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Abstract— We analyse a coalition formation game between
strategic service providers of a congestible service. The key
novelty of our formulation is that it is a constant sum game,
i.e., the total payoff across all service providers (or coalitions
of providers) is fixed, and dictated by the total size of the
market. The game thus captures the tension between resource
pooling (to benefit from the resulting statistical economies of
scale) and competition between coalitions over market share.
In a departure from the prior literature on resource pooling
for congestible services, we show that the grand coalition is in
general not stable, once we allow for competition over market
share. Instead, the stable configurations are duopolies, where
the dominant coalition exploits its economies of scale to corner a
disproportionate market share. We analyse the stable duopolies
that emerge from this interaction, and also study a dynamic
variant of this game.

I. INTRODUCTION

Resource sharing is an efficient way of reducing conges-
tion and uncertainty in service industries. It refers to an
arrangement where service resources are pooled and used
jointly by a group (a.k.a., coalition) of providers, instead
of each provider operating alone using its own resources.
Naturally, such a coalition would be sustainable only if the
participating providers obtain higher payoffs than they would
have obtained otherwise. The key driver of coalition forma-
tion in congestion prone service systems is the statistical
economies of scale that emerge from the pooling of service
resources—this allows the coalition to offer a better quality
of service to its customers, and/or to attract more customers
to its service.

Not surprisingly, there is a considerable literature that
analyses resource pooling between independent providers
of congestible services via a cooperative game theoretic
approach. In these papers, each provider is modeled as a
queueing system, with its own dedicated customer base,
that generates service requests according to a certain arrival
process. The payoff of each service provider is in turn
determined by the quality of service it is able to provide to
its (dedicated) customer base. In such a setting, the statistical
economies of scale from resource pooling typically drives the
service providers to pool all their servers together to form
a grand coalition, which generates the greatest aggregate
payoff across all coalitional arrangements. Naturally, the
resulting aggregate payoff must be divided between the
providers in a stable manner, i.e., in such a way that no
subset of providers has an incentive to ‘break away’ from
the grand coalition. Such stable payoff allocations have
been demonstrated in a wide range of settings, including
single/multiple server environments, and loss/queue-based

environments (see [8], [9] and the references therein).
To summarize, the literature on coalition formation be-

tween providers of congestible services suggests that a stable
grand coalition would emerge from the strategic interaction.
However, a crucial aspect the preceding literature fails to
capture is user churn. That is, customers can switch service
providers, if offered superior service quality elsewhere. This
aspect introduces competition between the service providers
(or coalitions of service providers) over market share. To the
best of our knowledge, the interplay between resource pool-
ing among service providers (and the associated economies
of scale) with the competition between them, in the context
of congestible services, has not been explored in the litera-
ture. This paper seeks to fill this gap.

Specifically, we analyse a coalition formation game be-
tween a collection of service providers, each of which is
modelled as an Erlang-B loss system. A key aspect of our
model is that the total market size (captured via the aggregate
arrival rate of customer requests) is fixed exogenously, mak-
ing the game constant sum, i.e., the total payoff across all
providers (or coalitions of providers) is fixed. This constant
sum aspect, as we show, dramatically alters the outcome of
the strategic interaction between providers. In particular, we
show that (except in a very specific corner case), the grand
coalition is not stable. Instead, the predominant stable con-
figurations are duopolies, with the larger coalition exploiting
economies of scale to corner a disproportionate portion of
the market share. Our work also highlights several subtleties
relating to different natural notions of stability in this context,
the way the payoff of each coalition is divided between its
members, and the degree of congestion in the system.

Our contributions are as follows.
1. We formally define a constant sum coalition formation
game between strategic service providers of a congestible
service. This model is the first, to the best of our knowledge,
to capture the interplay between resource pooling and com-
petition. Crucially, this is a partition form game, since the
payoff of each coalition depends on not just the members
of that coalition, but also on the coalitional arrangements
outside the coalition.
2. We introduce three natural definitions of a stable con-
figuration for this game, where a configuration specifies a
partition of the set of providers (into coalitions), and also
the allocation of the total payoff of each coalition among its
members. The three notions of stability we consider differ
with respect to the range of deviations or movements that
are blocked (or disincentivised), and also the precision with
which the coalitions that seek to ‘break’ from the prevailing



configuration can estimate the benefit from doing so.
3. We analyse the class of stable configurations that emerge
under each notion of stability. Interestingly, we are able to
show that under configurations involving three or more coali-
tions are not stable under any notion of stability. Intuitively,
this is because the economies of scale that incentivise certain
mergers to take place between coalitions. Moreover, except
for a corner case, we show that the grand coalition also
cannot be part of a stable configuration. This means the
dominant equilibria for this system are duopolies.
4. We further analyse the stable configurations that involve
duopolies under under each stability notion. Interestingly, the
payoff allocations supported by stable configurations differ
across the different stability notions. We also explore the
impact of the overall congestion level on the stable duopolies,
by analysing light and heavy traffic regimes.
5. Finally, we study a dynamic variant of the coalition
formation game, and analyse the conditions for the (random)
dynamics to ‘settle’ to a stable configuration in a finite
number of moves.

II. MODEL AND PRELIMINARIES

In this section, we describe our system model for coalition
formation between strategic service providers, characterize
the behavior of the customer base in response to coalition
formation between service providers, and introduce some
background on the notion of a stable configuration.

A. System model

Consider a system with a set N = {1, · · · , n} of inde-
pendent service providers (a.k.a., agents), with provider i
having Ni servers. Without loss of generality, we assume
Ni ≥ Ni+1 for 1 ≤ i ≤ n− 1. All servers are identical, and
assumed to have a unit speed, without loss of generality.
The providers serve a customer base that generates service
requests as per a Poisson process of rate Λ. Jobs sizes (a.k.a.,
service requirements) are i.i.d., with J denoting a generic job
size, and E [J ] = 1/µ.

Service providers are strategic, and can form coalitions
with other service providers to enhance their rewards. For-
mally, such coalition formation between the service providers
induces a partition P = {C1, C2, · · · , Ck} of N , where

∪ki=1Ci = N , Ci ∩ Cj = ∅ ∀ i 6= j.

We refer to such a partition with k coalitions as a k-partition.
(Naturally, the baseline scenario where each service provider
operates independently corresponds to an n-partition.)

In response to a partition P induced by coalition formation
between service providers, the arrival process of customer
requests gets split across the k coalitions in P , with the
arrival process seen by coalition C being a Poisson process
of rate λPC , where

∑
C∈P λ

P
C = Λ. (We characterize the

split (λPC , C ∈ P) as a Wardrop equilibrium; details below.)
Each coalition C operates as an M /M /NC /NC (Erlang-B)
loss system, with NC =

∑
j∈C Nj parallel servers, and

arrival rate λPC . This means jobs arriving into coalition C
that find a free server upon arrival begin service immediately,

while those that arrive when all NC servers are busy get
dropped (lost). Given the well known insensitivity property
of the Erlang-B system, the steady state blocking probability
associated with coalition C (the long run fraction of jobs
arriving into coalition C that get dropped), denoted BPC , is
given by the Erlang-B formula([11]):

BPC = B(NC , a
P
C), where aPC :=

λPC
µ
, (1)

B(N, a) =
aN

N !∑N
j=0

aj

j!

.

B. User behavior: Wardrop equilibrium

Next, we define the behavior of the customer base in
response to coalition formation across service providers, via
the split (λPC , C ∈ P) of the aggregate arrival process of
service requests across coalitions. This split is characterized
as a Wardrop equilibrium([2]).

In the context of our model, we define the WE split
of the arrival process of service requests across coalitions,
such that the steady state blocking probability associated
with each coalition is equal. Note that since the blocking
probability associated with an ‘unused’ coalition would be
zero, it follows that all coalitions would see a strictly positive
arrival rate. Thus, the WE (if it exists) is characterized by a
vector of arrival rates (λPC , C ∈ P) satisfying

BPC = B(NC ,
λPC
µ

) = B∗ ∀ C ∈ P,
∑
C∈P

λPC = Λ, (2)

where B∗ is the common steady state blocking probability
for each coalition. For any given partition P, the following
theorem establishes the existence and uniqueness of the WE,
along with some useful properties.

Theorem 1: Given any partition P between the service
providers, there is a unique Wardrop equilibrium (λPC , C ∈
P), where λPC > 0 for all C ∈ P, that satisfies (2).
Additionally, the following properties hold:
(i) For each C ∈ P, λPC is a strictly increasing function of
the total arrival rate Λ.
(ii) If the partition P ′ is formed by merging two coalitions
Ci and Cj in partition P where Ci∪Cj 6= N (with all other
coalitions in P remaining intact),

λP
′

Ci∪Cj
> λPCi

+ λPCj
.

(iii) If P = {C1, C2}, with NC1
> NC2

, then

λPC1

NC1

>
Λ

N
>
λPC2

NC2

, where N =
∑
i∈N

Ni.

Proof: See Appendix B. �
Aside from asserting the uniqueness and strict positivity

of the Wardrop split, Theorem 1 also states that equilibrium
arrival rate of each coalition is an increasing function of
the aggregate arrival rate Λ; see Statement (i). Additionally,
Statement (ii) demonstrates the statistical economies of scale
due to a merger between coalitions: the merged entity is
able to attract an arrival rate that exceeds the sum of the



arrival rates seen by the two coalitions pre-merger. Finally,
Statement (iii) provides another illustration of statistical
economies of scale for the special case of a 2-partition—the
larger coalition enjoys a higher utilization per server than the
smaller one.

C. Coalition formation game: Preliminaries
Having defined the behavior of the user base, we now

provide some preliminary details on the coalition formation
game between the service providers.

Recall, that each service provider is strategic, and only
enters into a coalition if doing so is beneficial. Given a
partition P that describes the coalitions formed by the service
providers, we define the value or payoff of each coalition
C ∈ P to be βλPC , where β > 0. This is of course
natural when the coalition derives a certain revenue per
served job. The same model is also applicable if λPC is
interpreted as being proportional to the number of subscribers
of coalition C, with each subscriber paying a recurring
subscription fee. Without loss of generality, we set β = 1.

The value λPC of each coalition C must further be appor-
tioned between the members of the coalition. Denoting the
payoff of agent i by φPi , we therefore have∑

i∈C
φPi = λPC ∀ C ∈ P.

Since the providers are selfish, they are ultimately interested
only in their individual payoffs. Thus, the coalition formation
between providers is driven by the desire of each provider
to maximize its payoff, given the statistical economies of
scale obtained via coalition, and also the constant sum nature
of this game (the sum total of the payoffs of all providers
equals Λ). Thus, the relevant fundamental questions are:

1) Which partitions can emerge as a result of the strategic
interaction between providers, i.e., which partitions are
part of stable configurations? Indeed, a precursor to this
question is: How does one define a natural notion of
stability?

2) It is apparent that the answer to the above question
hinges on how the value of each coalition is divided
between its members. Thus, the next question is: How
is the value of each coalition apprortioned between its
members in a stable configuration?

Our aim in this paper is to answer these questions; such
problems can be studied using tools from cooperative game
theory. Note in particular that the value of any coalition
in our formulation depends on the operational arrangement
of agents outside the coalition, i.e., on the entire partition.
This makes the game we study a partition form game. In
the remainder of this section, we introduce the notion of a
partition (more precisely, a configuration) being blocked by
a certain coalition. These ideas will be used when we define
stable configurations in Section III.

Given a partition P = {C1, · · · , Ck}, the set of payoff
vectors consistent with P is defined as:

ΦP :=

Φ = [φ1, · · · , φn] ∈ Rn+ :
∑
j∈Ci

φj = λPCi
∀ 1 ≤ i ≤ k

 .

A configuration is defined as a tuple (P,Φ), such that Φ ∈
ΦP . Note that a configuration specifies not just a partition
of the agents into coalitions, but also specifies an allocation
of payoffs within each coalition, that is consistent with the
partition.

Blocking by a coalition: A configuration (P,Φ) is blocked
by a coalition C /∈ P if, for any partition P ′ containing C,
there exists Φ′ ∈ ΦP

′
such that

φ′j > φj ∀ j ∈ C. (3)

Basically, a new coalition can block an existing configura-
tion, if each one of its members can derive strictly better
payoff from this realignment. Equivalently, (P,Φ) is blocked
by coalition C /∈ P if, for any partition P ′ containing C,
λP
′

C >
∑
j∈C φj . Note that the above equivalence hinges

on the transferable utility assumption inherent in our coop-
erative game, by virtue of which (partial) utilities can be
transferred across agents. Intuitively, a coalition C ⊂ N
blocks configuration (P,Φ), if the members of C have an
incentive to ‘break’ one or more coalitions of P to come
together and form a new coalition. In particular, it is possible
to allocate payoffs within the blocking coalition C such
that each member of C achieves a strictly greater payoff,
irrespective of any (potentially retaliatory) rearrangements
among agents outside C. This is referred to in the literature
as a pessimistic anticipation rule (see [5], and Appendix A).

In Section III, we analyse stable configurations, which are
defined as those configurations that cannot be blocked by
a certain broad class of candidate blocking configurations.
Specifically, we consider candidate blocking coalitions that
are formed either via a merger of prevailing coalitions, or via
a split of a single prevailing coalition. Also, note that block-
ing as defined above involves a revelation of the prevailing
payoffs of the agents of the candidate coalition {φi}i∈C .
In Section III, we also consider an alternative definition of
blocking, where the ‘prevailing worth’ of the agents of the
candidate blocking coalition is estimated imprecisely.

Finally, we note that game considered here can also be
modelled as a characteristic form game; the details of this
construction are available in Appendix A. Indeed, the notion
of stable configurations in the present context is a partition-
based generalization of the classical notion of α-core (see
[3], [4]), when the characteristic function is defined using
the pessimistic anticipation rule (details are in Appendix A,
see (14)-(15)).

III. STABLE CONFIGURATIONS

In this section, we formally define three different notions
of stable configurations, which differ based on the types
of candidate blocking coalitions considered, as well as the
precision with which the ‘prevailing worth’ of the members
of the candidate coalition is estimated. For each of these
notions of stability, we characterize the class of stable
configurations. The main takeaway from our results is that
the interplay between statistical economies of scale and the
constant sum nature of this game results in configurations
with three or more coalitions rendered unstable. In other



words, stable configurations necessarily involve either a
duopoly or a monopoly. Importantly, under all three notions
of stability that we consider, stable configurations are only
composed of such small (one/two) sized partitions; however,
the payoff vector counterparts depend on the particular notion
of stability under consideration.

We begin by defining the different notions of stability we
consider.

A. Defining stable configurations

The first notion of stability we introduce simply restricts
the set of candidate blocking configurations to mergers and
splits of prevailing coalitions. Note that this is a natural
restriction from a practical standpoint, since complex rear-
rangements between firms in a marketplace typically arise
(over time) from a sequence of mergers and splits. We
refer to this as restricted blocking (RB). Further when one
assumes the precise knowledge of the worth of the blocking
candidates, it leads to the RB-PA (Restricted Blocking–
Perfect Anticipation) rule. We begin with this rule.

RB-PA rule: Under this rule, a configuration (P,Φ) is
blocked by a coalition Q that is formed either via a merger
of coalitions in P (i.e., Q = ∪C∈MC for M ⊆ P), or via
the split of a single coalition in P (i.e., Q ⊂ C for some
C ∈ P), if, for all partitions P ′ containing Q, there exists
Φ′ ∈ ΦP

′
such that

φ′i > φi ∀ i ∈ Q.

Equivalently, Q blocks the configuration (P,Φ) if

λQ >
∑
i∈Q

φi, where λQ := min
P′:Q∈P′

λP
′

Q . (4)

A configuration (P,Φ) is stable under the RB-PA rule if
it is not blocked by any merger or split. Note that under
the RB-PA rule, members of a candidate blocking coalition
are pessimistic in their anticipation of the value of the new
coalition, in that they consider ‘worst case’ rearrangements
among outside agents. Moreover, it is possible to allocate the
payoff of Q among its members such that each member is
(strictly) better off, as discussed in previous section.

The next notion we consider uses the same restriction
on the set of candidate blocking configurations, but uses an
imprecise estimate of the prevailing worth of the members of
the candidate blocking configurations in the case of a split,
resulting in an imprecise anticipation of the benefit from the
split. We refer to this as the RB-IA (Restricted Blocking–
Imperfect Anticipation) rule.

RB-IA rule: Under this rule, a configuration (P,Φ) is
blocked by a coalition Q that is formed by splitting a
coalition C ∈ P if:

λQ := min
P′:Q∈P′

λP
′

Q >
NQ
NC

λPC , (5)

λP̂Q >
∑
i∈Q

φi, where P̂ = (P \ {C}) ∪ {Q,C \Q}. (6)

Observe here that the right hand side expression in (5) is an
imprecise estimate of the worth of the breaking away split,
while that in the second equation is the precise value (to be

revealed in later part of the negotiations). On the other hand,
under the RB-IA rule, a configuration (P,Φ) is blocked by
a coalition Q that is formed by a merger of coalitions in P
if λQ >

∑
C⊂Q

λPC , and λP̂Q >
∑
i∈Q

φi, (7)

where P̂ is the new partition after the merger. Observe here
that

∑
i∈Q φ=

∑
C⊂Q λ

P
C and hence the second condition is

immediately satisfied for merger, because λQ ≤ λP̂Q. Finally,
a configuration is stable under the RB-IA rule if it is not
blocked by any merger or split.

Note that RB-PA and RB-IA differ only in the condition
for blocking due to a split. This is natural, since the net
worth of coalitions {λPC}C∈P is often common knowledge,
whereas the internal payoff allocation within a coalition can
often be confidential. Let us therefore interpret the condition
for blocking due to a split under RB-IA. Condition (5) can
be interpreted as a first stage check on the feasibility of the
split, by (imperfectly) estimating the total prevailing worth
of the members of Q as proportional to their contribution
to the service capacity within C. On the other hand, the
condition (6) can be interpreted as the final stage check on
split feasibility, that ensures that it is possible to allocate the
payoff of Q among its members such that each member is
(strictly) better off from the split.

Finally, we consider the stability notion resulting from the
most general model for blocking. Here, we allow blocking by
an arbitrary coalition (which also includes merger of partial
splits), with a precise estimation of the prevailing worth of
the members of the blocking coalition. We refer to this as
the GB-PA (General Blocking–Perfect Anticipation) rule.

GB-PA rule: Under this rule, a configuration (P,Φ) is
blocked by any coalition Q /∈ P if (4) holds. A configuration
is stable under the GB-PA rule if it is not blocked by any
coalition.

Clearly, the set of stable configurations under the GB-PA
rule is a subset of the set of stable configurations under the
RB-PA rule.

Having defined our notions of stability, we now consider
each notion separately, and characterize the resulting stable
configurations. We begin with RB-IA, which (it turns out),
admits the broadest class of stable configurations.

B. Stable configurations under RB-IA

Our first main result is that all configurations involving
partitions of size three or more are unstable. In other words,
only monopolies or duopolies can be stable.

Theorem 2: Under the RB-IA rule, any configura-
tion (P,Φ) with |P| ≥ 3 is not stable.
Proof: See Appendix C. �

Intuitively, partitions of size three or more are unstable
because of the statistical economies of scale resulting from
a merger (see Statement (ii) of Theorem 2). Specifically, if
|P| = k ≥ 3, it can be shown that any merger between k−1
coalitions in P would block the configuration (P,Φ).

Having ruled out the possibility of stable configurations
with three or more coalitions, we now explore the two



remaining possibilities: stable configurations involving the
grand coalition, and those involving 2-partitions.
Grand Coalition: Defining PG := N as the grand coalition,
it is clear that any configuration of the form (PG,Φ) can only
be blocked by a split. We now show that unless a single
agent owns more than half the total service capacity of the
system, such a block is always possible. In other words, any
configuration involving the grand coalition is unstable unless
there is a single ‘dominant’ agent. On the other hand, if
there is a single agent who owns more than half the service
capacity, we show that there exists stable configurations of
the form (PG,Φ), i.e., the grand coalition can be stable in
the presence of single dominant agent.

Theorem 3: Under the RB-IA rule:
i) If N1 ≤

∑
i∈N ;i 6=1Ni, there exists no payoff vector Φ

consistent with PG, such that (PG,Φ) is stable.
ii) If N1 >

∑
i∈N ;i 6=1Ni, there exists atleast one payoff

vector Φ consistent with PG, such that (PG,Φ) is stable.
Proof: See Appendix C. �
Two-partitions: We finally turn to configurations involving
2-partitions. Two-partitions can, without loss of generality, be
represented as P = {C1, C2}, with NC1 ≥ NC2 . We now
show that under the RB-IA rule, the stability/instability of a
configuration (P,Φ) depends majorly on the value of k :=
NC1

. Interestingly, the stability/instability of a configuration
is generally not influenced by the associated payoff vector Φ
under the RB-IA rule. (This is not true under RB-PA or GB-
PA rules.)

Formally, let λk := λPC1
. Note that by Theorem 1, λk is

the unique zero of the following function of λ (see (2)):

h(λ) :=
λk

k!

N−k∑
j=0

(Λ− λ)j

j!
− (Λ− λ)

N−k

(N − k)!

k∑
j=0

λj

j!
.

Next, define Ψ(k; Λ) := λk/k as the utilization per server
of the larger coalition. Finally, define

k∗(Λ) := arg max
k:k=NC1

Ψ(k; Λ). (8)

Note that k∗(Λ) is the set of values of k that maximizes the
per-server utilization of the larger coalition.

Let C∗ := {C ⊂ N : NC ∈ k∗(Λ)} be the set of
coalitions C, that can derive maximum per-server utilization,
irrespective of the operational arrangement of the other
agents. In the following lemma, we provide a sufficient
condition for a class of configurations to be stable. We
adopt the following convention: A partition P is stable if
all configurations involving it are stable, i.e., configuration
(P,Φ) is stable for any Φ ∈ ΦP .

Lemma 1: Consider the RB-IA rule. A 2-partition P =
{C1, C2} is stable if there exists no coalition S ⊂ Ci for i =
{1, 2} such that: λS

NS
>
λCi

NCi

=
λPCi

NCi

. �

The proof of the lemma follows directly from the def-
inition of stability. A consequence of this lemma is the
following.

Theorem 4: Consider the RB-IA rule. Any 2-partition
P = {C1, C2} with one of the coalitions from C∗ is a

stable partition. Additionally, any partition P = {C1, C2}
satisfying NC1 = NC2 = N/2 is stable.
Proof: See Appendix C. �

Note that under the RB-IA rule, we have identified a class
of stable partitions, i.e., these partitions are stable for any
consistent payoff vector. In Section V, we provide a complete
characterization of the class of stable partitions under RB-IA,
in the heavy and light traffic regimes.

C. Stable configurations under RB-PA

Next, we consider stable configurations under the RB-PA
rule, which presents interesting contrasts to the RB-IA rule.
Under this rule, we show that only coalitions involving 2-
partitions can be stable, i.e., configurations involving the
grand coalition, or involving k-partitions with k ≥ 3 are
always unstable. Moreover, the stability/instability of con-
figurations involving 2-partitions depends on the associated
payoff vector.

To demonstrate this, we define a special proportional
payoff vector, where the value of each coalition is divided
between its members in proportion to the number of servers
they bring to the coalition. Formally, the proportional payoff
vector ΦPp associated with a partition P is defined by:

φPp,i =
Ni∑
j∈C Nj

λPC for any i ∈ C ∈ P. (9)

Our results for the RB-PA rule are summarized as follows.
Theorem 5: Under the RB-PA rule:

i) No configuration involving the grand coalition is stable.
ii) No configurations involving k-partitions, where k ≥ 3 are
stable.
iii) For any 2-partition P = {C1, C2}, where one of the
coalitions lies in C∗, (P,ΦPp ) is stable.
iv) For any 2-partition P = {C1, C2}, where NC1

= NC2
=

N/2, (P,ΦPp ) is stable.
v) More generally, consider any 2-partition P = {C1, C2},
that is stable under RB-IA rule. Then (P,ΦPp ) is stable under
RB-PA rule. Further there exists a neighbourhood BPp of the
payoff vector ΦPp such that (P,Φ) is stable for all Φ ∈ BPp .
Proof: See Appendix C. �

Theorem 5 conveys that partitions that are stable under the
RB-IA rule (irrespective of the associated payoff vector), are
also part of stable configurations under RB-PA, but under
a restricted class of payoff vectors. Specifically, the payoff
vectors we identify are ‘close’ to proportional allocations.
Whether there are other natural payoff structures that also
induce stability under RB-PA, is an interesting question for
future work.

D. Stable configurations under GB-PA

Finally, we consider the GB-PA rule, which allows for a
configuration to be blocked by any arbitrary coalition, formed
via (possibly) simultaneous partial splits and partial mergers.
This is also the case in the general definition of blocking by
a coalition as given in Section II, as well as in Appendix A.
We briefly discuss this case here; a complete characterization
of stability under GB-PA will be pursued as future work.



It is immediate that since pure mergers or pure splits are
included within the class of candidate blocking coalitions
under GB-PA, any configuration that is not stable under RB-
PA is also not stable under GB-PA. From Theorem 5, it
therefore follows that the grand coalition, and k-partitions
with k ≥ 3, can never be part of a stable configuration under
GB-PA.

Now, consider the following stable configuration (under
the RB-PA rule) from the same theorem, (P,ΦPp ) with
P = {C,N \ C}, and C ∈ C∗. If there exists S ⊂ C
such that C ′ := S ∪ (N \ C)} ∈ C∗, then C ′ would block
the configuration (P,ΦPp ), since red∑
i∈C′

φPp,i =
∑
i∈S

φPp,i +
∑

i∈N\C

φPp,i = NS
λPC
NC

+NN\C
λPN\C
NN\C

< NS
λPC
NC

+NN\C
λPC
NC

= (NC′)
λP
′

C′

NC′
= λC′ ,

where P ′ = {C ′,N \ C ′}. This suggests that stability
under GB-PA is more fragile as compared to (the arguably
more practical) RB-PA rule. It would thus be interesting
to investigate the following questions in the future: a) Do
there exist stable configurations under GB-PA (i.e., under
the broadest class of blocking coalitions)? b) In a dynamic
game environment (of the kind considered in Section IV),
would GB-PA induce a limit cycle between certain equivalent
configurations?

IV. DYNAMIC COALITION FORMATION GAME

In this section we consider a dynamic version of the
game discussed in the previous sections. We begin with a
queueing system and agents operating in some configuration.
The agents are constantly on the lookout for greener pastures,
and would stop their quest only if they are satisfied with the
existing configuration.

Agents may consider joining existing collaborations or
may consider splitting from some of them. The (new) payoffs
derived by the agents after the new collaborations (if any),
depend upon the previous payoffs and the value of the new
operational arrangement/coalition. Depending upon the new
payoffs, some of the agents might again consider another
movement. On the other hand, the system might settle, if
all the agents are satisfied with the configuration. We study
this aspect by considering a sequence of dynamic coalition
formations.

Dynamics: The system starts with some operational ar-
rangement given by P0 and with a payoff vector Φ0 =
[φ0

1, · · · , φ0
n]. If the configuration (P0,Φ

0) is stable as de-
fined in previous sections, it is not beneficial for any member
to consider any (coalitional) deviation and hence the system
does not undergo any change. If that is not the case, some
members of the partition merge/split.

There could be more than one movement (merger/split)
that may be successful, under both the assessment rules
(RB-PA and RB-IA). We assume that any such blocking
coalition Q is equally likely to form, causing the system
to evolve to a new partition, say P1. In case of the RB-IA
rule, any new payoff vector Φ1 that satisfies φ1

i > φ0
i for all

i ∈ Q would suffice. We discuss the RB-PA rule towards the
end of this section.

The system stops if the new configuration (P1,Φ
1) is sta-

ble. If not, it switches to yet another configuration (P2,Φ
2)

randomly (and equally likely among all possible movements)
in a similar way. This evolution continues until stopped by a
stable configuration. Our aim is to understand if such a limit
stable configuration exists.

By the results of the previous section we have stable
configurations only with 2-partitions or grand coalition and
we immediately have the following result under the following
assumption:

Fig. 1. Ψ(k; Λ)/Λ v/s k, with [Ni] = [9, 7, 6, 5, 3].

A.1) If C is any coalition that does not contain any element
of C∗, i.e., if C ∩ C∗ 6= C∗ for all C∗ ∈ C∗, then we have
the following:

λS
NS

<
λC
NC

for all strict subtsets, S ⊂ C.

Basically this assumption ensures that any 2-partition that
is not stable, necessarily contains a coalition that is a strict
superset of an element from C∗. From simulations, we
have seen that this assumption is satisfied by our queuing
system for all the cases that we considered (for example,
see Figure 1) and further by Theorem 7 and Lemma 3 can
be shown to hold under heavy and light traffic conditions.
Under this assumption, we can show that the dynamics stops
after finite number of movements.

Theorem 6: [Convergence] Assume A.1. Then the ran-
dom dynamics under RB-IA rule converges to one of the
stable configurations under RB-IA rule in finite number of
steps, with probability one.
Proof: We first show that starting from any k-partition P
with k > 2, the dynamics hits a 2-partition with probability
one: i) from any such P , there exists at least one direct
path to a 2-partition with probability strictly greater than
one, as given in the proof of Theorem 2; ii) thus there
exists a non-zero uniform lower bound p > 0 on the
probability of hitting a 2-partition, irrespective of the starting
k-partition, because of finitely many such partitions; and iii)
thus by independence, the dynamics hits a 2-partition with
probability one in finite number of steps (uniformly upper
bounded by a geometric random variable with parameter p).

Similarly starting from the grand coalition the system
either evolves to a 2-partition or stops.

If the dynamics hits one of the stable partitions (among 2-
partitions), we are done. If not, by A.1, the 2-partition (say
P = {C,N\C}) is such that (without loss of generality)



NC > k∗ and C contains a C∗ ∈ C∗. The movement from
P to P1 := {C∗, C\C∗,N\C} is possible by (5) because
clearly by definition of k∗ and C∗

λC∗

k∗
>
λC
NC

=
λPC
NC

which implies λC∗ > λPC
k∗

NC
.

From P1 merger of C\C∗ and N\C to P2 := {C∗,N\C∗}
is possible by (7), as clearly

λN\C∗ > λP1

C\C∗ + λP1

N\C∗ ,

as in the proof of Theorem 2. The succession of these two
events occur with probability that can be lower bounded by
a strictly positive number p′, uniformly across all such start-
ing 2-partitions. As in the previous paragraph, any upward
movement will return to a 2-partition with probability one
and in each of these returns there is uniform lower bound p′

on the probability of return to the stable 2-partition with a
C∗. Hence the theorem. �

The above theorem proves that the random dynamics
under RB-IA rule is stopped in finite number of steps with
probability one, and the limit is a stable partition. However
under this imprecise anticipation rule, it is important to
observe that the payoff vector at the stopped configuration
can be arbitrarily skewed (as also indicated in Theorem 4).

Dynamics under RB-PA rule

Under RB-PA rule, the random dynamics behaves exactly
similar to RB-IA rule (as described in the proof), however it
may not stop even after touching a stable 2-partition, stable
under RB-IA. As seen from Theorem 5 for RB-PA rule, the
payoff vector is equally important in the definition of stable
configuration.

This shows the importance of appropriate reallocation of
individual shares after the new move towards the stability
of the new system; it is not sufficient to only ensure all
members of the new coalition derive positive increments,
rather we will require that the new allocation matches the
payoff vector in the corresponding stable configuration. As
seen from Theorem 5, one of the payoff vectors that provides
stable configurations is the proportional payoff vector given
by equation (9). Thus one probably has to design reallocation
policies that converge towards the proportional payoff vectors
for the dynamics under the RB-PA rule to stop.

Alternatively there might be other payoff vectors which
would also form a part of the stable configurations and they
could be the ones at limit. We would study this aspect in
the future, but for now we could say that one can’t have
partitions of size greater than 2 or the grand coalition (when
none of the agents dominate) to be a part of the limit (stable)
configuration (if one exists), in view of Theorems 2 and 3.
We can also say that the dynamics stops if it hits upon a
configuration with stable 2-partition and the corresponding
proportional payoff vector (9).

Dynamics under GB-PA rule

We only have preliminary results for this rule. As men-
tioned before, all the configurations that we discussed before

are not stable. It is not difficult to show that the dynamics
does not stop even if it starts with or hits a stable con-
figuration under RB-PA rule identified in Theorem 5. It is
interesting to observe that the dynamics toggles between
stable configurations of RB-PA rule, even when it starts with
one of them.

V. STABLE 2-PARTITIONS

We now obtain the stable partitions of Theorems 4
(RB-IA) and 5 (RB-PA). We achieve this by considering
heavy and light traffic regimes. Recall any 2-partition P =
{C1, C2} can be identified uniquely by k := NC1 , λk :=
λC1

, when one considers optimizing Ψ(k; Λ) = λk/k. We
first begin with analysis of k∗ defined in (8).

A. Heavy Traffic

Our aim in this section is to derive the analysis using some
appropriate approximations, and then prove that the derived
results are valid for for all arrival rates with Λ > Λ̄, where
Λ̄ is a big enough value.

The WE can also be obtained by equating the reciprocal of
blocking probabilities (1) and the first order approximation
suggests that approximate WE can be obtained by solving the
following equation written in terms of λ1 and λ2 := Λ−λ1,

1 +
k

λ1
= 1 +

N − k
λ2

and then the solution λ∗1 =
k

N
Λ.

Thus with this approximation the share of any agent i ∈ C1

under proportional payoffs (9) equals Ni/k ∗ k/NΛ =
Ni/NΛ, irrespective of k. Thus this approximation is not
sufficient and we now consider the second order approxima-
tion under which we require zeros of the following:

1 +
k

λ1
+
k(k − 1)

λ2
1

= 1 +
N − k
λ2

+
(N − k)(N − k − 1)

λ2
2

,

which after some simple calculations leads to the following
fixed point equation (of λ1 ∈ [0,Λ] and λ2 := Λ− λ1):

λ1

k
=

λ2

N − k

(
1 + k

λ1
− 1

λ1

1 + N−k
λ2
− 1

λ2

)
. (10)

Let ψ(k) := λ̂k/k where λ̂k is the fixed point of the above
function and observe that Ψ(·) represents similar function,
but considering exact blocking probability (1). For further
analysis, we relax k to be a real value between (N/2, N).
We immediately have the following result:

Lemma 2: i) There exists a Λ̄ such that, the function ψ is
increasing with k, for any Λ ≥ Λ̄.
ii) For any Λ ≥ Λ̄, under second order approximation, the
unique maximizer in (8) is given by k∗ =

∑n−1
i=1 Ni.

iii) For all such Λ, the partitions P = {C,N\C}, with
N/2 ≤ NC ≤ k∗ are the only 2-partitions that are stable,
under second order approximation.
Proof: See Appendix C. �

Accuracy of the approximation We now prove that the
above result is also true without approximation using maxi-
mum theorem [10]. We will show that both the fixed points
converge towards each other and that there exists a Λ̄ such



that, stable partition considering true blocking probability
equals that derived with second order approximation.

Consider y ∈ [ε, 1 − ε] for some small ε > 0 and define
the following function:

g(y, θ) =



√
1
θ

(∑k−1
j=0

(y/θ)j−k

j!
k!

−
∑(N−k)−1
j=0

[(1−y)/θ]j−(N−k)

j!
(N − k)!

)2

, if θ > 0

(y−1k − (1− y)−1(N − k))2 if θ = 0.

Observe from (1) that y = λ1

Λ (the normalized WE)
is the unique zero of the function g() when Λ = 1/θ,
uniqueness given by Theorem 1, and the solution by first
order approximation is zero of g when θ = 0. It is clear that
g is a jointly continuous mapping1 over [ε, 1 − ε] × [0, B]
(for any B <∞). Define,

g∗(θ) , max
y∈[ε,1−ε]

g(y, θ) and y∗(θ) , arg max
y∈[ε,1−ε]

g(y, θ).

Then, by Maximum Theorem, y∗(1/Λ)→ y∗(0) as Λ→∞.
In other words we have:

λ1(Λ)

Λ
→ k

N
, or equivalently,

1

Λ

∣∣∣∣∣λ∗1k − Λ

N

∣∣∣∣∣→ 0 (11)

Using exactly similar logic, one can show that the WE using
second order approximation also converges towards that of
the first order approximation, and hence that the differences
between the WE obtained using second order approximation
and that obtained using true blocking probability (1) con-
verge towards each other. Using this we prove:

Theorem 7: There exists a Λ̄ such that, only k∗ :=∑n−1
i=1 Ni optimizes (8) for our queueing system with any

Λ ≥ Λ̄. Further the only partitions that are part of a stable
configuration (under RB-PA/RB-IA) are the 2-partitions P =
{C,N\C}, with N/2 ≤ NC ≤ k∗.
Proof: By the above arguments for any 2-partition P =
(C1, C2) with NC1 = k, the the WE obtained using second
order approximation (10), represented by λ̂k, and the one
obtained using the exact blocking probability (1) converge
towards each other for all k as Λ→∞. Consider Λ̄ further
large in Lemma 2 such that (possible by finiteness)

1

Λ
|λ̂k(Λ)− λk(Λ)| < δ for all possible k, and for Λ ≥ Λ̄,

where δ > 0 is sufficiently small so that the conclusions
of the theorem follow from that in Lemma 2 (possible by
finitely many values of k), after observing that monotonicity
of Ψ with respect to k for any given Λ is equivalent to
monotonicity of Ψ/Λ with respect to k. �

1If ε is such that the true WE does not fall in interval [ε, 1− ε], then we
would have some other points as the minimizers of g(.) (by continuity and
compactness), but eventually (with large enough Λ) we will have unique
zero of g(.) which is derived from unique WE of the original problem.

B. Light Traffic

We now consider light traffic regimes, and derive the
following result using similar logic as before:

Lemma 3: There exists a Λ > 0, such that for all λ <
Λ, we have: i) k∗ := min{NC : NC > N/2, C ⊂ N}
optimizes (8) for our queueing system; and ii) Further the
only partitions that are part of a stable configuration (under
RB-PA/RB-IA) are the 2-partitions P = {C,N\C}, with
N/2 ≤ NC ≤ k∗.
Proof: See Appendix C. �

Thus in both (light as well as the heavy) the traffic regimes,
stable partitions are the 2-partitions with N/2 ≤ k ≤ k∗.
Further observe that assumption A.1 is satisfied for both
these regimes. Hence the random dynamics under RB-IA, in
either case, converges and stops at one of such 2-partitions.

VI. NUMERICAL COMPUTATIONS

In this section, we simulate two systems with 5 agents. The
agents in first and second system have 9, 7, 6, 5, 3 and 10,
7, 6, 5, 4 servers respectively. From left sub-figure of Figure
2, we have that k∗ is a monotonically increasing function of
Λ in both cases. The corresponding right sub-figure shows
blocking probability as a function of Λ in both cases. One

Fig. 2. Optimal k∗ v/s Λ (left) and B v/s Λ (right)

may observe that the end points of the left sub-figure, i.e.,
under heavy and low traffic matches with the ones derived
in Theorem 7 and Lemma 3.

VII. CONCLUSIONS

We consider a queueing system with several strategic
service providers with different server capabilities. They
are on lookout for collaboration opportunities that improve
their individual payoffs. The customer base responds to
any operational arrangement formed by such collaborations,
the customer arrivals are split across various operational
units according to the well known Wardrop equilibrium that
equalizes the steady state blocking probability of all the units.
Any operational configuration is challenged by new coalition
formed by mergers or splits, and the former is dissolved if
the new coalition finds benefit. A configuration is stable if
there is no coalition to challenge it. We defined three notions
of stability and our major findings are: a) configurations
with more than two coalitions are never stable; b) grand
coalition can be stable depending upon the payoff allocations
and the notion of stability, only if there exists a single
dominant player with more than half the server capacity of
the system; and c) some configurations with two coalitions
are stable, depending upon the notion of stability and the



payoff allocations. We also consider an initial model with
dynamic coalition formations and showed the convergence
of the same under one notion of stability. This work just
opened an array of questions that need exploration.
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APPENDIX A: CHARACTERISTIC FORM GAMES

Both partition-form and classic (non-partition) cooperative
games can be described in characteristic form [3] using
the tuple, (N , ν,H), where: a) ν is called a characteristic
function and for any C ⊆ N , ν(C) denotes the set of all
possible payoff vectors of dimension n that agents in C can
jointly achieve; b) N denotes the set of n agents; and c) H
is the set of all possible payoff vectors of dimension n (such
vectors are also referred to as allocation vectors in literature),
which are achievable.

In this appendix, we provide the details of how our
problem can be recast as a characteristic game.

Let F(P) be the set of all feasible payoff vectors under
partition P , these are the vectors that satisfy the following:
the sum of payoffs of all agents in any coalition S is less
than or equal to that obtained by S under partition P at WE,
λPS . Thus
F(P) :=

{
x = [xi] :

∑
i∈S

xi ≤ λPS ∀S ∈ P

}
. (12)

Thus H, the set of all achievable/feasible payoff vectors is,

H = ∪PF(P). (13)

Characteristic function using pessimistic rule: To study
the stability aspects, one needs to understand if a certain
coalition can ‘block’ any payoff vector. Blocking by a
coalition implies that coalition is working as an independent
unit and has an anticipation of the value it can achieve
(irrespective of arrangements of others). If the division of

this anticipated value among the members of the coalition,
under the any given allocation rule, renders the members to
achieve more than that in the given payoff vector then the
coalition has tendency to oppose the payoff vector.

The characteristic function precisely describes the set of all
possible divisions of the anticipated worth of any coalition.

There are many anticipatory rules to define characteristic
function for partition form games. The above described rule
is the well known pessimistic anticipation rule [5], where
the agents in deviating coalition C assume that the outside
agents arrange themselves to hurt the agents in C the most.

Towards specifying such a characteristic function, first
observe that the minimum utility that coalition C can achieve
irrespective of the arrangement of the agents outside this
coalition is given by:

νC := min
x∈F(P):C∈P

∑
i∈C

xi. (14)

With this definition, ν(C), the set of possible payoff vectors
that agents in C can jointly achieve independent of the
arrangement of outside agents is given by,

ν(C) =

{
x ∈ H :

∑
i∈C

xi ≤ νC

}
. (15)

With these definitions in place, we can now define when
a payoff vector is blocked by a coalition.

Blocking: A payoff vector x ∈ H is blocked by a coalition
C if there exist a payoff vector y ∈ ν(C) such that

yi > xi ∀ i ∈ C.

Next, we define α-core, which is an extension of the
classical definition of core, for transferable utility games (in
non-partition form games).
α-core: It is the set of all feasible payoff vectors, i.e.,

x ∈ H such that it is not blocked by any coalition C. In
other words α-core is coalitionally rational: it consists of all
feasible payoff vectors such that no coalition of agents can
deviate and achieve better.



APPENDIX B: PROOF OF THEOREM 1

Proof of Existence and Uniqueness: Let the size of a partition be denoted by p. The first step of this proof is to show
the existence and uniqueness of WE for the case when p = 2. In the next step, using induction we prove the existence for
any general p = m > 2 using the results for m− 1. In the third step we show the continuity of the WE, to be precise the
arrival rates at WE for m. The last step attributes to the uniqueness of our solution.

Step 1: Existence and Uniqueness of WE for p = 2
To obtain WE, the following equation need to be solved:

BC1
(NC1

, aC1
) = BC2

(NC2
, aC2

).

Define a function f := BC1(NC1 , aC1)−BC2(NC2 , aC2). Then, f is a function of λPC1
∈ [0,Λ] since λPC2

= Λ− λPC1
.

• At λPC1
= 0 we have BC1

(NC1
, aC1

) = 0 and BC2
(NC2

, aC2
) > 0, thus f(0) < 0.

• At λPC1
= Λ we have BC1

(NC1
, aC1

) > 0 and BC2
(NC2

, aC2
) = 0, thus f(Λ) > 0.

Then, BC1
(NC1

, aC1
) and BC2

(NC2
, aC2

) are polynomial functions with denominator > 1 and hence are continuous
functions. This implies that f is a continuous function.

Thus, f satisfies the hypothesis of Intermediate Value Theorem (IVT). Using IVT, there exists a value of λPC1
= λ∗ ∈ (0,Λ)

such that f(λ∗) = 0. The uniqueness of λ∗ follows since BC1
(NC1

, aC1
) and BC2

(NC2
, aC2

) are strict increasing functions
of λPC1

and λPC2
respectively.

Step 2: Existence for general p = m > 2
To prove the existence for any general m > 2, we assume that a unique WE exists for p = m− 1, i.e., λPC1

, · · · , λPCm−1

with corresponding common blocking probability B∗.
With m units we can initially fix λPCm

= 0 and obtain WE corresponding to the remaining units, which we have assumed
to exist. With increase in λPCm

, Λ − λPCm
which is the total share of remaining agents, decreases. From part i) of this

theorem, we know that the corresponding WE solution for these agents also decreases. This implies that the common
blocking probability for C1, · · · , Cm−1 reduces while blocking probability of Cm increases. Using similar arguments as
above and treating C1, · · · , Cm−1 as one while defining function for IVT, one can show that WE exists.

Step 3: Continuity of Optimizers, i.e., WE: Consider the following function for m units in partition P:

g(Λ, λ) :=
∑

Cj∈P;1<j≤m

(BC1 −BCj )2, (16)

where λ is the vector of arrival rates for all Cj ∈ P . Then, we define g∗(Λ, λ∗) = min{λ:
∑

j λj=Λ} g(Λ, λ). Observe that
the (unique) minimizer λ∗ of the function g is the (unique) WE for our queueing model, and that the function g is jointly
continuous. Thus, using Maximum Theorem we have that g∗ and λ∗ is continuous in Λ.

Step 4: Uniqueness of WE To prove the uniqueness of the WE, we assume the contradiction. Accordingly, we can have
the following cases:

Case 1: There exist multiple WEs with same common blocking probability B∗

This implies that some of the units in partition are obtaining different arrival rates in the multiple WEs such that they
have common B∗. However, this is not possible since blocking probability is an increasing function of arrival rates. Thus,
the unit with higher arrival rate in one of the WEs should have higher blocking probability.

Case 2: There exist multiple WEs with different common blocking probability B∗ and B̂∗

Without loss of generality, we can assume that B∗ < B̂∗. This implies that the arrival rates to the units with common
blocking probability B̂∗ is more (since blocking probability is an increasing function of arrival rate). However, the total
arrival rate is fixed at Λ which implies that one of the WE does not satisfy

∑
Cj∈P λ

P
Cj

= Λ. �
Proof of All units used For contradiction, let us assume that the customers split themselves amongst some strict subset

of units of partition P . Then, each unit with zero arrivals have a zero blocking probability while units with non-zero arrivals
have some strict positive blocking probability. However, this contradicts the fact that the coalitions having zero arrivals
should have a higher blocking probability than others at WE.

Hence at WE, each of the units in partition P obtain non-zero arrival rates. �
Proof of part (i) Let λPC1

, · · · , λPCk
be the individual arrival rates corresponding to partition P at WE (satisfies (2)) for

the coalitions C1, · · · , Ck respectively with the total arrival rate Λ > 0. Let the corresponding common blocking probability
be B∗. When the total arrival rate is increased to Λ′, the individual arrival rates to the providers at WE are changed to
λ
′P
C1
, · · · , λ′PCk

and the corresponding common blocking probability is changed to B̂∗. Note that these splits to the individual
operating units must satisfy:

k∑
i=1

λPCi
= Λ for any partition P. (17)



Next we will show that λ
′P
Cj
≤ λPCj

is not possible for any Cj ∈ P . Using equation (17), we know that atleast one of the
units have higher individual arrival rates at new WE, i.e,

λ
′P
Cj
> λPCj

for atleast one Cj ∈ P. (18)

This means that the common blocking probability at new WE is increased, i.e., B̂∗ > B∗. Now since blocking probability
is a strictly increasing function of arrival rates, we have that arrival rate to each coalition is increased at new WE for Λ′,
i.e., λ

′P
Cj
> λPCj

for all Cj ∈ P .
Hence, WE is an increasing function of Λ. �
Proof of part (ii) Let λPC1

, · · · , λPCk
be the individual arrival rates corresponding to partition P at WE for the coalitions

C1, · · · , Ck respectively. Let the corresponding common blocking probability be B∗. Observe that the blocking probability
of Ci and Cj units also equals B∗, and hence the merger M = Ci ∪Cj 6= N has strictly smaller blocking probability, i.e.,
BM < B∗, if the joint arrival rate was λPCi

+ λPCj
. From (1) the blocking probability is a strictly decreasing function of

arrival rate. Thus the new WE after merger is formed with a (strict) bigger arrival rate to the merger, as again at the new
WE the new blocking probabilities of all coalitions C ∈ P ′ should be equal by (2). �

Proof of part (iii) Consider a system with identical servers. We know that when any number of identical servers combine
with their arrival rates, the combined blocking probability reduces. This reduction is more when the number of servers
combining are more, i.e.,

B(N, a) > B(LN,La) > B(MN,Ma). (19)

where 0 < L < M are constants, B is the blocking probability, N is the number of servers and a is the offered load. Now
if we consider that the coalition with NC1 and NC2 servers gets exactly NC1/N and NC2/N share of total arrival rate Λ
at WE respectively. Using equation (19), we have that coalition with NC1

servers has strictly smaller blocking probability.
From (2), the blocking probability of each unit at WE is same. So, the arrival rate to coalition with NC1

and NC2
servers

need to be increased and reduced respectively to achieve the WE.
Hence, coalition with NC1

and NC2
servers satisfy

λPC1

NC1

>
Λ

N
>
λPC2

NC2

. �

APPENDIX C: REST OF THE PROOFS

Proof of Theorem 2: Consider a partition P = {C1, C2, · · · , Ck} with cardinality greater than 2. Let M be the merger
coalition containing all coalitions of P except one, i.e.,

M = ∪ki=2Ci and P ′ = {C1,M}.

Then from Theorem 1.(ii)
λP
′

M = λP
′

M >
∑
Ci∈M

λPCi
.

which is same as the condition required under RB-IA rule.
Hence, there exists a configuration/payoff vector such that each of the members in M obtain strictly better and thus, such

a partition is not stable. �
Proof of Theorem 3: i) There can be no merger from PG, and we only need to check if an appropriate split can block

the given configuration (PG,Φ) where Φ is any payoff.
a) We first consider all payoff vectors Φ that satisfy

n∑
i=2

φi < Λ

(
1− N1

N

)
.

Let S := {2, 3, · · · , n} be the coalition made of all agents except agent 1 and we will prove that this coalition (split)
will block the configuration of the form stated above. From Theorem 1.(ii) since λ1 < N1/NΛ, coalition S satisfies the
following:

λP
′

S = λS > Λ

(
1− N1

N

)
, where P ′ := {S, {1}}.

.
Hence, there exists a configuration/payoff vector such that each of the members in S obtain strictly better and thus, PG

is not stable for such Φ.



b) Next, we consider all payoff vectors that satisfy
n∑
i=2

φi ≥ Λ

(
1− N1

N

)
Λ. (20)

For (PG,Φ) to be stable, the payoff vector should satisfy
∑
i∈C φi > λC = λP

′

C (with P ′ := {C,N\C}), for all C
satisfying equation (5). From Theorem 1 part iii), any C with more than N/2 servers satisfies equation (5), as λPG = Λ.
We use a subset of such coalitions to complete the proof. Since N1 is the agent with maximum number of servers, Sk :=
S\{k} ∪ {1} has NSk

> N/2 for any k ≥ 2, satisfies equation (5) by Theorem 1 part iii) and will not block the given
payoff vector Φ if the following equations are satisfied simultaneously:

φ1 + φ2 + φ3 · · ·+ φn−1 >
N1 +

∑n−1
i=2 Ni

N
Λ,

φ1 + φ2 + φ3 · · ·+ φn−2 + φn >
N1 +

∑n−2
i=2 Ni +Nn
N

Λ,

... >
...

φ1 + φ3 + φ4 · · ·+ φn >
N1 +

∑n
i=3Ni

N
Λ.

Adding these (n− 1) equations, we obtain the following:

(n− 1)φ1 + (n− 2)

n∑
i=2

φi >
(n− 1)N1 + (n− 2)

∑n
i=2Ni

N
Λ,

φ1 + (n− 2)Λ >

(
N1 + (n− 2)N

N

)
Λ,

since
n∑
i=1

φi = Λ,

n∑
i=1

Ni = N.

Thus for payoff vector Φ to be not blocked we require that, φ1 >
N1

N Λ and
∑n
i=2 φi < 1 − N1

N Λ which is not possible
since we are considering payoff vectors that satisfy (20).

Thus, (PG,Φ) is not a stable configuration with any payoff vector Φ.
ii) When N1 >

∑
i∈N ;i 6=1Ni

In such a case, all coalitions that satisfy equation (5) must include agent 1. Thus, Φ should satisfy:

φ1 > max
C

λC for all C ⊂ N satisfying (5) and containing agent 1.

Since no other coalition satisfy equation (5), any payoff vector that satisfies the above equation ensures configuration
(PG,Φ) to be stable. �

Proof of Theorem 4: Any 2-partition P = {C1, C2} cannot be blocked by mergers since merger lead to PG and (7) is
not satisfied. Next we look at splits. Say C1 ∈ C∗. Then it follows from the definition of C∗ that there exists no coalition
C ⊂ C1 such that it satisfies (5). For any split of C2 into S and C2\S, from Theorem 1.(ii) we know that

λPC2
> λP

′

S + λP
′

C2\S

Thus, there exists a payoff vector Φ that allocates strictly better to each player in C2 which implies that such a split is not
feasible. Hence, any partition with one of the coalitions belonging to C∗ is a stable partition under RB-IA rule.

Next, when each coalition has N/2 servers, using same arguments as given above for showing infeasibility of any splits
of C2, such a partition is also stable. �

Proof of Theorem 5: i) Consider any configuration (PG,Φ} with GC. The proof of this part can be split into two cases:
Case 1: When N1 ≤

∑
i∈S;i 6=1Ni for some S ⊂ N

Under RB-PA rule for the configuration to be stable, we need to ensure that the following system of equations are satisfied
simultaneously. ∑

i∈C
φi ≥ λC for all C ⊂ N and,

∑
i∈N

φi = Λ. (21)

However, a subset of these equations itself admit no feasible solution (as proved in Theorem 3). Thus, such a system of
equations does not have a solution and hence (PG,Φ} is unstable for any payoff vector Φ.

Case 2: When N1 >
∑
i∈N ;i 6=1Ni



Once again we need to satisfy (21) to prove that (PG,Φ) is stable. In particular those equations will also have to be
satisfied for subsets S such that |S| = n− 1, and 1 ∈ S. If there exists a payoff vector Φ that satisfies all such conditions,
consider one such S and say j /∈ S. Then from (21):

φj = Λ−
∑
i∈S

φi < Λ− λS = λ{j},

and thus configuration (PG,Φ) is blocked by {j} under RB-PA rule. Hence (PG,Φ) is unstable for any payoff Φ.
Proof of part ii): Since the condition required for a merger to be successful under RB-PA rule is same as under RB-IA

rule, the result follows from Theorem 2.
Proof of parts iii) and iv): When the payoff vector is given by equation (9), the RB-PA and RB-IA rules are equivalent

to each other. Thus, the result follows from Theorem 4.
Proof of part v): The first part of this result follows from parts iii) and iv) of this theorem. Moreover because of the

continuity of Φ, we have the next result. �
Proof of Theorem 7: The proof of Theorem 7 is available in main text in this report on page 8. �
Proof of Lemma 2: i) The equation (10) can be re-written as: (by replacing λ1/k with ψ and λ2 = Λ− kψ)

ψ =
Λ− kψ
N − k

(
1 + 1

ψ −
1
kψ

1 + N−k
Λ−kψ −

1
Λ−kψ

)
. (22)

Simplifying it further, we have

ψ

(
1 +

N − k − 1

Λ− kψ

)
=

Λ− kψ
N − k

(
1 +

1

ψ
− 1

kψ

)
.

Relaxing k to a real number and then differentiating the above equation with respect to k, we have

∂

dk

[
ψ

(
1 +

N − k − 1

Λ− kψ

)]
=

∂ψ

∂k

(
1 +

N − k − 1

Λ− kψ

)
+ ψ

(
∂

dk

{
N − k − 1

Λ− kψ

})
,

=
∂ψ

∂k

(
1 +

N − k − 1

Λ− kψ

)
+ ψ

(
−(Λ− kψ) + (N − k − 1)(ψ + k ∂ψ∂k )

(Λ− kψ)2

)
,

=
∂ψ

∂k

(
1 +

N − k − 1

Λ− kψ
+
kψ(N − k − 1)

(Λ− kψ)2

)
+ ψ

(
−(Λ− kψ) + (N − k − 1)ψ

(Λ− kψ)2

)
.(23)

∂

dk

[
Λ− kψ
N − k

(
1 +

1

ψ
− 1

kψ

)]

=

(
1 +

1

ψ
− 1

kψ

)
∂

dk

{
Λ− kψ
N − k

}
+

(
Λ− kψ
N − k

)
∂

dk

{(
1 +

1

ψ
− 1

kψ

)
,

}

=

(
1 +

1

ψ
− 1

kψ

)(
−(N − k)

(
ψ + k ∂ψ∂k

)
+ (Λ− kψ)

(N − k)2

)
+

(
Λ− kψ
N − k

)(
− 1

ψ2

∂ψ

∂k
+

1

k2ψ2

(
ψ + k

∂ψ

∂k

))
,

=
∂ψ

∂k

[
− k

N − k

(
1 +

1

ψ
− 1

kψ

)
−

(
1

ψ2
− 1

kψ2

)(
Λ− kψ
N − k

)]
+

[
− ψ

N − k

(
1 +

1

ψ
− 1

kψ

)
+

(Λ− kψ)

(N − k)2

(
1 +

1

ψ
− 1

kψ

)

+
1

k2ψ

(
Λ− kψ
N − k

)]
. (24)

Combining the derivatives of LHS and RHS, we have

∂ψ

∂k

[
1 +

N − k − 1

Λ− kψ
+
kψ(N − k − 1)

(Λ− kψ)2
+

k

N − k

(
1 +

1

ψ
− 1

kψ

)
+

(
1

ψ2
− 1

kψ2

)(
Λ− kψ
N − k

)]
=[

− ψ

N − k

(
1 +

1

ψ
− 1

kψ

)
+

(Λ− kψ)

(N − k)2

(
1 +

1

ψ
− 1

kψ

)
+

1

k2ψ

(
Λ− kψ
N − k

)
− ψ

(
−(Λ− kψ) + (N − k − 1)ψ

(Λ− kψ)2

)]
.

Hence,

∂ψ

∂k
=
− ψ
N−k

(
1 + 1

ψ −
1
kψ

)
+ (Λ−kψ)

(N−k)2

(
1 + 1

ψ −
1
kψ

)
+ 1

k2ψ

(
Λ−kψ
N−k

)
− ψ

(
−(Λ−kψ)+(N−k−1)ψ

(Λ−kψ)2

)
1 + N−k−1

Λ−kψ + kψ(N−k−1)
(Λ−kψ)2 + k

N−k

(
1 + 1

ψ −
1
kψ

)
+
(

1
ψ2 − 1

kψ2

)(
Λ−kψ
N−k

) (25)



The denominator is always strictly positive. When Λ → ∞, denominator tends to 1 + k
N−k > 0. The numerator can be

re-written as:

− ψ

N − k

(
1 +

1

ψ
− 1

kψ

)
+

(Λ− kψ)

(N − k)2

(
1 +

1

ψ
− 1

kψ

)
+

1

k2ψ

(
Λ− kψ
N − k

)
− ψ

(
−(Λ− kψ) + (N − k − 1)ψ

(Λ− kψ)2

)

=
1

N − k

(
1 +

1

ψ
− 1

kψ

)[
− ψ +

Λ− kψ
N − k

]
+

1

k2ψ

(
Λ− kψ
N − k

)
+ ψ

(
Λ− (N − 1)ψ

(Λ− kψ)2

)

=
1

(N − k)2

(
1 +

1

ψ
− 1

kψ

)
(Λ−Nψ) +

1

k2ψ

(
Λ− kψ
N − k

)
+ ψ

(
Λ− (N − 1)ψ

(Λ− kψ)2

)
Using equation (11) we have

1

(N − k)2

(
1 +

1

ψ
− 1

kψ

)
(Λ−Nψ) =

1

(N − k)2

(
1 +

1

ψ
− 1

kψ

)
NΛ

( Λ
N − ψ)

Λ
→ 0.

1

k2ψ

(
Λ− kψ
N − k

)
=

1

k2ψ

(
Λ−Nψ +Nψ − kψ

N − k

)
=

1

k2ψ

(
Λ−Nψ
N − k

)
+

1

k2ψ

(
Nψ − kψ
N − k

)
→ 1

k2

since
1

k2ψ

(
Λ−Nψ
N − k

)
=

Λ

k2ψ

(
Λ−Nψ

(N − k)Λ

)
=
NΛ

k2ψ

(
Λ
N − ψ

(N − k)Λ

)
→ 0.

From the similar arguments as above, we can observe that

ψ

(
Λ− (N − 1)ψ

(Λ− kψ)2

)
= ψ

(
Λ−Nψ

(Λ− kψ)2

)
+ ψ

(
ψ

(Λ− kψ)2

)
→

(
ψ

Λ− kψ

)2

> 0

Hence, we have
∂ψ

∂k
> 0

Thus, there exists a Λ such that for all Λ ≥ Λ̄, ψ is increasing with k.
ii) Since, ψ is increasing with k for any Λ ≥ Λ̄, the unique maximiser of (8) is obtained at maximum possible of k which

is given by
∑N−1
i=1 Ni (since Ni are arranged in decreasing order).

iii) When any coalition in P , say C1 with N/2 ≤ NC1 ≤ k∗ splits into S and C1\S to form P ′, then using similar
arguments as in Theorem 1.(ii)

λPC1
> λP

′

S + λP
′

C1\S .

Thus, we can have a payoff vector Φ such that each player is strictly better in C1. Hence, all such 2-partitions are stable
under second order approximation. �

Proof of Lemma 3: i) Recall the WE is obtained by equating the reciprocal of the blocking probabilities. From (1), at
low traffic this can approximately be achieved by (solving for λ1 which is a zero of the following):

k!

λk1
=

(N − k)!

λN−k2

or λ2 =

{
(N − k)!

k!

}1/(N−k)

λ
k/(N−k)
1 .

Using λ2 = Λ− λ1 we get

λ1

Λ
=

1

1 +
{

(N−k)!
k!

}1/(N−k)

λ
k

N−k−1

1

. (26)

Since k > N − k we have k
N−k > 1. As Λ→ 0,

{
(N−k)!
k!

}1/(N−k)

λ
k

N−k−1

1 → 0 and thus,

λ1

Λ
→ 1 as Λ→ 0. (27)

Suppose the coalition with higher number of servers has bN2 c+m servers. From equation (27) we have

λ1

Λ
(
bN2 c+m

) → 1(
bN2 c+m

) as Λ→ 0.



Thus the arrival rate allotted to each server in this coalition as a fraction of total arrival rate lies in the interval
1(

bN2 c+m
) − ε < λ1

Λk
<

1(
bN2 c+m

) + ε.

Choose an ε > 0 such that the lower bound with minimum possible value of m, i.e., m̃ is greater than the upper bound for
all m > m̃. Thus, we want to show:

1(
bN2 c+ m̃

) − ε > 1(
bN2 c+m

) + ε for all m > m̃.

It is sufficient to show that the upper bound for the least value of m greater than m̃, i.e. m̂ is smaller for some ε, i.e.,

1(
bN2 c+ m̃

) − ε >
1(

bN2 c+ m̂
) + ε,

m̂− m̃(
bN2 c+ m̃

)(
bN2 c+ m̂

) > 2ε,

m̂− m̃
2
(
bN2 c+ m̃

)(
bN2 c+ m̂

) > ε > 0.

ii) The partitions with one of the coalitions having servers between N/2 ≤ NC ≤ k∗ is stable can be proved using similar
arguments as in Lemma 2.iii). For partition with NC > k∗, players with k∗ servers can deviate together to obtain higher
individual shares. This is because the players still obtain approximately same coalitional share but the number of players to
share are less. �


