
Fairness via priority scheduling
Veeraruna Kavitha, N. Hemachandra and Debayan Das

IEOR, IIT Bombay, Mumbai, 400076, India
{vkavitha,nh,debayan}@iitb.ac.in

Abstract—In the context of multi-agent resource allocation
problems, fairness is a paradigm shift in the recent past. An
efficient scheduler always allocates resources to the ’best’ agent.
Some of the agents, who are most often in ’bad’ conditions,
are starved and fair schedulers are defined in this context.
In this paper, we are interested in the actual gains obtained
by the otherwise starved agents, due to fair schedulers. We
propose a new notion of fairness, via a constrained optimization,
which directly indicates the gains. In general, this constrained
optimization is an infinite dimensional problem and the primary
contribution of this paper is to reduce it to a tractable
finite dimensional zero finding problem. We indicate iterative
algorithm(s) which achieves the notion of fairness defined in this
paper. We also compare it with some of the existing notions of
fairness.

Index Terms—Fairness, Resource allocation, Infinite dimen-
sional convex optimization, Stochastic approximation, Wireless
communications

I. INTRODUCTION

In resource allocation problems, agents may have homoge-
neous (similar) or heterogeneous job requirements. In hetero-
geneous cases, one of the important aspects of performance
is the distribution of the accumulated gains across various
agents. Fairness is an appropriate measure of evaluating the
resource allocation schemes in such scenarios.

In many such problems, the resource allocated might be
common across the agents but the utility derived by an
agent depends upon the agent. Further there can be random
variations in the utility derived based on the random state of
the agent, at the time the resource is allocated. For example,
consider a wireless communication system with a number
of agents (mobiles) competing for resources from a single
base station. The common resource to be allocated could be
a time slot, while the utility derived could be the amount
of information conveyed during the time slot, which in turn
depends upon the state of channel between the agent allocated
and the base station. Opportunistic resource allocation takes
advantage of the time variations in the states of the competing
agents and allocates resources to the users with ’best’ state.
This approach is shown to be advantageous when the random
time variations in states of the agents are independent across
the various time slots at which the allocation decisions are
made. This approach results in an ’efficient’ solution (see
for e.g., [5], [11] and references therein), wherein the overall
utility accumulated, because of such allocations, over all the
time slots and over all the agents would be the maximum.
This is a desirable feature from the point of view of the
central unit (CU) allocating the resources. This however can

regularly deprive the agents, whose states are ’bad’ with high
probability, resulting in very small or almost negligible utility
accumulations for them. This is not acceptable from the point
of view of the starved agents and that lead to the notion of
fairness.

Fairness is a well studied concept (see [5], [4], [3], [11]
and references therein). The notion of proportional fairness is
introduced by Kelly et.al. [1] and a recent survey of various
aspects related to fairness is available in [2]. Fairness is
studied either via Jain’s index ([3]) or is achieved by the
CU optimizing a certain concave function of the accumulated
utilities called α-fair function ([5], [11], [4]). Well known
notions of fairness, namely proportional fairness, max-min
fairness, etc., are achieved in this manner. A recent work
([4]) develops a family of fairness functions, parametrized
by two numbers, which unify all the previously developed
fairness measures. They show that this is the only family of
functions satisfying four simple axioms of fairness metrics.

In this paper, we focus on a completely different view point
related to the same problem. The central question asked here
is ”How much exactly is the improvement of the accumulated
utilities of the starved users because of fair allocation ?” We
obtain some answers in a very simple scenario, when one
uses α-fair schedulers ([5], [11]).

Few answers

Let there be M agents with m ∈ {1, · · · ,M} being a
typical agent. Let u = (u1, · · · , uM ) represent the vector of
(random) instantaneous utilities of all the M agents and let
β = (β1, · · · , βM ) represent the scheduler in the following
sense: βm(u) represents the probability with which agent m
is allocated given that the current vector of instantaneous
utilities equals u. An α-fair resource allocation β is obtained
by maximizing the following function ([5], [11]):

max
β

∑
m

Γα(ūm(β)) with ūm(β) := E[umβm(u)],

Γα(ū) :=
ū1−α

1{α6=1}

1− α
+ log(ū)1{α=1}.

Here ūm(β) is the accumulated utility of agent m and by [11,
Lemma 1] the above α-fair scheduler satisfies the following:

ūm;α = E

[
umΠj 6=m1

{
um

(ūm;α)
α ≥

uj
(ūj;α)

α

}]
.

We first consider an extremely simplified scenario and obtain
the following result about the accumulated utilities {ūm;α}
(proof in Appendix A).



Theorem 1. Consider a scenario with instantaneous rates
given by um = amXm, where {Xm}m≤M are IID random
variables and am > 0 is a constant for every m. That is, the
instantaneous utilities of the agents are identically distributed
except for constant multipliers.

i) When a proportional fair scheduler (when α = 1) is
used the accumulated utilities are proportional to their
’mean value’ i.e., to am:

ūm;1 = amūc with constant ūc := E[XmΠj 6=m1{Xm≥Xj}].

ii) With two agents (i.e., M = 2), the one with larger am
(w.l.g. let a2 > a1) will have higher accumulated utility
when an efficient scheduler (α = 0) is used and this
accumulated utility decreases while that of the lower
utility agent (i.e., agent 1) increases as the fairness factor
increases (i.e., as α increases):
a) ū2;0 > ū1;0; b) As α ↑ ∞, ū2;α ↓ and ū1;α ↑ . �

In a rather simplified scenario of Theorem 1, we could
predict some properties of the accumulated utilities as a
function of fairness factor, α. We could probably extend
some of these results little more, may be when restricted to
the setting of Theorem 1 or probably under slightly weaker
assumptions. But it not clear whether these answers can be
obtained under fairly general assumptions.

Alternatively, these answers can directly be obtained, if
fairness is achieved by demanding a lower bound on the
accumulated utilities of the starved users. So, we propose
a constrained optimization to achieve a ’fair’ scheduler (see
Section III). In general, this is an infinite dimensional linear
optimization problem with linear constraints. We reduce this
to a finite dimensional optimization problem and following
are the intuitive ideas behind the same. The instantaneous ef-
ficient decisions (without considering fairness) always chose
the one with maximum instantaneous utility. It is clear that,
to achieve fairness, one needs to deviate from the efficient
decisions for some values of instantaneous utilities. It is also
intuitive that we obtain the best, even under the ’fairness’
constraints, if these deviations from the efficient decisions
are made when the deviations result in ’minimal’ losses. In
[9], [10], Kleinrock et. al. introduced a class of priority based
scheduling algorithms in the context of queuing systems
with multiple classes of customers, wherein a scheduling
decision is made after multiplying the waiting time of the
longest waiting customer of each class with a priority factor
assigned to the class. We observe that a similar parametrized
class of schedulers can achieve the required ’monotone’ shift
of efficient decisions and prove that achieving fairness is
equivalent to choosing an appropriate priority factor.

We make precise these concepts in this paper and show
further that the fairness constraint optimization can be solved
using a very simple iterative zero finding algorithm, whose
complexity is similar to the complexity of the original α fair
scheduling algorithms of [5].

In Section II the problem is introduced. In Section III
one family of fair schedulers are introduced while the other
extensions and comparisons are discussed in Section V.

Conclusions and future directions are also discussed in the
same section. Numerical examples are provided in Section IV
and the proofs and related details are provided in Appendices.

II. SYSTEM AND BACKGROUND

A common resource is shared by M agents. Upon alloca-
tion of the resource, agent m gains a utility um, where um
is completely determined by its state hm. The state of the
resource hm is a random variable and is independent across
the agents. The time is divided into slots and resource is
allocated once in a slot. We are interested in the accumulated
utilities, or equivalently the time averages of the utilities and
we study the same via their expected values. The state hm for
any agent m is an identical and independent process across
the time slots. We assume that the instantaneous utilities
{um} are deterministic functions of the states {hm} and
to simplify the notations we work directly with the random
utilities {um}. We assume um ∈ Um, where Um is a subset
of R. The agents are interested in the average utility obtained
by themselves:

ūm(β) = E[umβm(u)] with u := (u1, u2, · · · , uM ).

The aim of a central unit (CU) is to obtain a scheduler β =
(β1, · · · , βM ) which achieves a ‘given goal’ with respect to
these average utilities.

This resource allocation problem is a typical example of
a multi agent game theoretic problem in which the central
unit (CU) also participates. The utility of an agent competing
for resources is obvious: it is the utility accumulated by the
agent due to allocations (ūm for agent m). On the other hand
the utility of central unit (CU) in the game theoretic context
will depend upon its objective, like for example, fairness-
efficiency trade-off, level of fairness, etc., (see [11] for more
details). We do not pursue the game theoretic approach in this
paper, rather transfer the goals of the individual agents to the
CU itself. It is the CU which ensures that the ‘fairness’ goals
of all the agents are satisfied, whenever possible as would be
evident in the sections below.

Efficient scheduler

As already mentioned the CU can have varying objectives
depending upon the design. If its gain is based solely upon the
total utility transferred, irrespective of the agent that received
the utility, it is would naturally schedule in every time slot the
agent with maximum instantaneous utility. This is a situation
in which the CU maximizes the sum of the average utilities
over an appropriate domain:

max
β∈Ω

Υ(β)

with Υ(β) :=
∑
m

ūm(β) = E

[∑
m

umβm(u)

]
. (1)

We next describe the domain of optimization Ω. Let ‖.‖2
represent the L2-norm, i.e., ‖um‖2 =

√
E[u2

m]. We extend
this naturally to any β = (β1, · · · , βM ) ∈ L2 (we still denote



this space by L2) by

‖β‖2 =

√∑
m

‖βm‖22 =

√∑
m

E[β2
m] for any β ∈ L2.

Now the domain of optimization Ω ⊂ L2, is defined as below:

Ω := {β : ΠmUm → [0, 1]M ;
∑
m

βm(u) = 1

for all most all u}. (2)

The scheduler maximizing (1) is called an efficient sched-
uler and it is easy to see in this case that the efficient
scheduler is given by

βeffm (u) = 1{arg maxk uk=m}. (3)

Let ūeffm denote the corresponding accumulated utilities, i.e.,

ūeffm := ūm(βeff ) = E[um1{arg maxk uk=m}]. (4)

III. FAIRNESS VIA CONSTRAINED OPTIMIZATION

Consider a simple example scenario with two agents. The
states of one agent is better than the other with probability
one, i.e., assume u1 > u2 with probability one. In this
case, if CU uses efficient scheduler (3), then agent 2 is
never allocated a resource and its average utility is zero.
Similarly, if an agent has its utility lesser than the other
agent with high probability, he would obtain non zero utility,
but nevertheless would be a very small quantity. So, such
agents are discouraged to use the facility offered by the CU.
This calls for a different scheduler which ensures that all
the agents obtain ‘satisfactory’ utility. That is, the scheduler
should ensure every agent obtains a fair share for himself.
The ”fair shares” could depend upon

1) the context (e.g., in wireless communications, user with
data transfer requests can wait longer than the user with
a communication call request),

2) the price paid for service (e.g., one class of users might
be willing to pay more to obtain better service),

3) type/size of requests (e.g., some users might require
short jobs while others might require service for longer
duration) etc.

When one deviates from the efficient scheduler (1) to obtain a
required level of fairness, it is clear that efficiency is reduced.
So, the goal of this work is to introduce a class of schedulers
which maximize the efficiency under the constraint that
fairness is maintained to a ‘required level’.

We begin by introducing the following notion of Θ-
fairness (with a given Θ := (0, θ2, θ3, · · · , θM )), given by
the following constrained optimization

β∗Θ := arg max
β∈Ω

Υ(β) with Υ(β) :=
∑
m

ūm(β)

subject to ūm(β) ≥ θm for all m ≥ 2. (5)

Here without loss of generality, we assume ūeff1 ≥ ūeffm for
all m ≥ 2.

In general, problem (5) is an infinite dimensional con-
strained optimization problem and it is difficult to solve the

same. However, we show that a finite dimensional scheduler
optimizes the above problem and towards this, we consider
the following sub family of schedulers inspired by delay
priority schedulers ([9]):

Ω′ := {β(b) = (β1(b), β2(b), · · · , βM (b)) with
βm(b)(u) := 1{arg maxk ukbk=m}

}
. (6)

The intuitive reasons for this choice is already discussed
in Introduction. As seen from (6), the family of priority
schedulers are parametrized by the finite dimensional vector
b = (b1, b2, · · · , bM ). Throughout we assume b1 = 1 while
bm ≥ 1 for all m, which obviously improves the utilities of
lower utility agents.

Assumptions

Without loss of generality (w.l.g.), we assume that the
agents are arranged in the increasing order of their efficient
utilities, i.e., ūeff1 ≥ ūeff2 · · · ≥ ūeffM . We assume a
work conserving principle, i.e., the CU always schedules
the resource whenever there is a utility to be transferred
(i.e.,

∑
m βm = 1 for all states with non zero utilities, i.e.,

whenever u 6= 0) . We work under the following assumptions.
A.1 Assume Prob(um ≤ 0) = 0 and E[u2

m] < ∞ for all
1 ≤ m ≤M .

A.2 When θm > 0, we assume θm > ūeffm for all m > 1.
A.3 The set of constraints in problem (5) are achievable, in

fact there exists at least one β ∈ Ω such that: ūm(β) >
θm for all m with θm > 0.

A.4 The instantaneous utilities um are continuous random
variables for each m, i.e., they have density. These
processes are also independent across the agents.

We immediately have the following two results, whose
proofs are in Appendix A.

Theorem 2. There exists a solution for problem (5) in Ω,
under the assumption A.1. �
Theorem 3. The optimizer of the constrained optimization
(5) satisfies all the constraints under A.1 and A.2. �

We now consider two different cases: one when the utilities
are continuous random variables (which satisfies A.4) and
one when they are discrete. We will see that Ω itself is finite
dimensional in the discrete case, while this is not true in the
continuous case, but however a reduction is possible.

A. Continuous utilities

We begin with reducing the infinite dimensional con-
strained optimization problem (with domain Ω) to that of a
finite dimensional one (Ω′). We also establish the uniqueness
of the optimizer in Ω′.

Theorem 4. Assume A.1-4. Then,
1) There exists a β∗ ∈ Ω′ which is an optimizer of the

constrained optimization problem (5), i.e., there exists a
b∗ ∈ RM−1 and:

β∗ = β(b∗), with βm(b∗)(u) := 1{arg maxk ukb∗k=m}.



By Theorem 3, b∗ satisfies the fairness constraints with
equality, i.e.,

ūm(β∗) = θm for all m ≥ 2.

2) Further for any m ≥ 2, b∗m = 1 if θm = 0, i.e., for
those agents without constraint.

3) There exists a unique element in Ω′ which satisfies
all the constraints. This unique element is the unique
optimizer in Ω′ for the constrained optimization problem
(5).

Proof: is in Appendix A. �
A new fair scheduler : We propose the following two time

scale stochastic approximation based algorithm to obtain the
zeros of fairness constraints equation. Here k represents the
time slot.

ūm,k+1 = ūm,k + µk
(
um,k1{βk=m} − ūm,k

)
for all m ≥ 1,

βk = arg max
m

(bm,kum,k),

bm,k+1 = bm,k + εk(ūm,k − θm)

for all m with θm > 0,

(7)

and with bm,k = 1 for all m with θm = 0. The first iteration
estimates the average utilities of agent m, while the second
iterate updates the scheduler representative b to converge
towards a point that satisfies the constraints and hence is an
optimal scheduler. The second iterate is updated at a slower
rate:

εk = Cµk1{k∈{N,2N,3N,4N,··· }}

for some large N and suitable C ≥ 1. In Section IV we
establish that the above algorithm indeed obtains the required
zeros asymptotically via some numerical examples.

One can alternatively consider a single time scale version,
wherein the second iterate is updated fast and is updated
directly with the help of the 1-estimate um,k1m=βk , in place
of ūm,k (for all m with θm > 0):

bm,k+1 = bm,k + µk(um,k1{βk=m} − θm). (8)

This algorithm is also considered in Section IV. The theoreti-
cal evidence to establish the convergence of these algorithms
and choosing the best among the possible variants, would be
taken up as a future work.

B. Discrete Utilities

Consider a case in which all agents have discrete utilities.
Agent m can take any one of Nm different utilities and
let N̄ := Πm≤MNm define the total possible number of
instantaneous utility vectors u. By indexing each one of u
equivalently with a number 1 ≤ j ≤ N̄ , one can rewrite the
domain of optimization as a subset of [0, 1]N̄M as below:

Ω = {β = {(β1(j), · · · , βM (j))}j≤N̄ with βm(j) ∈ [0, 1],

∀m, j and such that
∑
m βm(j) = 1 for all j ≤ N̄}.

Interesting point to notice for discrete case is that, Ω by itself
is a finite dimensional subset. However in this case, many
conclusions of Theorem 4 are not true and the technical
reasons for the same is discussed in Appendix A after the
proof of Theorem 4. We mainly do not have some uniqueness
properties and in Appendix B, via a simple example we
discuss the issues and advantages related to discrete case.
However Theorems 2, 3 are true and by virtue of these
one can again obtain the optimizer as a (finite dimensional)
zero of ”fairness constraints equation”. One can modify the
algorithm (7), in an obvious way, to update directly the
scheduler components {βm(j)}.

ūm,k+1 = ūm,k + µk

(
um,k1{βak=m} − ūm,k

)
for all m ≥ 1,

βak = a random allocation generated with
probability vector (β1,k(uk), · · · , βM,k(uk))

βm,k+1(uk) = βm,k(uk) + εk(ūm,k − θm)

for all m with θm > 0 and
βm∗k,k+1(uk) = 1−

∑
m:θm>0

βm,k+1(uk); with

m∗k = arg max
m

um,k, the efficient decision.

(9)

Of course the required projection has to be take care in
updates of {βm,k}. However we do have an issue: not
all the zeros are optimizers (see Appendix B). Further the
dimension of Ω increases with the number of states and or
the number of agents and this increases the computational
complexity. In such cases, one can approximate the optimal
scheduling policy with that of an appropriate ‘continuous
counterpart’ and this procedure is explained in the technical
report ([12]). Since there exists a unique zero in Ω′ in
continuous case which is also the maximizer, we expect this
to represent approximately the optimizer of the discrete case
also, whenever the dimension is large.

IV. ILLUSTRATIVE EXAMPLES

A. Continuous utilities: Example 1

By Theorem 4, Θ-fairness is achieved by an unique zero
of the equation representing fairness constraints in the finite
dimensional Ω′. We begin with a very simple example of
uniformly distributed utilities and obtain the required unique
zero, and thereby achieve the required Θ-fair scheduling,
using the single time scale algorithm (8).

We consider a three agent example, with agents having
utilities {um} that are uniformly distributed between 0 and
umax = [4, 1.8, 1]. The efficient utilities of the three agents,
for this example, can easily be estimated and they equal
[1.946, 0.245, 0.027]. We can see that the agents 2 and 3
are starved and we would like to obtain an Θ = [0, 0.6, 0.1]
scheduler in Figure 1. We notice that the average utilities
ūm,k as well as the scheduler representatives b2,k, b3,k
converge within 4000 iterations to satisfy the fairness con-
straints. For larger systems (as considered in the coming
examples) the convergence might be slower, but would still



0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

Iterations, k

b
a
r
 
u
m
,
k

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

3

Iterations, k

b
2
,
 
k
,
 
b
3
,
 
k

 

 

b
2
 run1

b
3
 run1

b
2
 run2

b
3
 run2

Fig. 1. Example 1 (Uniform utilities): Two simulation runs with different initial conditions. Convergence of iterates ūm,k in the left figure (satisfying
the constraints) and Convergence of iterates [b2,k, b3,k] in right figure. With single time scale algorithm, ūm,k is used only for illustrative purposes.

Fig. 2. Example 2 (Rayleigh states): Two simulation runs with different initial conditions. Convergence of iterates ūm,k in the left figure and Convergence
of iterates bk in right figure

Initial b b converges to Final utilities
1 2.00 2.00 2.00 1. 1.087 1.127 1.135 2.496 2.103 1.299 0.736
1 1.50 1.50 1.50 1. 1.083 1.112 1.126 2.424 2.085 1.350 0.772
1 2.00 1.50 2.00 1. 1.084 1.122 1.137 2.506 2.120 1.251 0.754
1 2.10 1.90 1.60 1. 1.085 1.130 1.133 2.462 2.106 1.300 0.760
1 1.20 1.30 1.40 1. 1.076 1.097 1.110 2.491 2.106 1.277 0.768
1 1.10 1.15 1.18 1. 1.085 1.101 1.115 2.492 2.081 1.315 0.753
1 1.40 1.40 1.40 1. 1.081 1.107 1.120 2.434 2.093 1.346 0.761
1 1.80 1.80 1.80 1. 1.081 1.125 1.133 2.431 2.099 1.326 0.772

TABLE I
CONTINUOUS UTILITIES EXAMPLE 2: DIFFERENT INITIAL CONDITIONS, BUT CONVERGENCE TO THE SAME LIMIT



be comparable to that of the existing fair schedulers ([5]).
With two time scale version (7), the convergence is much
slower.

B. Continuous utilities: Example 2

We consider the context of wireless communications and
look at the following problem: M cellphones are competing
for resource from a single central unit or base station. In this
context, hm represents the channel state between the base
station and user m. For any agent m, hm is a continuous
random variable and {hm} are independent across the agents
and independent and identical across the time slots. We
assume that hm is a Rayleigh random variable. The maximum
rate (capacity) at which data can be transferred over the
communication channel is the utility um, derived by agent
m when allocated the resources. This (capacity) utility um
is a deterministic function of hm and is given by,

um = log(1 + h2
m).

We consider the case with 4 agents (M = 4) and the Rayleigh
parameters of the 4 agents are given by [20, 15, 12, 10]. The
goal here is to see

1) The convergence of expected utilities for different
agents.

2) Existance of unique zero of the ”fairness constraints
equation”, i.e., convergence of vector b irrespective of
the initial condition.

The efficient scheduler results in the following accumulated
allocations:

ūeff = [3.618, 1.784, 0.867, 0.426].

The fairness constraint vector Θ is set as,

Θ = [0, 2.1, 1.3, .75].

The other parameters of the two-time scale algorithm (7) are

µk = 1/k + 0.01/k3, N = 100 and C = 50.

That is, fairness parameters {bm,k} are updated once in 100
steps. For the example at hand, we found these to be a good
set of parameters. Rayleigh distributed random variable h
with parameter σ is generated from uniformly distributed
random variable U via the following transformation:

h = σ
√
−2logU.

Observations

Figure 2 illustrates the convergence behavior of the iterates
of algorithm (7) while Table I studies the limits of the same
algorithm. In the left figure one sample in 250 samples is
plotted while in the right figure one in 200 samples is plotted.
This is done for the clarity of the figures. From table, it
can be seen that the expected utilities converge and all the
fairness constraints are satisfied within a negligible margin
of error, irrespective of the initial conditions, as established
by Theorem 4. Thus this algorithm can be used to obtain the
required zero and thereby to implement the Θ-fairness for
any given Θ.

C. Discrete case

We now consider an example with discrete utilities i.e.
the case when A.4 does not hold. Here Ω itself is a finite
dimensional set but the computational complexity increases
as the size N̄ (see Section III-B) increases. We present here a
method, wherein the Θ-fair scheduler of the discrete scenario
can be well-approximated by the scheduler of an appropriate
continuous case and this approximation is good when the
cardinality N̄ is large. We continue with the example of
wireless communication problem from the continuous case
study, but with a difference. Here the system supports only
a finite number of transfer rates, say cellphone m can be
supported by one of the rates given

Um = {0, log(1+δ2
m), log(1+(2δm)2), · · · , log(1+(Nmδm)2)},

where δm > 0. The channel state hm is Rayleigh as in
previous example, but now the utility of the mobile m is

um = max{u ∈ Um : u ≤ log(1 + h2
m).}

Clearly as (δm, Nm) → (0,∞), um → log(1 + h2
m) for

almost all hm and we approximate such cases with the
continuous case of the previous example.We consider one
such case in which all the agents are having equal number
of transfer rate choices, i.e, Nm = N1 for all m. In
this experiment we calculated {δm} such that the Rayleigh
density of every mobile at δmN1 (every channel state after
this value is supported by the common highest rate) equals
90 percentile value. All the other parameters are same as in
the previous example, including Θ.

We again use the algorithm (7), even when it is a discrete
case. The results are tabulated in Table II. Interestingly even
up-to the case with N1 = 20, all the constraints are (well)
satisfied approximately, by an element from β(b) ∈ Ω′, to
which the algorithm converges asymptotically. From Theo-
rem 3 (which is true even for the case with discrete utilities)
the optimizer satisfies the constraints. More interestingly, the
scheduler representative b is close to the corresponding one
in the continuous case. And we know in the continuous
case that the (unique) zero of the constraints equation is
the maximizer. Thus we expect the (approximate) zeros so
obtained to be the Θ-fair schedulers even for the discrete
case. We do notice from the same table that for the case with
N1 = 5, the constraints are not satisfied. Thus this method
is not accurate, when the cardinality of the utility space is
small. However in such cases the dimension of Ω itself is
small and once can directly use the algorithm (9) indicated
for the discrete case.

V. EXTENSIONS, COMPARISONS AND DISCUSSIONS

One can generalize and define f -fairness for M -agents as
in the following. Let f = (f1, · · · , fM ) : RM+ → RM+ be
any given measurable function and define, f -fair scheduler
as:

βf := arg max
β∈Ω

∑
i

ūi(β)

subject to fm(ū1(β), · · · , ūM (β)) ≥ 0 for all m. (10)



N1 Initial b b converges to Final utilities
continuous 1, 1.4, 1.4, 1.4 1. 1.081 1.107 1.120 2.434 2.093 1.346 0.761
40 1, 1.4, 1.4, 1.4 1. 1.124 1.112 1.092 2.020 2.130 1.319 0.759
20 1, 1.4, 1.4, 1.4 1. 1.179 1.130 1.087 1.899 2.008 1.299 0.750
5 1, 1.4, 1.4, 1.4 1. 2.600 1.000 1.000 1.620 2.119 1.014 0.008

TABLE II
DISCRETE UTILITIES EXAMPLE: THE ALGORITHM (7) PERFORMS WELL FOR N1 = 20 OR MORE

Note that fm(u) = um − θm gives the notion of Θ-fairness
introduced earlier. One can explore other options via this
general definition. For example, we are interested in the
following function:

fm(um−1, um) = ūm − γmūm−1 for all m > 1.

Essentially we are interested in maintaining the ratio:

ūm
ūm−1

≥ γm for all m > 1.

The functions of this type can equivalently be represented
using the vector Γ := (1, γ2, · · · , γM ) and the corresponding
fairness can be termed as Γ- fairness.

All the proofs go through for this notion of fairness also.
We just mention few differences. Theorem 3 will go through
in a similar way if we assume as in Assumption A.2 that we
aim to promise better returns for starved agents, which are
better than what they could obtain using efficient scheduler,
that is:

γm >
ūeffm

ūeffm−1

for all m > 1.

In step 17 of Theorem 4 we will have

b∗m = 1 + %∗m − γm%∗m−1 for all m > 1.

To prove Theorem 5 version for Γ-fairness, if possible
consider two vectors b, c both of which satisfy the ratio con-
straints and such that b 6= c. Then if w.l.g. ū1(b) > ū1(c),
and then to maintain the ratios we will need recursively
that ūm(b) > ūm(c) for all m. Which is not possible
because of work conserving principle. When ū1(b) = ū1(c),
then again recursively to maintain the ratios, we will have
ūm(b) = ūm(c) for all m. In all, this means we might have
b 6= c but with ūm(b) = ūm(c) for all m to satisfy the
ratio constraints. But this is immediately contradicted by the
existing Theorem 5.

Comparison with existing notions of fairness

The unconstrained optimization (with Θ = (0, 0, · · · , 0))
gives efficient scheduler.

When Γ = (1, · · · , 1) we obtain the max min fairness as
this ensures all agents have equal utility.

There exists a Γ which defines the proportional fair sched-
uler. For example, for the case considered in Theorem 1 given
in the Introduction and using the same theorem, Γ defined
by

Γ =

(
1,
a2

a1
,
a3

a2
, · · · , aM−1

aM

)
,

achieves proportional fairness. This is possible because for
any given Γ there exists an unique vector of accumulated
utilities. This is true because of the work conserving principle
as explained in the previous paragraph while indicating the
proof of Theorem 5 for the case of Γ-fairness. We can also
achieve this via Θ-fairness as given below.

As mentioned in the introduction, every α-fair scheduler
satisfies the following equation ([11, Lemma 1])

β∗,αm (u) = 1{
arg maxm′(ūm′;α)

−α
um′=m

} with

ūm;α = E[umβ
∗,α
m (u)].

This implies α-fair scheduler is obtained by the priority
schedulers of Section III with priority factors

bm =

(
ū1;α

ūm;α

)α
for all m ≥ 2.

For every α there exists a Θα such that the Θα scheduler of
this paper obtains the corresponding α fair scheduler and in
fact Θα = [0, ū2;α · · · , ūM ;α].

Conclusions and Future directions

In this paper, we introduced a notion of fairness which
provides direct information about the improvement of the
accumulated utilities of the otherwise starved agents. Via a
series of theorems we proved that this type of fairness can
be achieved by algorithms whose complexity is similar to
those already proposed in literature for the other notions. The
notion introduced here has some connections to the research
done before. For example, in wireless communications which
has to support both data calls (lengthy connections which can
wait) and voice calls (impatient and short calls, which drop-
off if all the servers are busy), it is proposed to optimize the
average waiting time of a data call while ensuring that the
drop probability of a voice call is below certain acceptable
limit.

We also introduced Γ-fairness which ensures that the ratios
of utilities of any pair of agents is better than that achievable
using efficient scheduler. Using this we can achieve the ex-
isting notion of max-min fairness. In an extremely simplified
scenario (Theorem 1), we showed that with a Proportional
fair scheduler the accumulated utilities are proportional to
their means. Once the mean of the instantaneous utilities
(E[u1], · · · , E[uM ]) of all the agents are known (one can
easily estimate the mean), one can actually implement a
fair scheduler which ensures that the accumulated utilities
of various agents are proportional to their own mean values.



For example, one can achieve this using Γ-fairness defined
in this paper for

Γ :=

(
1,
E[u2]

E[u1]
, · · · , E[uM−1]

E[uM ]

)
.

We would like to complete this analysis and investigate more
on these aspects in future.

In this paper we indicated few iterative algorithms to
implement the new notion of fairness. We would like to
study their convergence properties. In view of Theorem 4
alternatively, one may obtain this as the optimizer in Ω′ and
design an iterative algorithm to achieve the same. The case
with discrete utilities needs to be explored more.

REFERENCES

[1] F. Kelly, A. Maulloo, D. Tan, ”Rate control for communication
networks: shadow prices, proportional fairness, and stability”, Journal
of the Operations Research Society 49 (1998).

[2] Wierman, Adam. ”Fairness and scheduling in single server queues.”
Surveys in Operations Research and Management Science 16.1 (2011):
39-48.

[3] R. Jain, D. M. Chiu, and W. R. Hawe, ”A quantitative measure of
fairness and discrimination for resource allocation in shared computer
system”, Eastern Research Laboratory, Digital Equipment Corp., 1984.

[4] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, An axiomatic theory
of fairness in network resource allocation, in Proceedings of IEEE
INFOCOM. IEEE, 2010, pp. 19.

[5] H.J. Kushner, P.A. Whiting, “Convergence of Proportional-Fair Sharing
algorithms under general conditions,” IEEE Trans. Wireless Commun.
vol. 3, no. 4, pp. 12501259, Jul. 2004.

[6] V. K. N. Lau, ”Proportional Fair Space Time Scheduling for Wireless
Communications”, IEEE Trans. communications, vol. 53, no. 8, Aug
2005.

[7] D.G. Luenberger, ”Convex Programming and Duality in Normed
Space” IEEE Trans. on System Science and Cybernetics, July 1968.

[8] D.G. Luenberger, ”Optimization by vector space methods”, John Wiley
and Sons, Inc., 1969.

[9] Leonard Kleinrock, and Roy P. Finkelstein. ”Time dependent priority
queues.” Operations Research 15.1 (1967): 104-116.

[10] Leonard Kleinrock, ”A delay dependent queue discipline”, Naval
Research Logistics Quarterly, volume 11, pages 329-341, 1964.

[11] Veeraruna Kavitha, Eitan Altman, Rachid Elazouzi, Rajesh Sundare-
shan, ”Fair scheduling in cellular systems in the presence of noncoop-
erative mobiles” accepted at IEEE Trans. on Networking.

[12] Veeraruna Kavitha, N. Hemachandra, Debayan Das, ”Fairness
via priority scheduling”, technical report downloadable using
http://www.ieor.iitb.ac.in/files/faculty/kavitha/FairPriority.pdf

APPENDIX A

This appendix contains all the proofs of the theorem given
in the main body of the paper. It also contains the theorems
and lemmas used for establishing those theorems.

Proof of Theorem 1: The first part is easily evident by
substituting {amūc}m into the fixed point equation given
above the theorem. For the next two parts, we have the case
with M = 2. When α = 0, because X1

d
= X2:

ū2;0 = a2E[X21{a2X2>a1X1}]

= a2E[X11{a2X1>a1X2}]

> a2E[X11{a1X1>a2X2}], because a2 > a1, (11)
> a1E[X11{a1X1>a2X2}], because a2 > a1,

= ū1;0.

Define ξα := a2 (ū1;α)
α
/a1 (ū2;α)

α and define

να1 = E[X11{X1>ξαX2}] and
να2 = E[X11{X1≤ξαX2}]. (12)

Clearly either να1 ↑ and να2 ↓ with α or the vice-versa (note
να1 + να2 is a constant for all α). Note (as in previous step)
by fixed point equation that, ūαm = amν

α
m for all m and

hence that ξα = (a1/a2)α−1(να1 /ν
α
2 )α. When α = 0, while

proving the first part of theorem we see that ν0
2 ≥ ν0

1 (see
inequality 2 in equation (11)).

Now if να2 ↑ and να1 ↓ with α ↑, then να2 /ν
α
1 ↑ and then

να2 /ν
α
1 > 1 for all α ≥ 0 and hence we also have ξα ↓. But

then from (12) να1 ↑ which is a contradiction. Thus, να1 ↑
and να2 ↓ with α ↑ . �

Proof of Theorem 2: Clearly Ω is a convex subset of L2

and L2 is a Hilbert space. Consider a smaller subset of Ω
which defines the constraints of (5) as below:

Ωθ = {β ∈ Ω : ūm ≥ θm for all m ≥ 2} .

By linearity of the map β 7→ ūm(β), Ωθ is also a convex
subset.

Further it is a closed subset. To see that, if there exists
a subsequence {βn = (βn1 , · · · , βnM )} ⊂ Ωθ with βn → β
in L2 norm. Then, βn → β in probability and this implies
the existence of a subsequence along which βnk → β almost
surely. The almost sure convergence gives us that:

1 ≤ β(u) ≤ 1 and
∑
m

βm(u) = 1 for almost all u.

Further by dominated convergence theorem ūm(βnk) →
ūm(β). Thus ūm(β) ≥ θm for all m, and so β ∈ Ωθ and
hence Ωθ is closed.

The function β 7→ Υ(β) =
∑
m ūm(β) is clearly linear

and is bounded because by Cauchy-Schwartz inequality:

‖Υ‖ = sup
‖β‖2≤1

|
∑
m

ūm(β)| ≤ sup
‖β‖2≤1

∑
m

‖βm‖2‖um‖2

≤
∑
m

‖um‖2 <∞.

Thus, Υ is a continuous linear functional and and hence is
Gateaux differentiable function. Thus1, there exists a β∗ ∈
Ωθ which maximizes Υ. �

Proof of Theorem 3: If say there exists a β∗ =
(β∗1 , · · · , β∗M ) which maximizes the optimization problem (5)
without satisfying the constraint with equality. That is to say
for some m with θm > 0,∫

umβ
∗
m(u)dP (u)− θm = δ > 0.

1We have the following theorem from Functional analysis.

Theorem. Let K be a nonempty closed convex set of a Hilbert space V ,
and let J : V → R be a convex Gateaux differentiable function. If K is
bounded, or if J is infinite at infinity, there exists at least one minimum of
J over K, i.e.,

J(u) = infv∈KJ(v) for some u ∈ K.



By A.2, θm > ūeffm given by (4) and this implies, agent m
obtains more because of ‘non efficient’ scheduling decisions
(ones with β∗m(u) > 0 when m 6= arg maxk uk), i.e.,
P (A) > 0 where

A :=

{
u : β∗m(u) > 0 when u1 = max

k
uk

}
.

The reason for the above is: the ‘non efficient’ decisions
are obtained by shifting the ‘efficient’ decisions of only the
un constrained agents (agents with θm = 0) in favor of the
agents with constraints on non zero measure set and there
should be at least one such agent, assume without loss of
generality, this to be the agent 1.

This implies there exists a δ̃1 > 0, δ̃2 > 0 and a set
Bδ̃1,δ̃2 ⊂ A such that2 P (Bδ̃1,δ̃2) > 0 where

Bδ̃1,δ̃2

:=

{
β∗m(u) > δ̃1 with max

k
uk = u1 and u1 − um > δ̃2

}
.

Then a new scheduler policy is defined as the following:

β̃ =

{
β∗ on Bc

δ̃1,δ̃2
.

(β∗1 + δ′, β∗2 , · · · , β∗m − δ′, · · · , β∗M ) on Bδ̃1,δ̃2 .

with 0 < δ′ < min
{
δ̃1,

δ∫
umdP (u)

}
. It is easy to check that,

ūm(β̃) = ūm(β∗)− δ′
∫
Bδ̃1,δ̃2

umdP (u) > θm.

That is, the new policy still satisfies the constraint for
agent m. Also, it does not alter the decisions of any other
constrained user which implies the constraints of the other
users are also intact. Further,∑
k

ūk(β̃) =
∑
k

ūk(β∗) + δ′
∫
Bδ̃1,δ̃2

(u1 − um)dP (u)

≥
∑
k

ūk(β∗) + δ′δ̃2P (Bδ̃1,δ̃2) >
∑
k

ūk(β∗)

contradicting the optimality of β∗. �
Proof of Theorem 4 : Any scheduler β =

(β1, β2, · · · , βM ) satisfies that βm ≥ 0 and
∑
m βm = 1

for almost all values of u = (u1, u2, · · · , uM ). And so,

Υ(β) =

∫ ∑
2≤m≤M

(um − u1)βm(u)dP (u) +

∫
u1dP (u). (13)

And the constraints are given by:∫
umβm(u)dP (u) ≥ θm for m ≥ 2.

2Clearly A = ∪n,lB 1
n
, 1
l

and so, if such a δ̃1, δ̃2 does not exist then

P (A) = P

(
∪n,m

{
β∗m(u) >

1

n
with max

k
uk = u1

and (u1 − um) >
1

l

})
= 0.

The last term in equation (13) is independent of the scheduler
β and can be omitted for optimization and further considering
the dual variables % := (0, %2, %3, · · · , %M ) (note there is
no constraint on the first agent and hence %1 = 0) we are
interested in optimizing the following w.r.t. β:

L(β; %) =

∫ ∑
2≤m≤M

[(um − u1)βm(u)] dP (u)

+
∑

2≤m≤M

%m

(∫
umβm(u)dP (u)− θm

)
. (14)

Note here that for agents with θm = 0, i.e., for ones without
constraint, we set %m = 0 for ease of notations. For any fixed
%, we are equivalently interested in:

max
β∈Ω

∫ ∑
2≤m≤M

[um(1 + %m)− u1]βm(u)dP (u). (15)

Clearly the β∗;% = (β∗1;%, · · · , β∗M ;%) defined as below:

β∗1;%(u) = Πm≥21{[(1+%m)um−u1]< 0} and
β∗m;%(u) = 1{arg maxk≥2[(1+%k)uk−u1]=m}(1− β∗1;%(u)),

for any m ≥ 2

optimizes (15). It is easy see to that the above is same as the
following (1 := (1, · · · , 1)):

β∗m;%(u) = βm(1 + %)(u) (16)

with βm(b)(u) defined as in (6), where b = 1 + %. By
Lemma 1, under A.4 this is the unique maximizer for any
given %.

The domain Ω is a convex closed subset of the Banach
space, L1. The objective function and the constraints are
both linear. The constraints are functions from Ω to Eu-
clidean space Rnc , where nc represents the total number
of constraints. We consider normed space Rnc with usual
partial order. By Theorem 2, which establishes the existence
of optimizer and A.3, the Duality theorem on normed linear
spaces, [7, Theorem 5] is applicable (see also [8]). Fur-
ther, the optimizer given by (16) is unique for each tuple
% = {%m} and these two give us the following:
• By the first statement of [7, Theorem 5]

max
β ∈ Ω;

ūm(β) ≥ θm,∀m

Υ(β) = min
%≥0

max
β
L(β, %)

and there exists a %∗ which satisfies the constraints and
which achieves the minimum on the right hand side.

• By Theorem 2, there exists an optimizer β∗ of (5).
Then, by the second statement of [7, Theorem 5] β∗ also
maximizes L(β, %∗). By Lemma 1 there exists an unique
maximizer β∗;%∗ for L(β, %∗) and hence (see (16)):

β∗ = β∗;%∗ = β(1 + %∗) (17)

Note here %∗m = 0 for θm = 0.

By Theorem 3 any maximizer satisfies the constraints and by
Theorems 5 and 3 there is a unique maximizer in Ω′. �



Remarks about discrete utility case: Equation (17) in the
proof of Theorem 4 is the crucial step to show that an element
from finite dimensional Ω′ maximizes the constrained opti-
mization (5). This step is true by Lemma 1, which establishes
the existence of an unique optimizer for the Lagrangian
objective function L(β, %) given by (14), with any arbitrary
Lagrange multiplier %. The lemma is true only under A.4,
i.e., when the instantaneous utilities are continuous random
variables. One can easily construct examples with discrete
utilities when uniqueness fails and we present one such a
simple example in Appendix B. But the rest of the arguments
would be same for discrete rates and in this case the optimizer
of (5) still maximizes L(β, %∗), however it can also be a
convex combination of all the maximizers of L(β, %∗) and
hence may not be an element from Ω′.

Lemma 1. Under A.4, for any given % the scheduler given
by (16) is the unique maximizer of (14).

Proof: By adding the constant term
∫
u1dP (u) to (14)

and noticing that β1 = 1 −
∑
m≥1 βm we are equivalently

interested in optimizing (with %1 = 0):

L̃(β) :=

∫ ∑
m

um(1 + %m)βm(u)dP (u).

The maximizer β∗;% given by (16) is clearly the point-wise
maximizer of the term inside the integration. Define the
following random variables:

m∗ = arg max
m

um(1 + %m), u∗ = max
m

um(1 + %m) and

ũ∗ = max
m 6=m∗

um(1 + %m).

Under A.4, P (uk = um) = 0 for any k 6= m and hence

P (u∗ = ũ∗) =
∑
k

P (max
m

um = ũ∗; m∗ = k)

=
∑
k

P (uk = max
m 6=k

um; m∗ = k)

≤
∑
k

∑
m 6=k

P (uk = um; m∗ = k)

≤
∑
k

∑
m 6=k

P (uk = um) = 0. (18)

If there exists any other maximizer β̃ of (14) and say

P (A) > 0 with A := {u : β∗;%(u) 6= β̃(u)}.

Because u∗ is a point-wise maximum value and ũ∗ is the
second maximum,

A = ∪kBk ∪
{
u : β∗;%(u) 6= β̃(u), u∗ = ũ∗

}
with

Bk :=

{
u : β∗;%(u) 6= β̃(u); u∗ − ũ∗ > 1

k

}
In view of (18) and because P (A) > 0, there exists at least
one k̃ such that:

P (Bk̃) > 0.

Because
∑
m β̃m = 1 for all u,

L̃(β∗:%)− L̃(β̃))

=

∫
u∗dP (u)−

∫ ∑
m

(um(1 + %m)β̃m(u))dP (u)

=

∫
u∗
∑
m

β̃m(u)dP (u)

−
∫ ∑

m

(um(1 + %m)β̃m(u))dP (u)

=

∫ ∑
m

β̃m(u)(u∗ − um(1 + %m))dP (u)

=

∫
A

∑
m

β̃m(u)(u∗ − um(1 + %m))dP (u)

≥
∫
A

∑
m

β̃m(u∗ − ũ∗)dP (u) =

∫
A

(u∗ − ũ∗)dP (u)

≥
∫
Bk̃

(u∗ − ũ∗)dP (u) ≥
∫
Bk̃

1

k̃
dP (u) =

1

k̃
P (Bk̃) > 0.

which is a contradiction to the optimality of β̃. �
Theorem 5. There exists at maximum one element in Ω′

which satisfies all the constraints of (5).

Proof: Consider the case with M − 1 constraints. The
general case goes through in a similar way. If possible,
consider b 6= c, such that both of them satisfy the constraint
equations. Recall by Theorem 4 that c1 = b1 = 1. Define the
following sets:

Aj,k(b) := {ujbj < ukbk} for all 1 ≤ j, k ≤ n with j 6= k.

Define, Am(b) := ∩j 6=mAj,m(b). Clearly,

ūm(b) = E[umβm(b)(u)] = E[um1Am(b)].

W.l.g. say cM > bM . Then clearly,

A1,M (b) = {u1 < uMbM} ⊂ {u1 < uMcM} = A1,M (c).

Since agent M ’s constraint is satisfied at both b and c (i.e.,
ūM (b) = θM = ūM (c)), the above relation implies there
exists at least one m1 with 1 < m1 < M and such that

Am1,M (b) ⊃ Am1,M (c) ⇒ bM
bm1

>
cM
cm1

.

W.l.g. let m1 = M − 1. As,

bM
bM−1

>
cM
cM−1

and cM > bM we have cM−1 > bM−1.

These in turn imply (for agent M − 1) that:

A1,M−1(b) ⊂ A1,M−1(c) and AM,M−1(b) ⊂ AM,M−1(c).

Again because ūM−1(b) = θM−1 = ūM−1(c), there should
be at least one m2 with 1 < m2 < M − 1 and such that

Am2,M−1(b) ⊃ Am2,M−1(c) which implies
bM−1

bm2

>
cM−1

cm2

.



W.l.g. let m2 = M − 2 and this implies cM−2 > bM−2,

bM−1

bM−2
>

cM−1

cM−2
and

bM
bM−2

=
bM
bM−1

bM−1

bM−2
>

cM
cM−1

cM−1

cM−2
=

cM
cM−2

.

Thus we have (now for agent M − 2)

A1,M−2(b) ⊂ A1,M−2(c), AM,M−2(b) ⊂ AM,M−2(c)

and AM−1,M−2(b) ⊂ AM−1,M−2(c).

Thus and because ūM−2(b) = ūM−2(c) there exists an
m3 = M − 3 (w.l.g.) such that

AM−3,M−2(b) ⊃ AM−3,M−2(c) ⇒ bM−3

bM−2
>
bM−3

cM−2
.

Continue in the same way up to 3 and for ū3(b) = ū3(c)
we will need that c2 > b2 so that b3/b2 > c3/c2. This means
(calculating as before) for agent 2 that:

A1,2(b) ⊂ A1,2(c), and

Am,2(b) ⊂ Am,2(c) for all m.

This implies that ū2(b) < ū2(c), which contradicts the fact
that both of them satisfy all the constraints. �

APPENDIX B: A DISCRETE UTILITY EXAMPLE

We consider a simple case with two agents. The first agent
has u1 ∈ {20, 10} and Prob(u1 = 10) = Prob(u1 = 20)
while for the second agent Prob(u2 = 5) = 1. In this
case the scheduler β = (β1, β2), with β1 representing the
probability with which agent is scheduled when its utility is
20 while β2 represents the same when agent 1’s utility is 10.
In this case,

ū1(β) = 20 ∗ 0.5 ∗ β1 + 10 ∗ 0.5 ∗ β2 and
ū2(β) = 5 ∗ (0.5 ∗ (1− β1) + 0.5 ∗ (1− β2)).

For example, if the fairness constraint is ū2 ≥ θ, it can be
satisfied by the following two β’s:

(1, 1− θ/2.5) or (1− θ/2.5, 1).

Thus uniqueness of zero of ‘fairness constraints equation’
is not true in discrete case. In view of Theorem 3, it is
easy to see that among the above two, the optimizer of
5 is (1, 1 − θ/2.5). This scheduler obtained by changing
the βeff = (1, 1) (efficient scheduler) only in the second
component. This component corresponds to u1 = 10 and
hence is the one with lesser u1 − u2.

Thus, while choosing the ‘optimal’ zero of fairness con-
straint, one first needs to change the beta’s (from beta’s
corresponding to efficient scheduler) corresponding to lowest
difference utilities and then to the next lower utilities and so
on. That is exactly the intuitive reason why priority type
scheduler works with continuous utilities. We plan to explore
further these ideas in future.


