions for the average waiting times even with Poisson arrivals and hence these conditional
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expressions (conditional on bus inter arrival times) are valid for Poisson arrivals (see Chapter

4) also.

The trip average of the waiting times is given by:

1

T

T∑
k=1

M∑
i=1

E[w̄ik] =
1

T

T∑
k=1

M∑
i=1

E[I ik]

2
,

which is one of the components to be optimized. By Lemma 9.1 (Appendix B), the conditional

expectation given the state Yk and the depot-headway decision hk equals (see (5.3)):

E
[
I ik

∣∣∣Yk, hk] =
d∑
l=0

hk−lγ
i−1
l −

i−1−d∑
j=1

ρ(j)Ijk−1−d$
i−1
d,j+1 for any k ≥ 1, (5.6)

where the coefficients are tabulated in Table 5.1.

Bunching probability

Starting from the depot, the buses travel on a single route with some headway (time gap between

successive arrivals to the same location) between successive buses. If these headways were

maintained constant thought their journey, the successive buses would not meet each other.

However, because of variability in load/traffic conditions, the above is not always true. A bus

can get delayed (to some stop) significantly because of the random fluctuations. The delayed

bus has larger number of passengers to board and hence is further delayed for the next stop.

The trailing bus has lesser number of passengers and hence departs early from the stop. This

continues in the subsequent stops, and there is a possibility of the headway between the two

buses becoming zero. This is called bus bunching.

Bus bunching increases the waiting times of passengers, further and more importantly

wastes the capacity of the trailing buses. Thus the system becomes inefficient. The larger depot

headway times decreases the chances of bunching but, however, increases the passenger waiting

times. Thus one needs an optimal trade-off.

The bunching probability is the probability that a bus arrives to a stop before the departure

of the previous bus. Recall this is the probability that the dwell time of (k − 1)-th bus, V i
k−1

given by (5.1) is greater than the inter arrival time between (k − 1) and k-th buses, I ik given by

(5.2):

P i
Bk

= P (V i
k−1 > I ik) = P (I ik − ρ(i)I ik−1 < 0). (5.7)

We consider optimizing the bunching probability of the last stop, as this stop experiences max-

imum variations. Conditioned on Yk, hk the value IMk − ρ(M)IMk−1 is Gaussian distributed (see
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(5.2)) and from Lemma 9.2 of Appendix B, we have for any k ≥ 1 (constants are given in Table

5.1):

P φ
(
IMk − ρ(M)IMk−1 < 0

∣∣∣Yk, hk) = 1− Φ
(
E
[
IMk

∣∣∣Yk, hk]− ρ(M)E
[
IMk−1

∣∣∣Yk, hk])
= 1− Φ

(
d∑
l=0

hk−lγ̃
M−1
l −

M−d∑
j=1

Ijk−1−d$̃
M−1
d,j+1

)
, (5.8)

Φ(x) :=

∫ x

−∞

1√
2πω2

exp

(
−t2

2ω2

)
dt,

where Φ is the cdf of a normal random variable with mean 0 and variance ω2. Observe that the

variance ω2 does not depend upon headway policy, rather only depend upon the load factors of

various stops and traffic variability. However, also observe that the bunching probability depend

upon the headway policy.

5.2.3 The MDP problem

Let φ = (d1 · · · , dT ) be any Markov policy, in that dk(y) represents the depot headway for

the k-th bus if the system observes the state y. We choose a headway in the range [0, h̄] for

some h̄ < ∞. The expected values of the above two cost components depend upon the policy

φ and the initial trajectories specified by (t0, h0) (see sub-section 5.2.1). To be more specific,

given (t0, h0) one has probabilistic description of the system state Y1. Let Eφ
t0,h0

represent

the expectation given the policy and the initial conditions, at times we omit the subscript and

superscript to keep notations simple. We have multi-objective (two) optimization and a natural

way is to optimize the following weighted combination of the two costs (5.6), (5.8):

J(φ;h0, t0) =
T∑
k=1

Eφ
[
w̄ik
]

+ αP φ
(
IMk − ρ(M)IMk−1 < 0

)
=

T∑
k=1

Eφ
t0,h0

[r(Yk, hk)] with

r(Yk, hk) =
M∑
i=1

E[I ik|Yk, hk] + αP φ
(
IMk − ρ(M)IMk−1 < 0

∣∣∣Yk, hk)
=

d∑
l=0

hk−lγ̄l −
M−1−d∑
j=1

ρ(j)Ijk−1−d$̄d,j+1 + α

[
1− Φ

(
d∑
l=0

hk−lγ̃
M−1
l −

M−d∑
j=1

Ijk−1−d$̃
M−1
d,j+1

)]
,

where α > 0 is the trade-off factor and the constants are in Table 5.1. Our objective is to obtain

a policy that optimizes the following for any given (t0, h0):

v(t0, h0) := inf
φ
J(φ; t0, h0).
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It is easy to verify that the above value function equals:

v(t0, h0) = Et0,h0 [v(Yd)] ,

and this can be solved by solving the MDP problem for any given initial condition yd =

(hd−1, hd−2, · · · , h0, {Ij−1}j), i.e., by deriving the value function v(yd) for any yd (e.g., Put-

erman (2014)).

5.3 Optimal Policies

The optimal policy is obtained by solving dynamic programming (DP) equations using back-

ward induction. The DP equations, for any k < T are given by (Puterman (2014)):

vk(Yk) = inf
hk∈[0,h̄]

{rk(Yk, hk) + E [vk+1(Yk+1)|Yk, hk]} ,

vT+1(YT+1) = 0.

From the trip wise running costs (5.6)-(5.8), these equations are rewritten as (constants are given

in Table 5.1):

vk(Yk) = inf
hk∈[0,h̄]

{
d∑
l=0

hk−lγ̄l −
M−1−d∑
j=1

ρ(j)Ijk−1−d$̄d,j+1

+α

[
1− Φ

 d∑
l=0

hk−lγ̃
M−1
l −

M−d∑
j=1

Ijk−1−d$̃
M−1
d,j+1

+ E [vk+1(Yk+1)|Yk, hk]

]}
. (5.9)

One can derive optimal policies by solving these DP equations and there are many known

numerical techniques to do the same (e.g., Puterman (2014)). In the following we derive the

structure of near optimal policies (closed form expressions) for the case with small load factors:

Theorem 5.1. Assume T > M + 1 and assume α > (1 + φ̃)βM
√

2π/2 for some φ̃ > 0.

We define the coefficients {ηlk}k,l, {ψ
j
k}k,j and {ak}k backward recursively: first set ηlT+1 =

0 for all 0 ≤ l ≤ d, δT+1 = 0, ψjT+1 = 0 for all 1 ≤ j ≤ M and then set the rest of them as in

Table 5.1. There exists a ρ̄ > 0, such that for all ρ ≤ ρ̄ with ρ := max{ρ(1), ρ(2), . . . , ρ(j)} for

all 1 ≤ j ≤M :

α >
(γ̄0 + η1

T−k+1)
√

2πω

γ̃M−1
0

for all k ≥ 0. (5.10)
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Further for all such ρ, the following is an ε-optimal policy3 with4 ε = O(ρ):

h∗T−k(YT−k) = max
{

0, min
{
h̄, hucT−k(YT−k)

}}
, where (5.11)

hucT−k(YT−k) :=
1

γ̃M−1
0

[
−

d∑
l=1

hT−k−lγ̃
M−1
l +

M−d∑
j=1

IjT−k−1−d$̃
M−1
d,j+1 + aT−k

]
.

The expected value function (for any k, YT−k−1, hT−k−1) equals:

E[vT−k(YT−k)|YT−k−1, hT−k−1]

= E

[ d∑
l=1

hT−k−lη
l
T−k −

M−d∑
j=1

IjT−k−1−dψ
j
T−k + δT−k

∣∣∣∣YT−k−1, hT−k−1

]
+O(ρ). (5.12)

Proof: is in Appendix B. �

Remarks: i) Thus the ε-optimal policy is affine linear in the previous trip headways and the

bus-inter-arrival times. By the above theorem, the policy well-approximates the optimal one,

as ρ the load factor reduces. We will notice that the policy works well even for nominal load

factors (in some examples upto ρ = 0.5) in the next section.

ii) When d > M , one can notice from (5.11) that the optimal policy depends only upon

the previous trip headways. These are precisely the partially dynamic policies of the previous

chapter. These policies have exactly the same structure as in the previous chapter; the policies

are now for the case with varying load factors at various stops. Further we would like to point

an important difference between these two set of optimal (partially dynamic) policies (which is

also discussed in Chapter 4) :

• The partially dynamic policy of Chapter 4 is applicable when we apply the (headway)

control from the start of the system. In this case the first bus has to cater for all the

customers that arrived from the start, while the later buses serve only the customers that

arrived during a bus-inter-arrival period. Thus the nature of dynamics is different in these

two phases and as seen from policy (4.11) of previous chapter the effects of the initial

phase disappear after initial (M + 1) trips.

• Policy (5.11) (with d > M ) is the partially dynamic policy, when the buses were operating

for more than M trips before the control part started.

• Both types of initial dynamics could be of independent interest.
3 The cost under this policy is within ε radius of the optimal cost.
4 Big O notation: f = O(ρ), as ρ→ 0, implies f(ρ) ≤ Cρ for some constant C > 0, for all ρ sufficiently small.
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• One can derive fully dynamic policies for both kinds of initial phases in a similar way.

5.4 Numerical analysis
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Figure 5.1: Comparison between Partially dynamic and Dynamic policies.

We consider a particular case study of the optimal policy (5.11) to derive numerical anal-

ysis; the load factor is the same for all stops (ρ(i) = ρ for all i), and we have one-delay infor-

mation, i.e., d = 1. We conduct Monte-Carlo based simulations to estimate the performance of

the system, under various ‘optimal’ policies.

5.4.1 Partially Dynamic policies (Chapter 4)

In Chapter 4, we derived policies that depend only on previous headways. We refer them as

‘partially-dynamic’ policies, as they do not consider the random component of the system state

Yk. It is obvious that one can improve with the ‘fully’ dynamic policies of Theorem 5.1. In

this section, we study the extent of improvement provided by the extra information. Towards

this we reproduce the optimal policies of Chapter 4, for the purpose of easy comparison. For

all load factor ρ ≤ ρ̄, where ρ̄ > 0 is an appropriate constant, the optimal policy is given by

(hT−k := [hT−k−1, hT−k−2 · · ·hT−k−M ]):
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h∗T−k(hT−k) =

[
−

M∑
l=1

hT−k−lψ
p
l + ap∗

]
, with (5.13)

ap∗ =
σMM

(1 + ρ)M−1

√√√√−2 log

(
M
√

2πσMM
2(1− ρ)α

)
. (5.14)

ψpl =
1

(1 + ρ)M−1

(
(−1)l

(
M − 1

l

)
ρl(1 + ρ)M−1−l − (−1)l−1

(
M − 1

l − 1

)
ρl(1 + ρ)M−l1l>0

)
.

The constant σMM is from Lemma 4.4 of Chapter 4. Recall these are for the special case with

equal load factors in each stop.

5.4.2 Experiments

We conduct many Monte Carlo based simulations to compare the proposed dynamic policies

with the partially dynamic policies of Chapter 4. We basically generate several sample paths of

transport system trajectories, where each sample path is generated using a sample of the random

walking times between the stops and the random passenger arrivals at various stops for all the

T -trips. We dispatch the buses according to one of the two policies for different values of trade-

off factors α and obtain the estimates of the bunching probability and the average passenger

waiting times using the sample means.

In Figure 5.1, we plot the estimates of average passenger waiting times versus the estimates

of the bunching probability for different values of α and for both the policies. The details of the

experiment are mentioned in the figure itself. We notice a significant improvement with fully

dynamic policies. The curve of bunching probability versus expected waiting time obtained

with fully dynamic policy is placed well below that with partially dynamic policies. This implies

that one can simultaneously improve both the performance measures, when one has access

to more information about the system state. We conducted many more experiments and the

observations are similar.

In Table 5.2 we consider various system configurations, which is described in the first col-

umn. We choose different values of α for the two policies such that the bunching probabilities

are almost equal (under both the policies) and these values are reported in next two columns.

We then tabulate the corresponding average passenger waiting times in the last two columns.

These are the estimates averaged across all the T trips. The different configurations span across

different levels of traffic variability (β), different load factors during controllable trips (ρ) and

or different level of α/trade-off factors. In all the configurations, we notice a good improvement
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with fully dynamic policies. Since α were chosen such that the bunching probabilities of both

the policies are almost equal, one can study the improvement via the improvement in average

passenger waiting times. We observe that improvements are in the range of 21% to 44%.

Configuration Bunching probability Waiting times

Dynamic Partial Dynamic Partial

β = 0.3, ρ = 0.3, α big 1.95e-02 2.1e-02 18.42 25.29

β = 0.3, ρ = 0.3, α small 1.52e-01 1.51e-01 11.33 14.01

β = 0.4, ρ = 0.3, α big 1.78e-02 1.77e-02 24.41 34.15

β = 0.4, ρ = 0.3, α small 1.36e-01 1.37e-01 14.85 18.95

β = 0.2, ρ = 0.5, α big 2.64e-01 2.66e-01 144.23 185.81

β = 0.2, ρ = 0.5, α small 6.54e-02 6.51e-02 242.68 380.01

Table 5.2: Performance for various configurations with Initial trip details: ρ0 = 0.2, h0 = 100,

t0 = 12 and the controlled trip details: M = 10 T = 36 sj = 10 λ = 200.

5.5 Summary

Unlike the popular models considered in literature, we directly studied the inherent trade-off

between the two most important aspects of any bus transport system, the bunching possibilities

and the passenger waiting times. Further, we formulated a Markov decision processes based

problem to derive optimal (depot) dispatch (i.e., headway) policies that depend upon the random

state observed at various bus stops of the previous trips. The observation is that of the time gaps

between arrivals of the successive buses at the same stop.

We consider systems with Markovian travel times, fluid passenger arrivals and with d-delayed

information. The objective function optimized is the sum of a weighted combination of the

two performance measures, corresponding to all the trips of the given session. We obtained a

near-optimal dynamic policy for small load factors by solving the corresponding finite horizon

dynamic programming equations, using backward induction. This policy is linear in previous

trip headways and the bus-inter-arrival times corresponding to a previous trip (the latest trip

whose information is available at the decision epoch).

We conducted Monte-Carlo based simulations to plot the estimates of the average passenger
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waiting times and the bunching probability for various trade off factors. We also observed

that the proposed dynamic policy performs significantly better than the previously proposed

partially dynamic policies. These partially dynamic policies depend only upon the headways of

the previous trips.
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Chapter 6

Serve on the Move Wireless LANs

In previous chapters, we discussed the bus transportation system and issues related to bunching.

In this chapter, we study an economic wireless based data network exploit constructed to the

repeated journey of buses in a public transportation system (see Figure 6.1). Wireless LANs are

fitted into a public transport system (ferry) to serve the wireless users in the background, i.e.,

while the vehicle is on move. We obtained the stability conditions of both intersecting and non

intersecting queues. We obtain workload analysis of the system for some scheduling policies

and also discuss optimality.

6.1 System Model

A Ferry Based Wireless LAN (FWLAN) is moving along a closed tour C, of length |C|, repeat-

edly with constant speed α and is serving static users that are waiting along/near its path. It can

detect the waiting users, i.e., senses the existence of their signal, once the user is sufficiently

close. If a favorable scheduling decision is made, it starts serving the encountered user. It does

not stop to serve, rather it serves the user while on move. Thus the received signal starts fad-

ing away, as the server moves away from the user and service would be stopped once out of

visibility zone. Thus for every user there exists an interval on the path, which we refer to as

service interval, moving along which the server can potentially serve the user. Let Lp represent

the service interval of point p on the server path, whose length equals lp := |Lp|. The users in

the visible vicinity of the path can be projected on to the path.

The server attends the detected user, either when the previous user completes its service or when

Results of this chapter have been published in the proceedings of WiOpt-2015 (Kavitha and Rao (2015)).
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Figure 6.1: Serve on Move FWLAN

it moves out of the visibility zone of the previous user. It may also switch over to the new user

(the next visible user) either if the signal strength is significantly higher or if the load is higher,

depending upon the scheduling policy. Thus there is a possibility that the service of a user might

be postponed to the next cycle. In all, server attends: a) some customers from previous cycles;

b) some from the present cycle.

Arrivals: Every arrival requests for job requirements of size B and arrives at a random position

Q. We have N queues, and the probability that an arrival lands in queue Qi is given by:

Prob(Q ∈ Qi) = qi with
N∑
i=1

qi = 1. (6.1)

The service requests arrive at rate λ per cycle and these arrivals are modeled either by a Poisson

process or as Bernoulli arrivals. In either case, the rate of arrival (per cycle) into a queue Qi
equals λi = λqi. In case of Bernoulli arrivals, at maximum one customer arrives in the queue in

any cycle and this happens with probability λi. Alternatively, the number of arrivals per cycle

into queue Qi can be Poisson distributed with parameter λi. If C is the length of the path and

if the FWLAN traverses the route at speed α and λ̄ is rate of the Poisson arrivals, then rate

per cycle is given by λ = λ̄|C|/α. Most of our results can handle random speeds, however we

consider fixed speeds for ease of explanation. For example IID (identically and independently

distributed) speed variations across cycles, can be modeled as IID service intervals/visit times.

This represents a very commonly prevalent scenario. For example, the location of points with

clustered arrivals can represent a queue. If there is a set of nearby (almost inseparable) points
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with high arrivals, one can again group them as a queue. Because of ‘Serve on the Move’ (SoM)

nature, the arrivals elsewhere in the path would not alter the performance of the entire system.

Either they are served immediately (in the same cycle) or the left overs are completed in the

subsequent cycles. This is because, for sparse arrivals the probability of arrivals at interfering

points (with intersecting service intervals) is negligible. Thus we concentrate only on clustered

arrivals. We discretize the path (parts of the path with clustered arrivals) into finite intervals,

model each interval as one queue (see Kavitha and Altman (2009) for similar details), which

results in arrivals as given by (6.1).

Service times: Let µ be the service rate per distance per time. If service is offered for l length

while the server moves at α speed, then (l/α)µ amount of job is completed. We assume without

loss of generality that µ/α = 1, i.e., the amount of job completed in one cycle equals the length

of the service interval. The job requirements B can depend upon the queue into which they

arrive. The conditional moments (first and second) of the job requirements, given that the

arrival belongs to Qi, are given by bi and b(2)
i .

Notations: The cycle indices are usually referred by subscripts k or n while the queue indices

by subscripts i or j. The quantities that belong to queue i and for cycle k are referred by double

subscripts k,i (e.g., Vk,i for workload in Qi at k-th departure epoch) while the corresponding

stationary quantities are referred by single subscript i (e.g., Vi for stationary workload in Qi at

departure epoch).

6.2 Stability Analysis

We call the system is stable, if there exists a scheduling policy which renders all the queues

stable. We begin with introducing the required notations. Let Nk,i represent the number of

arrivals into Qi in its k-th cycle time (time duration between (k − 1)-th and k-th departures of

the same queue) and let ξk,i be the corresponding workload:

ξk,i =

Nk,i∑
j=1

Bj,i, (6.2)

where {Bj,i}j are IID service times of Qi with bi, b
(2)
i as first and second moments. If there

are no intersecting intervals, then the departure workload Vk,i of any queueQi evolves indepen-
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dently of others according to (with li := |Li|):

Vk,i = (Vk−1,i + ξk,i − li)+ for all i. (6.3)

Then the system is stable if and only if E[ξi] < li for each i. This is a well known stability

condition of the random walks on half line (see for example Meyn and Tweedie (2009)). With

Poisson arrivals P (Nk,i = n) = e−λi (λi)
n

n!
, and apply Wald’s lemma for any n ≥ 0 to Equation

(6.2) then we have

E[ξi] = E

Nk,i∑
j=1

Bj,i

 = λibi.

With Bernoulli arrivals we again have E[ξi] = λibi, because:

P (Nk,i = 1) = λi = 1− P (Nk,i = 0).

The system is stable if and only if all the queues are stable. In all, the condition for stability

with no intersecting intervals is:

max
i

λibi
li

< 1. (6.4)

We now consider two queues, say Q1 and Q2, where the service intervals L1 and L2 intersect

for a length δ as in Figure 6.3. Recall that the system is stable, if there exists a scheduling policy

which renders all the queues stable and the stability is ensured under the following conditions:

Theorem 6.1. The two queues are stable if and only if E[ξk,1 + ξk,2] < l1 + l2 − δ in addition

to (6.4).

Proof: If E[ξi] > li for any i = 1, 2, clearly the corresponding queue is unstable (Meyn and

Tweedie (2009)) and hence so is the FWLAN. Two queues share the server capacity, only while

the server is traversing δ length. Consider a combined system in which the server can serve any

customer of the two queues, while it is traversing anywhere in the interval of the length l1+l2−δ.

The total workload process in the combined system, is clearly lower than the sum workload

Vk,1 +Vk,2 of the FWLAN1. And the combined system is unstable if E[ξk,1 + ξk,2] > l1 + l2− δ,

and hence so is FWLAN. Thus the FWLAN is unstable if any of the conditions is not true.

1 One needs to use common cycle time for both the queues in this case.
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Now assume all the conditions are true. We consider a scheduling policy in which Q1 is served

independently of Q2, after dividing the shared service interval as below:

lγi = E[ξi] + γδ for i = 1, 2 where

γ := min

{
−ce
2δ

,
l1 − E[ξ1]

2δ
,
l2 − E[ξ2]

2δ

}
with

ce := E[ξk,1 + ξk,2]− (l1 + l2 − δ) < 0.

The server attendsQ1 while it is traversing interval of length lγ1 starting from first end of L1 and

Q2 while traversing an interval of length lγ2 whose end coincides with the end of L2. Because

of their definitions and by the given hypothesis, the serving intervals of the two queues do not

intersect with each other and thus the two queues evolve independently. Further, both of them

are stable again by the well known results of random walk on half line (Meyn and Tweedie

(2009)). �

Thus the stability of two intersecting queues is guaranteed, once the rate of the combined arrivals

into the two queues is less than the length of the joint service interval. This is true irrespective

of the length δ of intersection. Of course it also demands for individual stability conditions.

One can easily extend the above result to the following:

Theorem 6.2. Consider M intersecting queues with δi, for any i < M , representing the length

of intersection between the service intervals Li and Li+1. The M queues are jointly stable if

and only if the following are satisfied along with (6.4):

(i) E[ξi + ξi+1] < li + li+1 − δi for any i < M and

(ii) E[
∑2

j=0 ξi+j] <
∑2

j=0 li+j −
∑1

j=0 δi+j for any i < M − 1 and so on till

(iii) E
[∑

i≤M ξi
]
<
∑M−1

j=0 l1+j − δ with δ :=
∑

i<M δi. �

Proof: is direct from Theorem 6.2.

Henceforth, the stability conditions are assumed to be satisfied. We will now deviate from

the SoM FWLAN and obtain the analysis of G-time limited polling systems, which would be

instrumental in obtaining the workload performance of the FWLAN.
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6.3 G-Time limited polling systems

We consider a time-limited finite polling system, in which the visit time at any queue is pre-

decided and is independent of the awaiting workload. So far in the literature, these systems are

studied only under exponentially distributed visit times. While we require the time limits/visit

times with any arbitrary distribution. Hence we call them as G-time limited polling systems, to

indicate that the distribution of the visit times is general.

We have N -queues, the server visits them periodically in the same order, every cycle. In the

k-cycle it spends time Gk,i at queue Qi, irrespective of whether or not the later is empty. This

system is similar to the autonomous system, studied previously in the context of exponential

visit times. The service of any interrupted customer is resumed exactly at the point left, when

the server next visits its queue. We consider IID visit times {Gk,i}k, for all the queues. The

server spends time Sk,i to walk between the queues Qi and Qi+1 (modulo addition) during the

k-th cycle.

In all the cases we assume that the cycle time is independent of the (fractions of the) times

spent in individual queues. For any queue (say Qi) the sequence of workloads {ξi,k}k, arrived

in successive cycle times, is assumed to be an independent sequence and this is true for each i.

Here we consider queue specific cycle times, the time period between successive exits by the

server, of the same queue.

Each queue is processed independently of the other queues and hence can be analyzed indepen-

dently. Let Φk,i represent the cycle time (time between two consecutive departures) with respect

to queue Qi:

Φk,i =
i−1∑
j=1

(Gk,j + Sk,j) +
N∑
j≥i

(Gk+1,j + Sk+1,j).

The cycle times {Φk,i}k form IID sequence for each i. The remaining details of the polling

system are similar to that of the FWLAN. With Vk,i representing the total workload left at Qi
when the server leaves the queue for the k-th time, the system evolution can be written using

the following equation:

Vk,i = (Vk−1,i + ξk,i −Gk,i)
+. (6.5)
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Figure 6.2: Workload process in a cycle

6.3.1 Analysis of workload using GI/G/1 queue

The waiting time of the k-th customer of a GI/G/1 queue can be written in terms of the service

time Bk and the inter arrival times Ak as below (Blanc (2004-2009)):

Wk = (Wk−1 + Bk −Ak)+.

From (Blanc, 2004-2009, equation (6.105)) the average waiting time equals:

E[W ] =
E[B2]− 2E[B]E[A] + E[A2]

2(E[A]− E[B])
− E[I2]

2E[I]
, (6.6)

where I is the idle period and the quantities in the above equation are stationary averages.

Equation (6.5) resembles the evolution of GI/G/1 queue, and hence the stationary average of

the departure-workload process {Vk} can be obtained using the equation (6.6). Further for large

load factors (FWLANs usually operate in this regime), we approximate the idle times with inter

arrival times, the queue visit times ({Gi}) in our context; in the coming sections, we would

either use this approximation after sufficient justification or directly estimate moments of idle

times. Thus the stationary average of the workload at departure epochs of queue Qi is given by
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(see (6.5)-(6.6))

E[Vi] =
E[ξ2i ]−2E[Gi]E[ξi]+E[Gi

2]

2(E[Gi]−E[ξi])
− E[I2i ]

2E[Ii] (6.7)

≈ E[ξ2i ]−2E[Gi]E[ξi]+E[Gi
2]

2(E[Gi]−E[ξi])
− E[G2

i ]

2E[Gi]

=
E[ξ2i ]E[Gi]−2E[ξi](E[Gi])

2+E[Gi
2]E[ξi]

2E[Gi](E[Gi]−E[ξi])
. (6.8)

As already mentioned, the last equation has to be used after sufficient justification.

6.3.2 Time average of workload process

Let Vi(t) represent the workload of queue i at time t. We already obtained the stationary analysis

of the workload at departure instances, {Vk,i} as given by (6.5) , where Vk,i = Vi(Ψk,i) with

the cycle end instances Ψk,i :=
∑

n≤k Φk,i. This is a Markov process, in particular a random

walk in half line, which is stable and for which the law of large numbers (Meyn and Tweedie,

2009, Proposition 17.6.1, pp. 447) is applicable, as the time limits {Gk,i} are bounded with

probability one.

The area under the workload process during k-th cycle majorly depends upon Vk,i, new arrivals

ξk+1,i and their arrival instances {Un}
Nk+1,i

n=1 as shown in the Figure 6.2. For Poisson arrivals the

arrival instances {Un}, conditioned on the cycle length Φk+1,i, are uniformly distributed over

Φk+1,i, while for Bernoulli arrivals these are assumed to be uniformly distributed.

The computations below can be inaccurate when one or more arrivals occur while the server is

at the queue. Further the workload decreases linearly when the server is at the queue, however

we neglect this effect too. Given that the cycle times Φk,i are large compared to visit times Gk,i,

these inaccuracies lead to negligible errors. Barring these inaccuracies, the required area in k-th

cycle equals (area under the curve of Fig. 6.2, after approximating the slanted line during the

visit time Gk,i with a straight line):

V̄k,i :=

∫ Ψk+1,i

Ψk,i

Vi(t)dt ≈ Vk,iΦk,i +

Nk+1,i∑
n−1

Bn,i(Φk,i − Un). (6.9)

The above area of the workload, is a function of workload at departures (6.5) and new arriving

workload ξk+1 and their arrival instances. The time average of the workload process can be

obtained by considering the following limit:

v̄i := lim
k→∞

1

Ψk,i

∫ Ψk,i

0

Vi(t)dt = lim
k→∞

∑k−1
n=0 V̄k,i
Ψk,i

.
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Using law of large numbers, (Meyn and Tweedie, 2009, Proposition 17.6.1, pp 447), and Wald’s

lemma the above limit is almost surely a constant given by:

v̄i =
E[Vi]E[Φi] + λibi(E[Φi]− E[Φi/2])

E[Φi]

= E[Vi] +
λibi
2

a.s. (6.10)

The above is obtained by computing the stationary average of the terms on the right hand side

of (6.9), which in turn is obtained by conditioning on the cycle lengths Φk,i and the number

of arrivals Nk,i. In case of Poisson arrivals, by PASTA property v̄i represents the stationary

average workload of the system in queue i. We notice from (6.10) that optimizing the stationary

average workload v̄i is equivalent to optimizing the stationary average workload at departure

instances E[Vi] (given by (6.7)).

The total stationary average workload of the polling system equals:

v̄ =
∑
i

v̄i =
∑
i

(
E[Vi] +

λibi
2

)
.

Using the results of this section, we obtain the workload analysis for various configurations of

SoM FWLAN in the coming sections.

6.4 Workload Analysis

6.4.1 Queues without intersecting intervals

The workload analysis of any queue is independent of the others. For every i, the server drains

out maximum possible workload of Qi while traversing its service interval, Li. The departure

workload evolution is given by equation (6.3).

FWLAN with N non intersecting queues can be modeled by N -queue G-time limited polling

system of the previous section. The walking/switching times of the polling system are given by

the physical time taken by the server to move from one queue to other, while the cycle times of

all the queues are deterministic and equal |C|/α. From the previous section (see equation (6.7)),

the workload analysis of FWLAN depends upon the idle times of a fictitious GI/G/1 queue,

whose waiting time evolution resembles the evolution given by (6.3). The stationary analysis

of workload at departures (6.3) can be obtained once the first two moments of the idle period of

the corresponding fictitious GI/G/1 queue is computed.
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An idle period (in fictitious queue) by definition is the time interval between the exit of the last

customer and the next arrival, given there is a positive time difference between the two. In other

words, an idle period is a fraction of those interval arrival periods, in which the exit of the last

customer occurs before the next arrival. The idle periods in the fictitious queue occurs under

the following two conditions of the original FWLAN:

a) when the newly arrived workload ξk,i is finished before the next arrival (i.e., if li − ξk,i > 0)

and when previous epoch workload, Vk−1,i = 0;

b) or because the newly arrived workload as well as the left over workload is finished before the

next arrival, i.e., if li − Vk−1,i − ξk,i > 0.

Obviously the possibility of the former event is higher. When the load factor increases (by

decreasing li) the busy period increases. However the nature of subsequent idle periods, once

the queue is empty, remains the same. Hence as load factor increases, the fraction of idle periods

resulting out of event (a) increases. Thus, our conjuncture is that the idle period, with sufficient

load factor, can be well approximated by the events of the type2 (a). So we approximate the

stationary idle periods of fictitious queue by

Ii = li − ξi conditioned that li > ξi.

Thus with pi := Prob(ξi > 0) = Prob(Ni > 0),

E[Ii] ≈
li(1− pi) + piE[(li − ξi); ξi ≤ li]

(1− pi) + piP (ξi ≤ li)
,

E[I2
i ] ≈ l2i (1− pi) + piE[(li − ξi)2; ξi ≤ li]

(1− pi) + piP (ξi ≤ li)
. (6.11)

Substituting the above directly into equation (6.7) we obtain the stationary average of the de-

parture epoch workload.

The arrivals in any queue of FWLAN occur while the server is traversing a long path of length

|C|, while they are served only when the server passes through the corresponding service inter-

val, which is much smaller. Under stability conditions (6.4), the expected value of the arrived

workload in one such cycle is smaller than the workload cleared while traversing the much

smaller service intervals. Thus the load factors are usually large and hence idle period moments

can be well approximated by (6.11). Further there is a positive probability (1 − pi) of zero ar-

rivals in any cycle and this probability can also be significant. If the probability of zero arrivals

(1− pi) is significant, one can in fact neglect the second terms in the numerators of (6.11) and

2 This conjuncture needs explicit proof and we are working towards it.
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approximate idle period by inter-arrival time. We consider this approximation for the rest of

the analysis which results in equation (6.8) of section 6.3 and corresponding formula for the

stationary workload at departure epoch of Qi in the FWLAN equals:

E[Vi] ≈
E[ξ2

i ]− E[ξi]li
2(li − E[ξi])

for any i. (6.12)

The accuracy of this approximation is demonstrated via Monte-Carlo (MC) simulations in Table

6.2.

Simulations

We consider a typical queue Qi and generate a sufficiently long random sequence {ξk,i}k≤N
(with N > 5000000). Using this, we generate the sample path of the departure workloads

{Vk,i}k≤N as given by (6.3), and estimate the stationary average departure epoch workload

using the sample mean
1

N

∑
k≤N

Vk,i.

We compare it with two approximate formulae: one obtained using (6.11) and the other given

by (6.12). We consider both Bernoulli and Poisson arrivals and various terms related to the

computations are in Table 6.1. The Poisson arrivals with probability P (Ni > 1) is close to zero,

will have similar terms as that for Bernoulli arrivals and we use the same approximation. We

consider uniformly distributed service requirements {Bi}.

We notice from Table 6.2 that both the formulae (columns 3 and 4) approximate well the station-

ary workloads estimated via MC simulations (column 2). Majority of cases, the approximation

error is well within 10%. When the probability of arrival pi in a cycle is small (.05), the ap-

proximation is good even for small values of ρ (until 0.083 as seen from the first 4 rows). With

moderate values of pi we have good approximation for larger ρ: e.g., when (pi, ρ) equals one

of (0.4, 0.5), (0.6, 0.9), (0.864, 0.95) for Poisson arrivals or the pair equals one of (0.5, 0.5),

(0.9, 0.9) for Bernoulli arrivals.

In all, the formula (6.12) is a good approximation for stationary departure workloads (with

significant load factors).

6.4.2 Queues with intersecting service intervals

We begin with the scenario of Figure 6.3, that of two queues with intersecting service intervals.

The dots represent the queues, while the curves above the dots represent the signal strength of
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Configuration Terms related to Qi
Bernoulli E[ξi] = pibi, E[ξ2

i ] = pib
(2)
i

Poisson E[ξi] = pibi, E[ξ2
i ] = λib

(2)
i + λ2

i (bi)
2

Bernoulli E[(li − ξi); 0 < ξi ≤ li] = pi
l2i
2b

, for b > li

Uniform([0, b]) and E[(li − ξi)2; 0 < ξi ≤ li] = pi
l3i
3b

Table 6.1: Some terms related to the formulae

li, λi, MC E[Vi]=(6.12) E[Vi] ρ pi

P/B =(6.11) in (6.7)

.3, .05, P 16.12 16.54 16.54 .83 .05

.3, .05, B 15.76 15.92 15.92 .83 .05

3, .05, P .191 .178 .186 .083 .05

3, .05, B .179 .167 .175 .083 .05

5, .5, B 1.11 .833 1.17 .5 .5

3.5, .5, P 7.18 7.08 7.2 .714 .39

3.5, .5, B 4.16 3.96 4.13 .714 .5

4, .7, P 21.76 21.58 21.81 .875 .5

4, .7, B 9.73 9.33 9.76 .875 .7

5, .9, P 28.25 27.75 28.2 .9 .59

5, .9, B 8.20 7.5 8.65 .9 .9

10.5, 2, P 63.5 61.67 64.35 .95 .864

Table 6.2: Monte Carlo Simulations with Bi ∼ Uniform ([0,10])

the corresponding queue with distance. Service intervals are determined by the signal strength

up to which the FWLAN can identify the customer, and these intersect.

The evolution of the two queues depends upon the scheduling policies used. The two queues

evolve as below:

Vk,1 = (Vk−1,1 + ξk,1 −Gk,1)+

Vk,2 = (Vk−1,2 + ξk,2 −Gk,2)+, (6.13)

where the sequences {Gk,1}k, {Gk,2}k are determined by the scheduling policy used. By

scheduling decision, we mean the allocation of the shared interval to the individual queues,
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Figure 6.3: Two intersecting queues

either dynamic or static. Note that Gk,1, Gk,2 and Gk,1+ Gk,2 will be upper bounded respec-

tively by l1, l2 and l1+ l2 - δ, at any time k.

In a naturally used policy, the server first senses the users of the first queue in the orbit, sayQ1,

completes their work requirements to the maximum extent possible (while traversing L1). It

then looks for the users of Q2. Thus the workload evolution at Q1 is independent of the second

one (as in the case with no intersecting intervals) while that of the second one depends upon the

left overs of the first one:

Gk,1 = l1 for all k and

Gk,2 = (l2 − δ) + min
{
δ, (l1 − (Vk−1,1 + ξk,1))+

}
. (6.14)

With natural scheduling policy the first queue in the orbit is the favoured one, while the second

one can suffer, more so if its load requirements are larger, i.e., if E[ξ2]/l2 > E[ξ1]/l1. We thus

study another set of scheduling policies. We continue with the independent policies of Theorem

6.2 and obtain optimal shared interval division. That is, we set

Gk,1 = l1 − γδ and Gk,2 = l2 − (1− γ)δ for all k, (6.15)

and chose a γ∗ that minimizes the sum of the workloads. We compare the optimal policy with

the natural policy.
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We are interested in choosing the optimal policies that minimize the stationary average work-

load given by equation (6.10) of section 6.3. And as observed in section 6.3 the only controllable

part of this workload is the stationary average workloads of the various queues at the departure

instances, E[V1] and E[V2] and hence work directly with these.

Natural Policy (6.14)

In a natural policy the server attends the users, as and when it senses one and keeps attending

them as long as they are in its visibility zone. Hence it first senses the users of the first queue in

orbit and attends that of the next one only when the users of first queue are away. Because of

preference, the shared service interval is used by the first queue whenever it has load. This kind

of a policy could be good as long as the load factor of the first queue is high. On the contrary if

the second queue has much higher load factor, it might be better to dedicate the shared interval

to the second one. The partial load of the first one, if required, can be postponed to the next

cycle to be served utilizing the service interval unavailable to the second queue. This helps

drain out the higher load-second queue at faster rate, while the lower load of the first queue is

drained out sufficiently faster, just using the private service interval.

We analyze the policy (6.14) under an extra assumption that ξ1 ≤ l1 almost surely. Under this

assumption, the workload in Q1 is never carried forward to the next cycle, i.e., Vk,1 = 0 almost

surely and hence with l̃i := li − δ for i = 1, 2

Gk,2 = l2 − δ + min{δ, (l1 − ξk,1)+}

= l21{ξk,1≤l̃1} + (l̃2 + (l1 − ξk,1))1{ξk,1>l̃1}.

Thus the first scheduling sequence {Gk,1}k is a constant sequence while {Gk,2}k is an IID

sequence and hence the results of section 6.3 can be applied. It is easy to see that E[G1] = l1,

E[G2
1] = l21 while with l̃i := li − δ

E[G2] = l2P (ξ1 ≤ l̃1) + E[l̃2 + l1 − ξ1; ξ1 > l̃1]

E[G2
2] = l22P (ξ1 ≤ l̃1) + E[(l̃2 + l1 − ξ1)2; ξ1 > l̃1].

We have E[V1] = 0 and the stationary workload of the second queue at the departure epoch

E[V2] is obtained by substituting the above into equation (6.8) of section 6.3.

This assumption is satisfied by Bernoulli arrivals (at maximum one arrival) with Bk,1 ≤ l1

almost surely for all k. It is also satisfied approximately by Poisson arrivals when the arrival

rate λ1, is small.
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Independent policies (6.15)

From (6.15), we have constant scheduling sequences which satisfy the assumptions of section

6.3. For any fraction γ, with lγ1 := l1 − γδ and lγ2 := l2 − (1− γ)δ)

E[Gi] = lγi and E[G2
i ] = (lγi )2, for i = 1, 2.

The stationary workloads E[V1], E[V2] can be computed using (6.8) as before, and exactly

resemble equation (6.12) with li replaced by lγi . Let V̄ I(γ) = EI [V1] + EI [V2] represent the

total workload and let σ2
ξi

:= E[ξ2
i ]− (E[ξi])

2. We have the following

Lemma 6.3. The total departure epochs workload V̄ I(γ) is optimized by the division threshold

γ∗ = max {0,min {1, γ̃}} where

γ̃ :=
l1σξ2 − l2σξ1 − E[ξ1]σξ2 + E[ξ2]σξ1 + δσξ1

δ(σξ2 + σξ1)
.

Proof: Let g(γ) represent the derivative of V̄ I(γ):

g(γ) = δ

(
E[ξ2

1 ]− (E[ξ1])2

2(lγ
∗

1 − E[ξ1])2
− E[ξ2

2 ]− E[ξ2])2

2(lγ
∗

2 − E[ξ2])2

)
= δ

(
σ2
ξ1

2(lγ
∗

1 − E[ξ1])2
−

σ2
ξ2

2(lγ
∗

2 − E[ξ2])2

)
If γ̃ < 0, σξ2(l1−E[ξ1])−σξ2(l2σξ1−δ−E[ξ1]) < 0, and this implies g(0) > 0. The derivative

g is an increasing function of γ, when lγ1 > 0 and lγ2 > 0. These γ render both the queues stable

and hence one needs chose optimal among these gamma. Thus g(0) > 0 implies g(γ) > 0

for all γ. Hence V̄ I(γ) is increasing with γ ↑ and therefore γ∗ = 0. Similarly if γ̃ > 1, then

g(1) < 0 as well as g(0) < 0. Thus V̄ I(γ) decreases with γ ↑ and hence γ∗ = 1.

When 0 < γ̃ < 1, then g(0) > 0 and g(1) < 0 and g(γ̃) = 0. By differentiating g with respect

to γ, one can see that the second derivative of workload V̄ I(γ) is positive at γ̃. Thus we have

the minimizer at the interior γ̃. �

M intersecting queues

Consider M intersecting queues in cascade, as in Theorem 6.2, with δi representing the inter-

secting length between Li and Li+1 for any i < M . For each i, we divide the common service

interval δi optimally between Qi and Qi+1 and consider independent processing as before. Let

Γ = [γ1, · · · , γM−1] represent the corresponding fractions. The lengths of the service intervals

77



dedicated for individual queues are:

lΓ1 := l1 − γ1δ1, lΓM = lM − (1− γM−1)δM−1

lΓi := li − (1− γi−1)δi−1 − γiδi, for all 1 < i < M.

The stationary workload for queue Qi is given again by (6.12) after replacing li by lΓi . Com-
puting the derivative and equating it to zero, as done in previous section for case with interior
optimizer, we obtain the optimal division ratios as Γ∗ = D−1e, where the matrix D and the
vector e are defined in the equation (6.16).

D =



−δ1(σξ2 + σξ1 ) δ2σξ2 0 . . . 0

δ1σξ3 −δ2(σξ2 + σξ3 ) δ3σξ3 . . . 0

...
...

...
...

...

0 . . . δM−3σξM−1
−δξM−2

(σξM−1
+ σξM−2

) δM−1σξM−1

0 0 . . . δM−2σξM −δM−1(σξM + σξM−1
)



e =



l2σξ1 − l1σξ2 − δ1σξ1 + E[ξ1]σξ2 − E[ξ2]σξ1

l3σξ2 − l2σξ3 + δ1σξ3 − δ2σξ2 + E[ξ2]σξ3 − E[ξ3]σξ2
...

lM−1σξM−2
− lM−2σξM−1

+ δM−3σξM−1
− δM−2σξM−2

+ E[ξM−2]σξM−1
− E[ξM−1]σξM−2

lMσξM−1
− lM−1σξM + δM−2σξM − δM−1σξM−1

+ E[ξM−1]σξM − E[ξM ]σξM−1


. (6.16)

The boundary optimal points can be obtained as done in Lemma 6.3.

Comparison of the two policies

We now compare the two policies, natural and optimal independent policy. The sum workloads

are computed for the example scenario with B2 ∼ Uniform([0,1]) and B1 ≡ l1 and the results

are tabulated in Table 6.3. We consider Bernoulli arrivals at both the queues. When load factor

of the first queue is larger than that of the second, the natural policy performs better (first three

rows of Table 6.3). Under the converse conditions, the independent policy performs better (last

two rows of Table 6.3). In fact the performance of the natural policy is significantly inferior

(33% in the last row), calling in the need for better scheduling policies.

Coupled Policies and Future work

We have seen that the natural policy can be inefficient, especially when the queues later visited

by the server, have higher load factor. This calls for a policy which forces the server to stop

serving the customers of the closer queues, even before it moves out of the visibility zone. We
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λ1, λ2, l1 = l2 γ∗ EN [V ] , EI [V ] ρ1, ρ2

0.97, 0.1, 0.12 0 0.41, 0.43, .97, .56

0.9, 0.1, 0.12 0.116 0.39, 0.41 .93, .57

0.8, 0.16, 0.2 0.217 0.29, 0.32 .86, 52

0.2, 0.23, 0.15 1 1.17 , 0.86 .29, .77

0.24, 0.28, 0.18 1 1.30, 0.87 .34, .78

Table 6.3: Natural policy versus Optimal Independent policy

found the optimal switching threshold, while using independent policies. It would be advan-

tageous to consider dynamic switching (based on the workload status of the second queue),

in case there is a mechanism to sense the workload of the second, a priori. We would like to

study these policies in future. The results of section 6.3 can be used as before, however, only

if the scheduling sequences {Gk,1}k, {Gk,2}k are IID. The study of non IID scheduling policies

require the results of Markovian queueing models, and would be a topic of future research.

In the following we present few preliminary discussions, while a detailed analysis would be

considered in future. We consider the policies, that depend only upon the new workload arrived

in the latest cycle:

Gk,1 = l1 − δ + δ1{ξk,1>0}1{ξk,2=0} + γδ
(
1{ξk,1=0}1{ξk,2=0} + 1{ξk,1>0}1{ξk,2>0}

)
Gk,2 = l2 − δ + δ1{ξk,1=0}1{ξk,2>0} + (1− γ)δ

(
1{ξk,1=0}1{ξk,2=0} + 1{ξk,1>0}1{ξk,2>0}

)
.

The corresponding moments are given by:

E[G1] = l1 − δ + δp1(1− p2) + γδ((1− p1)(1− p2) + p1p2),

E[G2] = l2 − δ + δp2(1− p1) + δ(1− γ)(1− p1 − p2 + 2p1p2).

The stationary workload is obtained by substituting the above into (6.8). Computing the deriva-

tive and equating it to zero, we obtain the optimal division ratio for two intersecting queues,

when the optimizer is an interior point:

γ∗ =
−l1σξ2 + l2σξ1 + δσξ2 − δp1(σξ2 + σξ1)

(σξ2 + σξ1)(1− p1 − p2 + 2p1p2)

+
δp1p2(σξ2 + σξ1) + E[ξ1]σξ2 − E[ξ2]σξ1

(σξ2 + σξ1)(1− p1 − p2 + 2p1p2)
.
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6.5 Summary

Ferry based WLANs offer the service while on move, where as the existing polling models do

not consider this feature. We obtain approximate analysis of such general time limited polling

systems, and demonstrate that the approximation is good under high load conditions using sim-

ulations. We show that the controllable part of the stationary average workload is given by the

stationary average workload at departure epochs. The departure epoch stationary workload is

obtained using the waiting time analysis of a fictitious GI/G/1 queue. The performance of SoM

FWLAN majorly depends upon the service intervals of various queues and their intersections.

We obtained the stability conditions, considering the intersecting service intervals. We also dis-

cussed some scheduling policies, which allocate/divide the shared service interval among the

various intersecting queues. We also discussed optimal policy in a given family of scheduling

policies.

As of now, we considered the policies that make independent decisions across cycles. We

basically considered policies that depend upon the new workload arrived in the cycle just before

the visit. While a more realistic dynamic policy would exhibit correlations, depends both upon

the new workload as well as the workload left over at the previous departure epoch. The study

of such policies would be a topic of future interest.
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Chapter 7

Conclusions and Future directions

In this thesis, we derived optimal (open loop/closed loop) policies related to two important as-

pects in intelligent transportation systems; optimal bus-dispatch policies for public transporta-

tion systems and optimal scheduling policies for serve-on-the move wireless LANs mounted on

public transportation systems.

Optimal bus dispatch policies: We considered a bus transport system, where the buses start

their journey from the depot and traverse along a cyclic route repeatedly. We considered fluid ar-

rivals and boarding times, Gaussian (bus) travel times and derived two important performance

measures, bunching probability and passenger-average waiting time. We derive these perfor-

mance measures under stationary policies (constant headway policies, i.e., the buses depart the

depot at equal intervals of times, ‘partially’ dynamic policies (headway of any trip depends upon

some information related to previous trips) and fully dynamic policies (headway also depends

upon trip details like bus-inter-arrival times at various stops). The first two policies are open

loop policies, while the third one is a closed loop policy. The last two policies are non-stationary

policies while the first is the stationary policy.

We obtained (stationary) Pareto frontier, the set of all efficient points; each efficient point is a

pair of performance measures obtained by a stationary policy, such that there exists no other

stationary policy which can simultaneously improve both the performances. The Pareto frontier

is obtained by solving several optimization problems: a) each problem optimizes a weighted

combination of the two performance measures; and b) the complete frontier is obtained by

considering all possible trade-off parameters/weights.

In the second type of policies (referred by us as partially dynamic policies), the headway de-

cision depends upon the headways of the previous trips; it is independent of other details of
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previous trips (e.g., trip times, number of waiting passengers at various stops etc). Thus our

partially dynamic policies depend upon easily available (cheap) information, nevertheless, they

perform significantly better than (commonly used) stationary policies.

We also derived partially dynamic Pareto frontier, by optimizing over the partially dynamic

policies. We derived this frontier by minimizing the weighted-combined costs and solving the

corresponding dynamic programming equations. We obtained closed form expressions for the

optimal policies under low load conditions; the optimal policies depend linearly upon the pre-

vious headway times. Using Monte-Carlo based simulations we demonstrated that our linear

(dynamic) policies significantly outperform the best static/stationary policy under all load con-

ditions; the stationary Pareto frontier is significantly away from the dynamic Pareto frontier. By

using asymptotic analysis, we further proposed a simplified algorithm to implement the optimal

policy. The simplified algorithm has almost similar performance as that of the exact algorithm

implementing the optimal policy.

We derived the optimal policies under correlated as well as independent (bus) travel times. The

optimal policies are structurally (linearly depends upon previous headways) the same, for both

the types of travel times; the only difference is in (some) constants/coefficients defining the

policy.

We considered the system with correlated travel times and further derived fully dynamic poli-

cies; these are the actual closed loop policies, where the headway decision depends upon the

(random) information related to a previous trip (the latest available information). Because of

the nature of the problem, one has access only to d-delayed information (with d definitely big-

ger than one) and the fully dynamic policies depend upon this delayed information and the

headways of those previous trips for which the information is not available.

The objective function is again the sum of a weighted combination of the two performance mea-

sures, corresponding to all the trips of the given session. We obtained a near-optimal dynamic

policy for small load factors by solving the corresponding finite horizon dynamic programming

equations, using backward induction. This policy is again linear in previous trip headways and

the bus-inter-arrival times corresponding to the latest available trip. Interestingly with d-delay

information, the optimal policy at decision epoch k depends only upon the information related

to first (M − 1− d) stops of the (k − 1− d)-th trip (M is the total number of stops) and upon

headways used for (k − 1) to (k − d) trips.

We estimated and plotted Pareto frontier under all the three sets of policies and observed that
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the dynamic policies significantly improve both the performances, followed by the partially dy-

namic policies. However it may not be easy to derive the information required for fully dynamic

policies (every bus has to store the information related to various stops), while the partially

dynamic policies depend upon readily available (at depot) information (that of previous trip

headways). Thus we propose to replace more commonly used stationary policies with partially

dynamic policies and with fully dynamic policies (if more information can be recorded).

Serve-on-move LANs: Ferry based WLANs offer the service while on move, where as the

existing polling models do not consider this feature. We obtain approximate analysis of such

general time limited polling systems, and demonstrate that the approximation is good under high

load conditions using simulations. We show that the controllable part of the stationary average

workload is given by the stationary average workload at departure epochs. The departure epoch

stationary workload is obtained using the waiting time analysis of a fictitious GI/G/1 queue.

The performance of SoM FWLAN predominantly depends upon the service intervals of various

queues and their intersections. We obtained the stability conditions, considering the intersecting

service intervals. We also discussed some scheduling policies, which allocate/divide the shared

service interval among the various intersecting queues. We also discussed optimal policy in a

given family of scheduling policies.

Future research directions

Bus bunching:

We studied the bus bunching problem on a single route with Gaussian bus travel times and

fluid arrivals. We discussed some performance measures, bunching probability and passengers

waiting times. We also considered variable arrival rates over the different stops. There are many

other directions for this problem and some of them are the following:

• Operating cost: One can include the cost of operation (e.g., by including factors inversely

proportional to the headways) in objective functions and derive more realistic/interesting

optimal policies.

• Random arrivals: One extend the analysis to the case with Poisson passenger arrivals.

We have some partial analysis with Poisson arrivals, however one may work to obtain

complete analysis with Poisson or other type of arrival processes. Alternatively one can
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consider fluid arrivals with random arrival rates (e.g., Markov modulated arrival rates

commonly used in queueing related literature).

• Sojourn times: One can consider sojourn time as a performance; sojourn time is the total

time spent by a passenger in the system starting from its arrival to its de-boarding at its

destined stop.

• One can think of multi route bus bunching problem. In this, some of the buses share the

common path although their origin and destination are different.

• One can consider the round trip delay as the system state and obtain the optimal policies.

Ferry based wireless LANs: serve on move: As of now, we considered the policies that make

independent decisions across cycles. We basically considered policies that depend upon the

new workload arrived in the cycle just before the visit. While a more realistic dynamic policy

would exhibit correlations, depends both upon the new workload as well as the workload left

over at the previous departure epoch.

We discussed optimal policy in a given family of scheduling policies. One can study other

varieties of service policies that optimize the workload among the stabilizing policies and also

consider dynamic switching policies.

Performance of SoM FWLAN can be obtained via performance of some fictitious queues. The

queues resulting in this context have some structural properties. For example, we might have

D/G/1 or Geometric/M/1 queues. One can obtain waiting time/busy period analysis, exploiting

such structural properties.

84



Chapter 8

Appendix A: stationary and partially

dynamic headway policies

Proof of Lemma 2.1: The proof is based on mathematical induction. We begin with first trip,

i.e., k = 1 and prove equation (2.6) by induction for all stops, i.e., for all 1 ≤ i ≤M . First note

that (2.6) simplifies to the following when k = 1,

I i1 = γi0h1 +
i∑

j=1

γi−j+1
0 s(j) +

i−1∑
r=0

[
(1 + ρ)rN i−r

1

]
. (8.1)

We will prove the equation (8.1) again by mathematical induction. We begin with i = 1 then,

I1
1 = h1 + s(1) +N1

1 where γ1
0 = 1.

Hence (8.1) is true for i = 1. Assuming the result is true for i = n < M , i.e.,

In1 = γn0 h1 +
n∑
j=1

γn−j+1
0 s(j) +

n−1∑
r=0

[
(1 + ρ)rNn−r

1

]
.

Now we prove it for i = n + 1. From equation (2.4) is for first trip. One can rewrite In+1
1 in

terms of In1 as below and note from Table 4.1, γn0 = (1 + ρ)n−1,

In+1
1 = In1 +Nn+1

1 + s(n+1) + ρIn1

= (1 + ρ)In1 +Nn+1
1 + s(n+1)

= (1 + ρ)γn0 h1 + (1 + ρ)
n∑
j=1

γn−j+1
0 s(j) +

n−1∑
r=0

[
(1 + ρ)r+1Nn−r

1

]
+Nn+1

1 + s(n+1)

= γn+1
0 h1 +

n+1∑
j=1

γn+1−j+1
0 s(j) +

n∑
r=0

[
(1 + ρ)rNn+1−r

1

]
because

(
m

0

)
= 1 ∀m.
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Hence equation (8.1) is verified for i = n+ 1. Hence lemma is true for k = 1 and 1 ≤ i ≤ M .

Assuming the equation (2.6) is true for k = m and for any 1 ≤ i ≤M , i.e.,

Iim =

min{i−1,m−1}∑
l=0

γilhm−l +1i≥m
i−m+1∑
j=1

γi−j+1
m−1 s(j) +

i−1∑
r=0

[
(1 + ρ)rN i−r

m +

r+1∑
l=1

µrlN
i−r
m−l

]
.(8.2)

Now we prove it for k = m+1 and any 1 ≤ i ≤M . We will prove this again by sub induction.

The sub induction is true for i = 1 and k = m+ 1, because: using (2.4) we have:

I1
m+1 = hm+1 +N1

m+1 −N1
m where γ1

0 = 1.

Now, assuming the result is true for i = n and k = m+ 1, i.e.,

Inm+1 =

min{n−1,m}∑
l=0

hm+1−lγ
n
l + 1n≥m+1

n−m∑
j=1

(−1)ms(j)γn−j+1
m

+
n−1∑
r=0

[
(1 + ρ)rNn−r

m+1 +
r+1∑
l=1

µrlN
n−r
m+1−l

]
.

We prove the result for i = n+ 1 and k = m+ 1. From above, equation (8.2) (with i = n) and
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equations (2.4)-(2.7) we have:

In+1
m+1 = Inm+1 +Nn+1

m+1 −Nn+1
m + ρInm+1 − ρInm [from equation (2.4) ]

= (1 + ρ)Inm+1 +Nn+1
m+1 −Nn+1

m − ρInm

= Nn+1
m+1 + (1 + ρ)

{
min{n−1,m}∑

l=0

γnl hm+1−l + 1n≥m+1

n−m∑
j=1

γn−j+1
m s(j)

+
n−1∑
r=0

[
(1 + ρ)rNn−r

m+1 +
r+1∑
l=1

µrlN
n−r
m+1−l

]}
−Nn+1

m − ρ

(
min{n−1,m−1}∑

l=0

γnl hm−l

+1n≥m

n−m+1∑
j=1

γn−j+1
m−1 s(j) +

n−1∑
r=0

[
(1 + ρ)rNn−r

m +
r+1∑
l=1

µrlN
n−r
m−l

])

=

min{n−1,m}∑
l=0

(1 + ρ)γnl hm+1−l −
min{n−1,m−1}∑

l=0

ργnl hm−l︸ ︷︷ ︸
+1n≥m+1

n−m∑
j=1

(1 + ρ)γn−j+1
m s(j) − 1n≥m

n−m+1∑
j=1

ργn−j+1
m−1 s(j)

︸ ︷︷ ︸
+Nn+1

m+1 +
n−1∑
r=0

(1 + ρ)r+1Nn−r
m+1︸ ︷︷ ︸−N

n+1
m + (1 + ρ)

n−1∑
r=0

µr1N
n−r
m − ρ

n−1∑
r=0

(1 + ρ)rNn−r
m︸ ︷︷ ︸

+(1 + ρ)
n−1∑
r=0

r+1∑
l=2

µrlN
n−r
m+1−l − ρ

n−1∑
r=0

r+1∑
l=1

µrlN
n−r
m−l

=

min{n,m}∑
l=0

γn+1
l hm+1−l + 1n+1≥m+1

n−m+1∑
j=1

γn+1−j+1
m s(j)

+
n∑
r=0

(1 + ρ)rNn+1−r
m+1 +

n∑
r=0

µr1N
n+1−r
m +

n∑
r=0

r+1∑
l=2

µrlN
n+1−r
m+1−l

=

min{n,m}∑
l=0

γn+1
l hm+1−l + 1n+1≥m+1

n−m+1∑
j=1

γn+1−j+1
m s(j)

+
n∑
r=0

[
(1 + ρ)rNn+1−r

m+1 +
r+1∑
l=1

µrlN
n+1−r
m+1−l

]
.

For the above, we need the following, which can easily be verified from equations (2.7) and

(6.2):

(1 + ρ)γnl 1l<n − 1l>0ργ
n
l−1 = γn+1

l with γnl = 0 if l ≥ n,

(1 + ρ)µrl 1l<r − 1l>0ρµ
r
l−1 = µr+1

l with µnl = 0 if l > n.

Hence the above equation is true for i = n+ 1 and hence the lemma is verified. �
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Lemma 8.1. For Poisson arrivals,

E
[
W̄ i
k

]
= λ

E [(I ik)
2]

2
and E

[
w̄ik
]

= E

[
W̄ i
k

X i
k

]
=

E[I ik]

2
a.s.

Proof: Note that:

E
[
W̄ i
k

]
= E

[[
E[W i

k

∣∣∣I ik]] .
Now consider,

E
[
W̄ i
k

∣∣∣I ik] = E

 Xi
k∑

n=1

W i
n

∣∣∣I ik
 .

Passengers can arrive to the stop at any time epoch during the bus inter arrival times. The

number of passenger arrivals during the bus inter arrival time I ik is X i
k. First condition on I ik.

Further conditioning on the number arrived X i
k during I ik, the unordered arrivals are uniformly

distributed in the interval I ik. i,e., the conditional waiting time of any passenger

W i
n ∼ I ik − Unif(0, I ik) ∼ Unif(0, I ik).

The above is true for Poisson arrivals. Hence,

E
[
W̄ i
k

∣∣∣I ik, X i
k

]
= X i

k

I ik
2

a.s. and so

E
[
W̄ i
k

∣∣∣I ik] = E

[
E

[
W̄ i
k

∣∣∣∣∣I ik, X i
k

] ∣∣∣∣∣I ik
]

= λ
(I ik)

2

2
and

E
[
w̄ik

∣∣∣I ik] = E

[
E

[
W̄ i
k

X i
k

∣∣∣∣∣I ik, X i
k

] ∣∣∣∣∣I ik
]

=
I ik
2

a.s.

Finally:

E
[
W̄ i
k

]
= λ

E [(I ik)
2]

2
and E

[
w̄ik
]

=
E [I ik]

2
.

�

Theorem 8.2. Let g be function of the following type:

g(hM) =
M−1∑
l=0

hM−lz̄l + α

(
1− Φ

(
M∑
l=0

z̃lhM−l

))
+ δ

where {z̃}l, α, δ are real constants and z̄0 is positive constant and where hM = [h1, h2, . . . , hM ]

is an M dimensional vector. Consider the following optimization problem:

g∗(hM−1) := min
hM

g(hM) and h∗M(hM−1) := arg min
hM

g(h).

88



Then there exists an unique optimizer to this problem. The optimizer is given by:

h∗M(hM−1) =
1

z̃0

[
−

M∑
l=1

hM−lz̃l + a

]
, if α > e(

∑M
l=1 hM−lz̃l)

2 z̄0

√
2π

z̃0

with a :=

√√√√−2 log

(
z̄0

√
2π

z̃0α

)
.

If the optimizer is an interior point then

g∗(hM−1) =
M−1∑
l=1

hM−l

(
z̃0z̄l − z̄0z̃l

z̃0

)
+ δ∗ with δ∗ = α [1− Φ (a)] +

z̄0a

z̃0

+ δ.

Proof: Consider the objective function,

g(hM) = min
hM

M−1∑
r=0

hM−lz̄l + α

(
1− Φ

(
M∑
l=0

z̃lhM−l

))
+ δ. (8.3)

Let h∗M be the optimal policy for equation (9.32), i.e.,

h∗M ∈ arg min(g(hM)), and either

⇒ d

dhM
(g(hM))

∣∣∣
hM=h∗M

= 0 or h∗M is on the boundary

The first derivative is given by:

d

dhM
(g(hM)) = z̄0 −

α√
2π

exp

−
(∑M

l=0 z̃lhM−l

)2

2

 z̃0.

By hypothesis z̄0 > 0. Under this condition, if α < z̄0
√

2π
z̃0

, the first derivative is always positive

and hence the optimizer is at lower boundary h = 0. Otherwise, there exists a zero of the

derivative as below:

⇒
M∑
l=0

hM−lz̃l =

√√√√−2 log

(
z̄0

√
2π

z̃0α

)
.

This interior point is the minimizer (when unconstrained) as the second derivative is positive,

and further we have unique minimizer for any given condition. This interior point is a positive

quantity if
1

z̃0

[
−

M∑
l=1

hM−lz̃l + a

]
> 0,
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and it is easy to verify that the above is always true if
∑M

l=1 hM−lz̃l < 0 and in case∑M
l=1 hM−lz̃l > 0, the above is true if

α > e(
∑M
l=1 hM−lz̃l)

2 z̄0

√
2π

z̃0

.

Thus if the above condition is satisfied, the interior point is always positive. Thus in all,

h∗M(hM−1) =
1

z̃0

[
−

M∑
l=1

hM−lz̃l + a

]
, if α > e(

∑M
l=1 hM−lz̃l)

2 z̄0

√
2π

z̃0

with a :=

√√√√−2 log

(
z̄0

√
2π

z̃0α

)
.

Substituting the above, the value function equals:

g∗(hM−1) = h∗M z̄0 +
M−1∑
l=1

hM−lz̄l + α

(
1− Φ

(
h∗M z̃0 +

M∑
l=1

hM−lz̃l

))
+ δ

=
M∑
l=1

hM−l
z̃0z̄l − z̄0z̃l

z̃0

+
z̄0a

z̃0

+ α (1− Φ (a)) + δ

=
M∑
l=1

hM−l

(
z̃0z̄l − z̄0z̃l

z̃0

)
+ δ∗, where,

δ∗ is defined in the hypothesis. �

Proof of Theorem 4.1: The proof is based on mathematical induction. We begin with i = 0.

Then the corresponding DP equations are given by (see equations (4.8) and Table 4.1 ),

vT (hT−1) = min
hT

rT (hT ) and recall

rT (hT ) =
M−1∑
l=0

hT−lη
T
l + α

(
1− ΦM

(
M∑
l=0

γ̃Ml hT−l

))
.

The above objective function is like the objective function of Theorem 9.6 with z̃l = γ̃Ml , z̄l =

ηTl and note ηT0 is positive for all l and δ = 0. By this theorem, the optimal policy and value

function are respectively,

h∗T (hT−1) =
1

γ̃M0

[
−

M∑
l=1

hT−lγ̃
M
l + aT

]
, aT := σMM

√√√√−2 log

(
ηT0
√

2πσMM
γ̃M0 α

)
and

vT (hT−1) =
M∑
l=1

hT−l

(
γ̃M0 ηTl − ηT0 γ̃Ml

γ̃M0

)
+ δT , where δT = α (1− ΦM (aT )) +

ηT0 aT
γ̃M0

.
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Hence the theorem is verified for i = 0.

Assuming result is true for i = n, we prove it for i = n+ 1.

The corresponding DP equation is given by,

vT−n−1 = min

{
M−1∑
l=0

hT−n−1−lη
T−n−1
l + ϑMT−n−1

+α

(
1− ΦM

T−n−1

(
M∑
l=0

hT−n−1−lγ̃
M
l +$M

T−n−1

))
+ δT−n

}
.

The above objective function is like the objective function of Theorem 9.6 with

z̃l = γ̃l, z̄l = ηT−n−1
l for all l and δ = δT−n. Note that z̄0 = ηT−n−1

0 > 0 by the given hypothe-

sis. By this theorem, the optimal policy and value function are respectively,

h∗T−n−1(hT−n−2) =
1

γ̃M0

[
−

M∑
l=1

hT−n−1−lγ̃
M
l −$M

T−n−1 + aT−n−1

]
,

where aT−n−1 = σMT−n−1

√√√√−2 log

(
ηT−n−1

0

√
2πσMT−n−1

γ̃M0 α

)
.

Substituting the above, the value function equals,

v∗T−n−1(hT−n−2) =
M∑
l=1

hT−n−1−l

(
γ̃M0 ηT−n−1

l − ηT−n−1
0 γ̃Ml

γ̃M0

)
+ δT−n−1 where

δT−n−1 = α
(
1− ΦM

T−n−1 (aT−n−1)
)

+ ϑMT−n−1 +
ηT−n−1

0

(
aT−n−1 −$M

T−n−1

)
γ̃M0

+δT−n.

Hence theorem is verified. �

Proof of Lemma 4.2: Define the following function,

fη : (0, 1]→ RT+1

i.e., ρ
fη−→
(
{ηt0}t≥0

)
. For every ρ > 0, fη(ρ) is well defined and continuous (see Table 4.1).

Now we define the continuous extension of fη at ρ = 0, i.e.,

fη(0) , lim
ρ→0

fη(p).

Here fη(0) is not corresponding to any system. It is a continuous function on [0, 1] by construc-

tion.
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Before we proceed further one can easily verify the following (see Table 4.1):

γ̃M1
γ̃M0
→ 0 and for all i > 0, γ̄i → 0, γ̄0 →

M

2
, as ρ→ 0,

which would be instrumental in proving this lemma.

If one proves fη(0) = limρ→0 fη(ρ) > 0 (i.e., all components are strictly positive), then by

continuity there exists a ρ̄η > 0 such that fη(ρ) > 0 for all ρ ≤ ρ̄η. This proves the second

part of assumption (4.10). Towards this we begin with fη(0). This part of the proof is based on

backward induction. We begin with i = 0, i.e., with ηT0 and observe immediately that:

lim
ρ→0

ηT0 = lim
ρ→0

γ̄o = lim
ρ→0

(1 + ρ)M − 1

2ρ
=
M

2
> 0, by using L’Hospital’s rule.

Further it is clear that

lim
ρ→0

ηTl = 0 for all l > 0.

In a similar way, for i = 1, i.e.,

lim
ρ→0

ηT−1
0 = lim

ρ→0

(
ηT1 − ηT0

γ̃M1
γ̃M0

+ γ̄0

)
= lim

ρ→0

(
γ̄1 −

M

2

γ̃M1
γ̃M0

+
M

2

)
= lim

ρ→0

(
−((1 + ρ)M−1 − 1)− M

2

−ρ(1 + ρ)M−2 − ρ(1 + ρ)M−1

(1 + ρ)M−1

)
+
M

2

=
M

2
> 0 and similarly lim

ρ→0
ηT−1
l = 0 for all l > 0.

Now assume the result is true for i = n − 1 i.e., assume limρ→0 η
T−n+1
0 = M/2 > 0 and

limρ→0 η
T−n+1
l = 0 for all l > 0. Then for i = n:

lim
ρ→0

ηT−n0 = lim
ρ→0

(
ηT−n+1

1 − ηT−n+1
0

γ̃M1
γ̃M0

+ γ̄0

)
= lim

ρ→0
ηT−n+1

1 +
M

2
=
M

2
> 0 and similarly lim

ρ→0
ηT−nl = 0 for all l > 0.

Hence, ηt0 > 0 for all ρ ≤ ρ̄η, t and hence at (for all t) are well defined for all such ρ. Now

define the following function,

f : (0, ρ̄η]→ R2T+1

i.e., ρ̄η
f−→
(
{h∗t}t≥1, {ηt0}t≥0

)
, where {h∗t}t are defined recursively in Theorem 4.1. Observed

here that {h∗t}t≥1 is well defined using (4.11) (whether or not the condition (4.10) is true) and

hence the function f(·) is well defined and continuous.

It remains to prove (recursively, i.e., using backward induction) that

α > lim
ρ→0

e(
∑M
l=1 h

∗
T−i−lγ̃

M
l )

2 ηT−j0

√
2π

γ̃M0
for all 0 ≤ j < i,
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as by continuity of f the result follows. And this is immediate since γ̃Ml → 0 for all l ≥ 1, and,

hence1

lim
ρ→0

e(
∑M
l=1 h

∗
T−i−lγ̃

M
l )

2 ηT−j0

√
2π

γ̃M0
= lim

ρ→0

ηT−j0

√
2π

γ̃M0
= β

M
√

2π

2
,

by previous result and because α is greater than RHS by given hypothesis. �

Proof of Proposition 4.3: Recall from Theorem 4.1,

ηT−kl = γ̄l + ηT−k+1
l+1 − ηT−k+1

0

γ̃Ml
γ̃M0

for all l ≥ 0. (8.4)

Summing over l = 0 · · ·M we get (from (4.5))

M∑
l=0

ηT−kl =
M∑
l=0

γ̄l +
M∑
l=0

ηT−k+1
l+1 − ηT−k+1

0

∑M
l=0 γ̃

M
l

γ̃M0

=
M

2
+

M∑
l=0

ηT−k+1
l+1 − ηT−k+1

0

1− ρ
(1 + ρ)M−1

for all k ≥ 0, (8.5)

and the above is true because, by a simple exchange of the indices of the two summations

involved one can prove the following (see Table 4.1):

i−1∑
l=0

γil = 1 for all 1 ≤ i ≤M,
M∑
l=0

γ̄l =
M∑
l=0

M∑
i=l+1

γil =
M∑
i=1

i−1∑
l=0

γil =
M∑
i=1

1/2 = M/2 and

M∑
l=0

γ̃Ml =
M∑
l=0

(
γMl − ργMl−11l>0

)
=

M−1∑
l=0

(1− ρ)γMl = 1− ρ, (γMM = 0 from (2.7)).

If there exists a limit ηT−kl → η∗l (for each 0 ≤ l ≤ M ) as T → ∞, then
∑M

l=0 η
T−k+1
l+1 −∑M

l=0 η
T−k
l+1 converges to 0 and then the limit η∗0 is given by the following (see equation (8.5)):

η∗0 =
M(1 + ρ)M−1

2(1− ρ)
, and subsequently,

a∗ = σMM

√√√√−2 log

(
M
√

2πσMM
2(1− ρ)α

)
.

Substituting this limit in (8.4), by using induction, one can show that the limits η∗l = limT→∞ η
T
l

for each l exists. �
1 Observe that {h∗t } are bounded for all ρ ≤ ρ̄η (forward) recursively as below (because of finite horizon problem):

sup
ρ≤ρ̄η

h∗2 ≤

(
max
l

sup
ρ≤ρ̄η

γ̃Ml

)
h1 + sup

ρ≤ρ̄η
sup
t
$t + sup

ρ≤ρ̄η
sup
t
at <∞, sup

ρ≤ρ̄η
h∗3 ≤ 2 sup

ρ≤ρ̄η
sup
t
$t + 2 sup

ρ≤ρ̄η
sup
t
at,

· · · , sup
ρ≤ρ̄η

h∗t ≤ (t− 1) sup
ρ≤ρ̄η

sup
t
$t + (t− 1) sup

ρ≤ρ̄η
sup
t
at.

The above are bounded by continuity of the function defining coefficients {$t}t and {at}t with respect to ρ.
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Proof of Lemma 4.4: The proof is based on mathematical induction. We begin with i = 1

then,

I1
k = hk +N1

k , where γ1
0 = 1.

Hence the hypothesis is true for i = 1. Assuming the result is true for i = n, i.e.,

Ink =

min{k−1,n−1}∑
l=0

γnl hk−l +

min{k−1,n−1}∑
l=0

n−l∑
j=1

γn−j+1
l N j

k−l.

Now we prove it for i = n+ 1.

In+1
k = hk +

∑
1≤j≤n+1

N j
k + ρ

∑
1≤j<n+1

(
Ijk − I

j
k−1

)
= Ink +Nn+1

k + ρ
(
Ink − Ink−1

)
= (1 + ρ)

min{k−1,n−1}∑
l=0

γnl hk−l + (1 + ρ)

min{k−1,n−1}∑
l=0

n−l∑
j=1

γn−j+1
l N j

k−l +Nn+1
k

−ρ
min{k−1,n−1}∑

l=0

γnl hk−1−l − ρ
min{k−1,n−1}∑

l=0

n−l∑
j=1

γn−j+1
l N j

k−1−l

=

min{k−1,n}∑
l=0

γn+1
l hk−l +

min{k−1,n}∑
l=0

n+1−l∑
j=1

γn+1−j+1
l N j

k−l.

For the above, we need the following, which can easily be verified from equations (2.7) and

(6.2):

(1 + ρ)γnl 1l<n − 1l>0ργ
n
l−1 = γn+1

l with γnl = 0 if l ≥ n.

Hence the above equation is true for i = n+ 1 and hence lemma is verified. �
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Chapter 9

Appendix B: fully dynamic headway

policies

Lemma 9.1. The inter-arrival times can be expressed in terms of the relevant Markovian walk-

ing components as below, for any 1 ≤ i ≤ M , 0 ≤ s ≤ d, 0 ≤ l ≤ d, 1 ≤ r ≤ M and

t0 + 2 < k ≤ T :

I ik−s =
d−s∑
l=0

hk−s−lγ
i−1
l +

d−s∑
l=0

i−l∑
j=1

W j
k−s−l$

i−1
l,j −

i−1−d+s∑
j=1

ρ(j)Ijk−1−d$
i−1
d−s,j+1 where(9.1)

γi−1
l = (−1)l

(
1l=0 +

(
1

l

) i−1∑
j1=1

ρ(j1) +

(
2

l

) i−1∑
j1<j2

ρ(j1)ρ(j2) + . . .

+

(
i− 1

l

) i−1∑
j1<j2<...ji−1

ρ(j1)ρ(j2) . . . ρ(ji−1)

)
(9.2)

$i−1
l,r = (−1)l

(
1l=0 +

(
1

l

) i−1∑
j1=r

ρ(j1) +

(
2

l

) i−1∑
j1<j2

ρ(j1)ρ(j2) + . . .

+

(
i− 1

l

) i−1∑
j1<j2<...ji−1

ρ(j1)ρ(j2) . . . ρ(ji−1)

)
, (9.3)

note that $i−1
l,1 = γi−1

l .

The conditional expectation of inter arrival times (i.e., I ik) given the state Yk (from (5.3)) and

hk equals:

E
[
I ik

∣∣∣Yk, hk] =
d∑
l=0

hk−lγ
i−1
l −

i−1−d∑
j=1

ρ(j)Ijk−1−d$
i−1
d,j+1. (9.4)
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Proof: The proof is based on mathematical induction. We begin with i = 1 and prove equation

(9.1) by backward induction for all 0 ≤ s ≤ d. First note that (9.1) simplifies to the following

when i = 1,

I1
k−s = hk−s +W 1

k−s. (9.5)

From equation (5.2), the above equation (9.5 ) is true for all 0 ≤ s ≤ d.

Hence lemma is true for i = 1 and 0 ≤ s ≤ d. Assuming the equation (9.1) is true for i ≤ n

and for any 0 ≤ s ≤ d, i.e.,

Ink−s =
d−s∑
l=0

hk−s−lγ
n−1
l +

d−s∑
l=0

n−l∑
j=1

W j
k−s−l$

n−1
l,j −

n−1−d+s∑
j=1

ρ(j)Ijk−1−d$
n−1
d−s,j+1. (9.6)

Now prove it for i = n + 1 and any 0 ≤ s ≤ d. We will prove this by backward induction on

s. The backward induction is true for s = d and i = n + 1, because: using equations (5.2) and

(5.3) we have,

In+1
k−d = hk−dγ

n
0 +

n+1∑
j=1

W j
k−d$

n
0,j −

n∑
j=1

ρ(j)Ijk−1−d$
n
0,j+1.

Now assume the result is true for i = n+ 1 and m ≤ s ≤ d, i.e.,

In+1
k−s =

d−s∑
l=0

hk−s−lγ
n
l +

d−s∑
l=0

n+1−l∑
j=1

W j
k−s−l$

n
l,j −

n−d+s∑
j=1

ρ(j)Ijk−1−d$
n
d−s,j+1 for all m ≤ s ≤ d.

We prove the result is true for s = m − 1 and i = n + 1. From above, equation (9.6) and

equation (5.2) we have:

In+1
k−m+1 = hk−m+1 +

∑
1≤j≤n+1

W j
k−m+1 +

∑
1≤j<n+1

ρ(j)
(
Ijk−m+1 − I

j
k−m

)
= W n+1

k−m+1 + (1 + ρ(n))Ink−m+1 − ρ(n)Ink−m

= W n+1
k−m+1 +

(
1 + ρ(n)

) [ d−m+1∑
l=0

hk−m+1−lγ
n−1
l +

d−m+1∑
l=0

n−l∑
j=1

W j
k−m+1−l$

n−1
l,j

−
n−d+m−2∑

j=1

ρ(j)Ijk−1−d$
n−1
d−m+1,j+1

]

−ρ(n)

[
d−m∑
l=0

hk−m−lγ
n−1
l +

d−m∑
l=0

n−l∑
j=1

W j
k−m−l$

n−1
l,j −

n−1−d+m∑
j=1

ρ(j)Ijk−1−d$
n−1
d−m,j+1

]

=
d−m+1∑
l=0

hk−m+1−lγ
n
l +

d−m+1∑
l=0

n−l+1∑
j=1

W j
k−m+1−l$

n
l,j −

n−d+m−1∑
j=1

ρ(j)Ijk−1−d$
n
d−m+1,j+1.
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For the above, we need the following, which can easily be verified from equations (9.2) and

(9.3):

(1 + ρ(n))γn−1
l − ρ(n)γn−1

l−1 1l>0 = γnl ,

(1 + ρ(n))$n−1
l,j − ρ

(n)$n−1
l−1,j1l>0 = $n

l,j, for all j

(1 + ρ(n))$n−1
d−m+1,j+11j<n−d+m−1 − ρ(n)$n−1

d−m,j+11d>0 = $n
d−m+1,j+1 for all j.

Hence the above is true for s = m− 1 and hence the lemma is verified. �

Lemma 9.2. Recall the constants from equations (9.2)-(9.3) and for any 1 ≤ i ≤M , 0 < d < i

and t0 + 2 < k ≤ T we have:

I ik − ρ(i)I ik−1 =
d∑
l=0

hk−lγ̃
i−1
l +

d∑
l=0

i−l+1∑
r=1

W r
k−lµ̃

i−1
l,r −

i−d∑
j=1

Ijk−1−d$̃
i−1
d,j+1, where, (9.7)

γ̃i−1
l = γi−1

l − ρ(i)γi−1
l−11l>0, (9.8)

µ̃i−1
l,r = $i−1

l,r 1r<i−l+1 − ρ(i)$i−1
l−1,r1l>0, (9.9)

$̃i−1
d,j+1 = ρ(j)$i−1

d,j+11j<i−d − ρ
(i)ρ(j)$i−1

d−1,j+1. (9.10)

The conditional mean and conditional variance given the state Yk (from (5.3))and hk respec-

tively given by,

E
[
I ik

∣∣∣Yk, hk]− ρ(i)E
[
I ik−1

∣∣∣Yk, hk] =
d∑
l=0

hk−lγ̃
i−1
l −

i−d∑
j=1

Ijk−1−d$̃
i−1
d,j+1

and ω2 = β2

(
d∑
l=0

M−l+1∑
r=1

(
µ̃M−1
l,r

)2

)
. (9.11)

Proof: is direct from Lemma 9.1. �

Proof of Theorem 5.1: By Lemma 9.5, there exists a ρ̄ > 0 such that condition (5.10) is

satisfied for all ρ ≤ ρ̄. We consider all such smaller values of ρ.

The rest of proof is based on backward mathematical induction. We begin with k = 0. Then

the corresponding DP equations are (see Table 5.1, and equation (5.9)),

vT (YT ) = min
hT∈[0,h̄]

rT (hT , YT ),

= min
hT∈[0,h̄]

{
d∑
l=0

hT−lγ̄l −
M−1−d∑
j=1

ρ(j)IjT−1−d$̄d,j+1

+α

[
1− Φ

(
d∑
l=0

hT−lγ̃
M−1
l −

M−d∑
j=1

IjT−1−d$̃
M−1
d,j+1

)]}
.
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The above optimization of rT is like the objective function of Theorem 9.6 and observe hypoth-

esis (9.30) is satisfied by condition (5.10) with k = 0. By this theorem, the optimal policy and

value function are respectively:

h∗T (YT ) =


h̄ on ĀT
0 on AT

1

γ̃M−1
0

[
−
∑d

l=1 hT−lγ̃
M−1
l +

∑M−d
j=1 IjT−1−d$̃

M−1
d,j+1 + aT

]
, on AcT

with AT := AT ∪ ĀT ,

AT =

{
M−d∑
j=1

IjT−1−d$̃
M−1
d,j+1 < −aT +

d∑
l=1

hT−lγ̃
M−1
l

}
,

ĀT =

{
M−d∑
j=1

IjT−1−d$̃
M−1
d,j+1 > h̄γ̃M−1

0 − aT +
d∑
l=1

hT−lγ̃
M−1
l

}
and

with constants, e.g., aT , ηlT , ψjT , as in Table 5.1 and

vT (YT ) =


rT (h̄, YT ) on ĀT
rT (0, YT ) on AT∑d

l=1 hT−lη
l
T −

∑M−d
j=1 IjT−1−dψ

j
T + δT , on AcT ,

(9.12)

Further for any YT−1, and hT−1 the conditional expectation:

EYT−1, hT−1
[vT (yT )] := E

[
vT (YT )

∣∣∣∣YT−1, hT−1

]
= EYT−1,hT−1

[
d∑
l=1

hT−lη
l
T −

M−d∑
j=1

IjT−1−dψ
j
T + δT

]
+ ΓT−1,with,

ΓT−1 := EYT−1,hT−1

[
h̄γ̄0 +

d∑
l=1

hT−lγ̄l −
M−1−d∑
j=1

ρ(j)IjT−1−d$̄d,j+1

+α

[
1− Φ

(
h̄γ̃M−1

0 +
d∑
l=1

hT−lγ̃
M−1
l −

M−d∑
j=1

IjT−1−d$̃
M−1
d,j+1

)]
; ĀT

]

+EYT−1,hT−1

[
d∑
l=1

hT−lγ̄l −
M−1−d∑
j=1

ρ(j)IjT−1−d$̄d,j+1

+α

[
1− Φ

(
d∑
l=1

hT−lγ̃
M−1
l −

M−d∑
j=1

IjT−1−d$̃
M−1
d,j+1

)]
;AT

]
(9.13)

−EYT−1,hT−1

[
d∑
l=1

hT−lη
l
T −

M−d∑
j=1

IjT−1−dψ
j
T + δT ; AcT

]
,
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where by Lemma 9.4 (from Table 5.1, ρ factors out from some coefficients ({$̃M−1
d,j+1}j, {ψ

j
T}j),

others are bounded uniformly 1 in ρ) and recall ρ = max{ρ(1), ρ(2), . . . , ρ(j)} and for all 1 ≤

j ≤M :

|ΓT−1| ≤ ζT−1(YT−1, hT−1) with (9.14)

ζT−1(YT−1, hT−1) := ρ

∣∣∣∣∣
M−1−d∑
j=1

cjT I
j
T−2−d

∣∣∣∣∣+ ρ

∣∣∣∣∣
M−1−d∑
j=1

ujT I
j
T−2−d

∣∣∣∣∣+ ρ
d∑
l=1

clThT−l + ρcT .

The coefficients {cjT , u
j
T}j≥1 in the definition of ζT−1 are appropriately defined, converge to

finite constants as ρ→ 0 and do not depend upon YT−1 or hT−1 (see Table 5.1, equation (9.13)).

Thus in all, for any YT−1, and hT−1 (from (9.12)) we have:

E[vT (YT )|YT−1, hT−1] = ΓT−1(YT−1, hT−1)

+EYT−1,hT−1

[
d∑
l=1

hT−lη
l
T −

M−d∑
j=1

IjT−1−dψ
j
T + δT

]
. (9.15)

Clearly ζT−1 = O(ρ), policy (5.11) is optimal for all YT and so the result is true for k = 0. Now

we will prove the result for k = 1. Using DP equations

vT−1(YT−1) = inf
hT−1∈[0,h̄]

J(hT−1, YT−1) with (9.16)

J(hT−1, YT−1) := rT−1(hT−1, YT−1) + E[vT (YT )|YT−1, hT−1].

Fix YT−1. By Lemma 9.3, and equation (9.15) the objective function J(·) can be split and

rewritten as:

J(hT−1, YT−1) = J̃(hT−1, YT−1) + ΓT−1(YT−1, hT−1) with (9.17)

J̃(hT−1, YT−1) :=
d∑
l=0

hT−1−l

(
γ̄l + ηl+1

T 1l<d − 1l=d
M−d∑
j=1

ψjTγ
j−1
0

)

−
M−1−d∑
j=1

(
ρ(j)$̄d,j+1 +

M−1−d∑
r=j

ψr+1
T ρ(j)$r

0,j+1

)
IjT−2−d

+α

[
1− Φ

(
d∑
l=0

hT−1−lγ̃
M−1
l −

M−d∑
j=1

IjT−2−d$̃
M−1
d,j+1

)]
+ δT .

1 In first line of (9.13), the first two and fourth terms inside the expectation are bounded by a finite constant for all

realizations and then the probability can be upper bounded by Lemma 9.4. Similarly, the second and third lines

of (9.13) are bounded by Lemma 9.4.
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The function J̃(·) is like the objective function of Theorem 9.6 and observe hypothesis (9.30) is

satisfied by condition (5.10) with k = 1. By this theorem, the optimal policy and value function

are respectively:

ṽT−1(YT−1) := inf
0≤hT−1≤h̄

J̃(hT−1, YT−1), (9.18)

respectively equal:

h̃∗T−1(YT−1) =


h̄ on ĀT−1

0 on AT−1

1

γ̃M−1
0

[
−
∑d

l=1 hT−1−lγ̃
M−1
l +

∑M−d
j=1 IjT−2−d$̃

M−1
d,j+1 + aT−1

]
, on AcT−1

with AT−1 := AT−1 ∪ ĀT−1,

AT−1 =

{
M−d∑
j=1

IjT−2−d$̃
M−1
d,j+1 < −aT−1 +

d∑
l=1

hT−1−lγ̃
M−1
l

}
,

ĀT−1 =

{
M−d∑
j=1

IjT−2−d$̃
M−1
d,j+1 > h̄γ̃M−1

0 − aT−1 +
d∑
l=1

hT−1−lγ̃
M−1
l

}

with constants, e.g., aT−1, ηlT−1, ψjT−1, as in Table 5.1 and

ṽT−1(YT−1)=



J̃
(
h̄, YT−1

)
on ĀT−1

J̃ (0, YT−1) on AT−1

∑d
l=1 hT−1−lη

l
T−1 −

∑M−d
j=1 IjT−2−dψ

j
T−1 + δT−1, on ĀcT−1.

Further from (9.16)-(9.18) and (9.14), for any YT−1

vT−1(YT−1)≤ inf
0≤hT−1≤h̄

J̃(hT−1, YT−1) + sup
0≤hT−1≤h̄

|ΓT−1(hT−1, YT−1)| ,

≤ ṽT−1(YT−1) + ε, (9.19)
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with

ε := sup
0≤hT−1≤h̄

ζT−1(hT−1, YT−1) = ρ

∣∣∣∣∣
M−1−d∑
j=1

cjT I
j
T−2−d

∣∣∣∣∣+ ρ

∣∣∣∣∣
M−1−d∑
j=1

ujT I
j
T−2−d

∣∣∣∣∣
+ρ

d∑
l=2

clThT−l + ρc1
T h̄+ ρcT ,

(9.20)

Again using (9.15)-(9.17) we have:

vT−1(YT−1) ≤
(
J̃
(
h̃∗T−1(YT−1), YT−1

)
+ ΓT−1

(
h̃∗T−1(YT−1), YT−1

))
+ ε

−ΓT−1

(
h̃∗T−1(YT−1), YT−1

)
≤ J

(
h̃∗T−1(YT−1), YT−1

)
+ 2ε.

Thus h̃∗T−1(YT−1) is an ε-optimal policy (note ε = O(ρ)) for any YT−1 and thus (5.11) is true

for k = 1.

Further as in the previous step (i.e., step with k = 0) one can write (e.g., once again P (AT−1) =

O(ρ), and so on)

E[ṽT−1(YT−1)|YT−2, hT−2] = EYT−2,hT−2

[
d∑
l=1

hT−1−lη
l
T−1 −

M−d∑
j=1

IjT−2−dψ
j
T−1 + δT−1

]
+Γ̃T−2,

where Γ̃T−2 can be upper-bounded like in (9.14). Define

ΓT−2 := EYT−2,hT−2
[vT−1(YT−1)− ṽT−1(YT−1)|YT−2, hT−2] + Γ̃T−2

and note that2

2

It is clear from (9.17) that

J(hT−1, YT−1) = J̃(hT−1, YT−1) + ΓT−1(YT−1, hT−1)

≥ J̃(hT−1, YT−1)− |ΓT−1(YT−1, hT−1)|

≥ J̃(hT−1, YT−1)− sup
hT−1∈[0,h̄]

|ΓT−1(YT−1, hT−1)|,

so, vT−1(YT−1) ≥ ṽT−1(YT−1)− sup
hT−1∈[0,h̄]

|ΓT−1(YT−1, hT−1)|

≥ ṽT−1(YT−1)− ε,

and hence from (9.19), |vT−1 − ṽT−1| ≤ ε.
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|ΓT−2| ≤ ε+
∣∣∣Γ̃T−2

∣∣∣ .
Recall Γ̃T−2 can be upper-bounded like in (9.14) and using Lemma 9.4, it is easy to verify the

following:

|ΓT−2| ≤ ζT−1(YT−2, hT−2) where

ζT−1(YT−2, hT−2) = ρ

∣∣∣∣∣∣
M−1−d∑
j=1

cjT−1I
j
T−3−d

∣∣∣∣∣∣+ ρ

∣∣∣∣∣∣
M−1−d∑
j=1

ujT−1I
j
T−3−d

∣∣∣∣∣∣+

d∑
l=1

ρclT−1hT−1−l + ρcT−1,

for appropriate coefficients that converge to finite constants as ρ → 0 and which do not depend upon YT−2 or

hT−2. This completes the proof for k = 1.

The rest of the proof is completed using induction, assume the result is true for k = n. Now we will prove the

result for k = n+ 1. Using DP equations

vT−n−1(YT−n−1) = inf
hT−n−1∈[0,h̄]

J(hT−n−1, YT−n−1) with (9.21)

J(hT−n−1, YT−n−1) := rT−n−1(hT−n−1, YT−n−1) + E[vT (YT−n)|YT−n−1, hT−n−1].

Fix YT−n−1. By Lemma 9.3, the objective function J(·) can be split and rewritten as:

J(hT−n−1, YT−n−1) = J̃(hT−n−1, YT−n−1) + ΓT−n−1(YT−n−1, hT−n−1) with (9.22)

J̃(hT−n−1, YT−n−1) :=

d∑
l=0

hT−n−1−l

γ̄l + ηl+1
T−n1l<d −1l=d

M−d∑
j=1

ψjT−nγ
j−1
0


−
M−1−d∑
j=1

ρ(j)$̄d,j+1 +

M−1−d∑
r=j

ψr+1
T−nρ

(j)$r
0,j+1

 IjT−n−2−d

+α

1− Φ

 d∑
l=0

hT−n−1−lγ̃
M−1
l −

M−d∑
j=1

IjT−n−2−d$̃
M−1
d,j+1

+ δT−n. (9.23)

The function J̃(·) is like the objective function of Theorem 9.6 and observe hypothesis (9.30) is satisfied by

condition (5.10) with k = n+ 1. By this theorem, the optimal policy and value function are respectively:

ṽT−n−1(YT−n−1) := inf
0≤hT−n−1≤h̄

J̃(hT−n−1, YT−n−1), (9.24)
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respectively equal:

h̃∗T−n−1(YT−n−1) =



h̄ on ĀT−n−1

0 on AT−n−1

1
γ̃M−1
0

[
−
∑d
l=1 hT−n−1−lγ̃

M−1
l

+
∑M−d
j=1 IjT−n−2−d$̃

M−1
d,j+1 + aT−n−1

]
, on AcT−n−1

with AT−n−1 := AT−n−1 ∪ ĀT−n−1, (9.25)

AT−n−1 =


M−d∑
j=1

IjT−n−2−d$̃
M−1
d,j+1 < −aT−n−1 +

d∑
l=1

hT−n−1−lγ̃
M−1
l

 ,

ĀT−n−1 =


M−d∑
j=1

IjT−n−2−d$̃
M−1
d,j+1 > h̄γ̃M−1

0 − aT−n−1 +

d∑
l=1

hT−n−1−lγ̃
M−1
l


with constants, e.g., aT−n−1, ηlT−n−1, ψjT−n−1, as in Table 5.1 and

ṽT−n−1(YT−n−1) =



J̃(h̄, YT−n−1) on ĀT−n−1

J̃(0, YT−n−1) on AT−n−1

∑d
l=1 hT−n−1−lη

l
T−n−1 −

∑M−d
j=1 IjT−n−2−dψ

j
T−n−1

+δT−n−1, on ĀcT−n−1.

Further from (9.21)-(9.24) and (9.14), for any YT−n−1

vT−n−1(YT−n−1) ≤ inf
0≤hT−n−1≤h̄

J̃(hT−n−1, YT−n−1) + sup
0≤hT−n−1≤h̄

|ΓT−n−1(hT−n−1, YT−n−1)| ,

≤ ṽT−n−1(YT−n−1) + ε with (9.26)

ε := sup
0≤hT−n−1≤h̄

ζT−n−1(hT−n−1, YT−n−1)

= ρ

∣∣∣∣∣∣
M−1−d∑
j=1

cjT−nI
j
T−n−2−d

∣∣∣∣∣∣+ ρ

∣∣∣∣∣∣
M−1−d∑
j=1

ujT−nI
j
T−n−2−d

∣∣∣∣∣∣+ ρ

d∑
l=2

clT−nhT−n−l

+ρc1T−nh̄+ ρcT−n.

vT−n−1(YT−n−1) ≤
(
J̃
(
h̃∗T−n−1(YT−n−1), YT−n−1

)
+ ΓT−n−1

(
h̃∗T−n−1(YT−n−1), YT−n−1

))
+ ε

−ΓT−n−1

(
h̃∗T−n−1(YT−n−1), YT−n−1

)
≤ J

(
h̃∗T−n−1(YT−n−1), YT−n−1

)
+ 2ε.

Thus h̃∗T−n−1(YT−n−1) is an ε-optimal policy (note ε = O(ρ)) for any YT−n−1 and thus (5.11) is true for

k = n+ 1.
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Further as in the previous step (i.e., step with k = 0) one can write (e.g., once again P (AT−n−1) = O(ρ), and so

on)

E[ṽT−n−1(YT−n−1)|YT−n−2, hT−n−2]

= EYT−n−2,hT−n−2

 d∑
l=1

hT−n−1−lη
l
T−n−1 −

M−d∑
j=1

IjT−n−2−dψ
j
T−n−1 + δT−n−1

+ Γ̃T−n−2,

where Γ̃T−n−2 can be upper-bounded like in (9.14). Define

ΓT−n−2 := EYT−n−2,hT−n−2
[vT−n−1(YT−n−1)− ṽT−n−1(YT−n−1)|YT−n−2, hT−n−2] + Γ̃T−n−2

and note that

|ΓT−n−2| ≤ ε+
∣∣∣Γ̃T−n−2

∣∣∣ .
Using the above definition we have:

E[vT−n−1(YT−n−1)|YT−n−2, hT−n−2]

= EYT−n−2,hT−n−2

 d∑
l=1

hT−n−1−lη
l
T−n−1 −

M−d∑
j=1

IjT−n−2−dψ
j
T−n−1 + δT−n−1

+ ΓT−n−2.

Recall Γ̃T−n−2 can be upper-bounded like in (9.14) and using Lemma 9.4, it is easy to verify the following:

|ΓT−n−2| ≤ ζT−n−1(YT−n−2, hT−n−2) where

ζT−n−1(YT−n−2, hT−n−2) = ρ

∣∣∣∣∣∣
∑
j

cjT−n−1I
j
T−n−3−d

∣∣∣∣∣∣+ ρ

∣∣∣∣∣∣
∑
j

ujT−n−1I
j
T−n−3−d

∣∣∣∣∣∣
+

d∑
l=1

ρclT−n−1hT−n−1−l + ρcT−n−1,

for appropriate coefficients that converge to finite constants as ρ → 0 and which do not depend upon YT−n−2 or

hT−n−2. This completes the proof for k = n+ 1. �

Lemma 9.3. For any k ≥ 1, YT−k and hT−k

J̃(hT−k, YT−k) = rT−k(hT−k, YT−k)

+EYT−k,hT−k

[
d∑
l=1

hT−k+1−lη
l
T−k+1 −

M−d∑
j=1

IjT−k−dψ
j
T−k+1 + δT−k+1

]
,

where J̃(hT−k, YT−k) is defined (with k = n+ 1) in (9.23).

Proof: The coefficients are defined recursively to satisfy the above, and it can be verified using Table 5.1 and by

taking conditional expectation of equation (9.1) of Lemma 9.1. �

Lemma 9.4. For any k ≥ 1, YT−k, hT−k and the coefficients
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P

(
AT−k+2

∣∣∣∣YT−k, hT−k) ≤ 2 exp(−(C/ρ)2 + C/ρ), (9.27)

E

∣∣∣∣∣∣
M−1−d∑
j=1

cjI
j
T−k+1−d

∣∣∣∣∣∣
∣∣∣∣YT−k, hT−k

 ≤ |∑
j

ccjIjT−k−d|+ cchhT−k+1−d + cc,

E

∑
j

cjI
j
T−k+1−d

∣∣∣∣YT−k, hT−k
 ≤ |∑

j

ccjIjT−k−d|+ cchhT−k+1−d + cc. (9.28)

where the coefficients on the right hand side are appropriately defined. Note that the upper bound in (9.27) is

clearly O(ρ).

Proof: For (9.27) (see (9.25)), it suffices to prove the result for the following probability for any C > 0:

pA := P

∑
j

ējIjT−k−d >
C

ρ

∣∣∣∣YT−k, hT−k


Let

µ :=
∑
j

ejIjT−k−d + ehhT−k+1−d = E

∑
j

ējIjT−k+1−d

∣∣∣∣YT−k, hT−k


represent the conditional mean. Thus we need to prove that for a Gaussian random with mean µ the above impli-

cation:

pA =

∫ ∞
C/ρ

exp

(
− (t− µ)2

2ω2

)
dt√
2πω2

=

∫ ∞
(C/ρ−µ)/ω

exp

(
− t

2

2

)
dt√
2π

≤ 2 exp

(
− (C/ρ− µ)2

ω2

)
= 2 exp(−(C/ρ)2) exp(−µ2 + 2µC/ρ) ≤ 2 exp(−(C/ρ)2 + C/ρ).

Here, ω2 is absorbed by the constant C. For (9.28), first observe that
∑
j cjI

j
T−k+1−d conditioned on

(YT−k, hT−k) is a Gaussian random variable and let its conditional expected value be:

µ̃ = E

∑
j

cjI
j
T−k+1−d

∣∣∣∣YT−k, hT−k


and note further that µ̃ is linear in (YT−k, hT−k). Let ω be the corresponding variance. Using the above definitions

(without loss of generality when µ̃ > 0),

E

∣∣∣∣∣∣
∑
j

cjI
j
T−k+1−d

∣∣∣∣∣∣
∣∣∣∣YT−k, hT−k

 =

∫ ∞
−∞
|t| exp

(
− (t− µ̃)2

2ω2

)
dt√
2πω2

=

∫ ∞
−∞
|t+ µ̃| exp

(
− t2

2ω2

)
dt√
2πω2

≤ 2

∫ ∞
0

t exp

(
− t2

2ω2

)
dt√
2πω2

+ µ̃. �

Lemma 9.5. Assume α > (1 + φ̃)βM
√

2π/2 for some φ̃ > 0 and let ρ := max{ρ(1), ρ(2), . . . , ρ(j)} for all

1 ≤ j ≤ M . Then there exists an upper bound, 1 ≥ ρ̄ > 0, such that condition (5.10) is satisfied (for all k) and

for all load factors ρ ≤ ρ̄.
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Proof: Define the following function,

fη : (0, 1]→ RT+1

i.e., ρ
fη−→
(
γ̄0 + {η1

t }t≥0

)
. For every ρ > 0, fη(ρ) is well defined and continuous (see Table 5.1). Now we define

the continuous extension of fη at ρ = 0, i.e.,

fη(0) , lim
ρ→0

fη(p).

Note here fη(0) is not corresponding to any system and is only defined to obtain a continuous function: fη is a

continuous function on [0, 1] by construction.

Before we proceed further one can easily verify the following (see Table 5.1):

γ̃M−1
l

γ̃M−1
0

→ 0 for all l ≥ 1, γ̄i → 0, for all i > 0,

γ̄0 → M
2 , and, ψjt → 0 for all j, t > 0 as ρ→ 0, (9.29)

which would be instrumental in proving this lemma.

If one proves fη(0) = limρ→0 fη(ρ) > 0 (i.e., all components are strictly positive), then by continuity there exists

a ρ̄ > 0 such that fη(ρ) > 0 for all ρ ≤ ρ̄. We prove this by proving each ηlt converges to zero, but the limit of the

overall co-efficient is non zero because of non-zero-limit of γ̄M−1
0 . Towards this, we begin with {ηlT }l and from

Table 5.1 and (9.29) for any l ≥ 1:

lim
ρ→0

ηlT = lim
ρ→0

1

γ̃M−1
0

γ̄l +1l<dηl+1
T+1 −1l=d

M−d∑
j=1

ψjT+1γ
j−1
0

 γ̃M−1
0 −

(
γ̄0 + η1

T+1

)
γ̃M−1
l

 = 0.

Using the above, and using backward recursion it is clear that

lim
ρ→0

ηlT−k = 0 for all l > 0, k ≥ 0.

Thus the RHS of condition (5.10) has the following non-zero-limit:

lim
ρ→0

(
γ̄0 + η1

T−j
)√

2πω

γ̃M−1
0

= β
M
√

2π

2
,

and now there exists a ρ̄ > 0 (by continuity of f and others) such that(
γ̄0 + η1

T−j
)√

2πω

γ̃M−1
0

≤ (1 + φ̃)β
M
√

2π

2
for all ρ ≤ ρ̄

By hypothesis α > (1 + φ̃)βM
√

2π/2, and hence the condition (5.10) is satisfied for all ρ ≤ ρ̄. �

Theorem 9.6. Let g be function of the following type: Φ is the CDF of normal random variable with mean 0 and

variance ω2

g(h,Y) =

d∑
l=0

h−lz̄l −
M−1−d∑
j=1

Ij z̄j + α

1− Φ

 d∑
l=0

h−lz̃l −
M−d∑
j=1

z̃jIj

+ δ

with Y = [{h−l}l>0, I
1, I2, . . . , IM ],

with z̄0 > 0, α > 0, z̃0 > 0 and for notational simplicity let h0 = h. Consider the following optimization problem:

g∗(Y) := min
h∈[0,h̄]

g(h,Y) and h∗ := arg min
h
g(h,Y).
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Assume

α >
z̄0

√
2πω

z̃0
and define a := ω

√√√√−2 log

(
z̄0

√
2πω

z̃0α

)
. (9.30)

Then there exists an unique optimizer to this problem and the optimizer is given by:

h∗ =


0 if −

∑d
l=1 h−lz̃l +

∑M−d
j=1 Ij z̃j < −a

h̄ if h̄z̃0 +
∑d
l=1 h−lz̃l −

∑M−d
j=1 Ij z̃j < a

1
z̃0

[
−
∑d
l=1 h−lz̃l +

∑M−d
j=1 Ij z̃j + a

]
, else.

(9.31)

Further,

g∗(Y) =


g(0,Y) if −

∑d
l=1 h−lz̃l +

∑M−d
j=1 Ij z̃j < −a

g(h̄,Y) if h̄z̃0 +
∑d
l=1 h−lz̃l −

∑M−d
j=1 Ij z̃j < a∑d

l=1 h−lη
l −
∑M−d
j=1 Ijψj + δ∗ else, with

ηl =
z̄lz̃0 − z̄0z̃l

z̃0
, ψj = z̄j1j<M−d −

z̄0z̃
j

z̃0
, δ∗ = α [1− Φ (a)] +

z̄0a

z̃0
+ δ.

Proof: Consider the objective function,

g∗(Y) = min
h∈[0,h̄]


d∑
l=0

h−lz̄l −
M−1−d∑
j=1

Ij z̄j + α

1− Φ

 d∑
l=0

h−lz̃l −
M−d∑
j=1

z̃jIj

+ δ

 . (9.32)

Let h∗ be the optimal policy for problem (9.32), i.e.,

h∗ ∈ arg min(g∗(Y)),

either h∗ is on the boundary or h∗ in interior when d
dh (g(Y))

∣∣∣
h=h∗

= 0.

The first derivative is given by:

d

dh
(g(Y)) = z̄0 −

α√
2π

exp

−
(∑d

l=0 h−lz̃l −
∑M−d
j=1 z̃jIj

)2

2

 z̃0.

When a is well defined (as given by hypothesis (9.30)), there exists a zero of the derivative which satisfies the

following:  d∑
l=0

h−lz̃l −
M−d∑
j=1

z̃jIj

2

= a2, i.e., ⇒
d∑
l=0

h−lz̃l −
M−d∑
j=1

z̃jIj = a.

If
d∑
l=0

h−lz̃l −
M−d∑
j=1

z̃jIj < a,

then the derivative is negative for all h ∈ [0, h̄], and hence h∗ = h̄. For the rest of the cases (i.e., when a− h̄z̃0 <∑d
l=1 h−lz̃l −

∑M−d
j=1 z̃jIj < a) we have the interior optimizer if α > z̄0

√
2π

z̃0
,

h∗ =
1

z̃0

a− d∑
l=1

h−lz̃l +

M−d∑
j=1

z̃jIj

 ,
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as the second derivative (at such h∗) is positive.

Substituting the above, the optimal objective function (when interior point is optimal) equals:

g∗(Y) = h∗z̄0 +

d∑
l=1

h−lz̄l −
M−1−d∑
j=1

Ij z̄j + α

1− Φ

h∗z̃0 +

d∑
l=1

h−lz̃l −
M−1−d∑
j=1

Ij z̃j

+ δ

=

d∑
l=1

h−l

(
z̄lz̃0 − z̄0z̃l

z̃0

)
−
M−d∑
j=0

Ij
(
z̄j1j<M−d −

z̄0z̃
j

z̃0

)
+
z̄0a

z̃0
+ α (1− Φ (a)) + δ

=

d∑
l=1

h−lη
l −

M−1∑
j=0

Ijψj + δ∗, where,

{ηl}, {ψj}, and δ∗ are as defined in hypothesis. �
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