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Abstract—We consider small cell networks and study the
impact of user mobility. Assuming Poisson call arrivals at random
positions with random velocities, we discuss the characterization
of handovers at the boundaries. We derive explicit expressions
for call block and call drop probabilities using tools from spatial
queuing theory. We also derive expressions for the average virtual
server held up time. These expressions are used to derive optimal
cell sizes for various profile of velocities in small cell networks via
some numerical examples. We further discuss the performance
of the optimal system.

I. INTRODUCTION

There is a paradigm shift from large macrocell networks to
smaller pico and femtocell networks to offer higher capacity
and better coverage for broadband access [1], [2]. Small
cells are frequently planned in urban areas with heavy traffic
density. A significant portion of the traffic arises from hot-
spots (offices, malls, etc) and mobile users. Due to the nature
of the cell-size , a car moving with a moderate velocity
crosses across cells every few seconds. Thus there are frequent
handovers which impacts the service offered to the users. Our
goal is to understand the impact of these frequent handovers
on important system metrics like service times, call-block
and call-drop probabilities of mobile users. We analyze these
metrics using tools from spatial queuing theory [3], [4], [5]
and use them to arrive at optimal cell sizes for various profiles
of user velocities in small cell networks.

In the past, several concepts have been proposed to reduce
the impact of frequent handovers [6]. One method is to ensure
that the resources to the mobile users are guaranteed across
multiple cells by forming an ’umbrella of cells’, popularly
termed as virtual cells. Once the call is picked up, the user is
ensured that the service is not affected as he traverses through
the virtual cell. But, this comes with the price of additional
resources. Another mechanism that has been proposed is fast
base station switching, which as the name implies expedites
switching from one BS to the next. But, even with this, there
is a certain minimum amount of information that needs to be
exchanged before the handover is successful. In our work, we
do not specifically consider either virtual cells or fast base
station switching. We assume that a fixed number of bytes are
used up when the user switches to the next cell and no useful
communication happens during this transfer.

We consider small cells catering to non-elastic traffic, which
is sensitive to the delays in transmission. We study the perfor-
mance of such systems via the block and drop probabilities.
Each small cell is mapped to an M/G/K/K queue and the

two corresponding probabilities are obtained using tools from
queuing theory. We further introduce the concept of virtual
server held up time, which is the total time a call utilizes the
system resources and obtain its average value. We obtain the
optimal cell size and study the system performance at optimal
cell size, via numerical analysis.

II. SYSTEM MODEL

We consider a cellular network of small cells in which the
users can be mobile. Each cell is represented by a circular area
of radius L (see Figure 1). It is equipped with a base station
(BS) which can serve K parallel calls at a time.
Traffic type: We consider non-elastic traffic (ex. multimedia
streaming, voice, etc). These calls are delay sensitive and are
blocked if not picked up within a very small waiting time.
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Fig. 1. Call arrivals and termination
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Fig. 2. Handovers for uniform arrivals on plane

Drop and Block Probabilities : In any cell, a new call is
picked up immediately if the number of active calls in that
cell, at the time of its arrival is less than K. If all the K



servers are busy, the call is blocked, the probability of such
an event is called Block probability PB . When an active user
moves out of a cell, the call has to be continued by the new
cell that it enters. If all the K servers of the new cell are busy,
then the call will be dropped and the probability of this event
is called Drop Probability PD. The aim of this paper is to
design a system, more specifically the cell radius L, which
minimizes the Block probability PB , while maintaining the
Drop probability PD within the specified limit.
Radio Channel: The communication between the users and
the BS takes place via a wireless link. The received signal
undergoes time varying, random attenuation due to the effects
of shadowing, fading and the transmitter-receiver distance
based propagation losses. Shadowing is a local phenomena,
which occurs when the user is in a shadow region with
respect to the base station. This can occur due to obstructions
like trees, buildings, etc. Especially for a mobile user, as
he/she traverses along the street, the mobile passes through
the shadow of trees, buildings and other infrastructure. The
received power due to shadowing measured in decibels (dB)
is a Gaussian random variable. Rayleigh fading describes the
statistical variation in the envelope of the received signal due
to superposition of many versions of the transmitted wave that
has reflected from different points. We assume that the radio
channel is quasi-static and hence fading and shadowing will
be constant during its traverse through the small cell. With
this assumption, the received power at time t is given by,

Prx(t) = PZφ(d(t)); Z = 10
L
10R2 (1)

where P is the transmitted power, L, R respectively represent
the (Log normal) shadowing and (Rayleigh) fading factors and
d(t) represents the transmitter-receiver distance at time t. The
factor φ(d) represents the attenuation due to propagation loss
when the transmitter-receiver distance is d and is given by,

φ(d) := (h2 + d2)−β/2 (2)

where β represents the path loss factor and h represents the
height of the antenna at a BS. Note that the height of the
antennae on the mobiles will be negligible and hence the actual
distance of transmission will be

√
h2 + d2 where d represents

the distance between the BS and the mobile on ground.
We assume that the system is operating at low signal to

noise ratios and thus the maximum possible communication
rate, R(t) equals instantaneous received power Prx(t) itself.
Call Arrivals : We consider a single cell for analysis. We
assume that this cell is a circular area. Without loss of
generality we consider the cell with its center at 0 = (0, 0),
i.e., the cell is given by B(0, L) (two dimensional closed ball
with center 0 and radius L). There can be two types of call
arrivals.

New call arrivals : We model any new call arrival into
the entire system by a Poisson process with arrival rate equal
to λ. Each of these arrivals are associated with the marks
(S,X,V), where S is the file size in bytes, X is the two
dimensional position of arrival and V is the two dimensional
velocity vector. Let the distributions of the marks be given
respectively by the probability measures PS , PX,V . These calls

are assumed to be memory-less in nature, i.e., that PS has
an exponential distribution. Of all the arrivals in the system
only the arrivals in the ball B(0, L) represent the arrivals to
the cell of interest. Thus the Poisson arrivals into the cell of
interest occurs at rate given by λL := λPX(B(0, L)), where
PX represents the marginal of the joint distribution PX,V .

Arrivals due to handovers : Call transfers from the neigh-
boring cells into the cell B(0, L) occur due to handover. Often,
in literature the handover arrivals are also modeled by Poisson
arrivals (see for example [7], [8]). Further, it is easy to see that
new arrivals into a cell are totally independent of handed over
calls from the neighboring cells. We thus model the handover
arrivals by an independent Poisson process independent of the
new call arrival Poisson process with arrival rate λhL.

The handover Poisson process also comes with marks
(S,X,V) as before, but now the position of arrival X for
handover is concentrated on the boundary ∂B(0, L). The joint
distribution of (X,V) is given by PhX,V which supports only
those velocities for which the user moves across the cell of
interest. The arrival rate λhL and the handover distributions
PhX,V are calculated in the subsequent sections. The file size
S = Bh + S̃, where S̃ representing the remaining bytes to be
transmitted is again exponential with distribution PS . The Bh
bytes are added to this random variable, as they are the bytes
required for the process of handover. That is, for handovers
the file size S −Bh ∼ PS .

Thus the overall arrivals into cell B(0, L) is given by a
Poisson process with arrival rate λL + λhL and is associated
with marks (S,X,V) which are distributed respectively as
(λLPSPX,V + λhLPhSPhX,V )/(λL + λh) where PhS(A) :=
PS(A−Bh) for every Borel set A.

III. ANALYSIS OF A SINGLE CELL

The cell of interest B(0, L) has Poisson arrivals with arrival
rate λL + λhL and the calls are either picked up immediately
or are dropped based on the busy status of the available K
servers. Thus, we can model the cell B(0, L) by an M/G/K/K
queue. Any call arrived in to B(0, L), if picked up, is served
either till all the S bytes are communicated or till the user
reaches the boundary of the cell. Thus, the service time of the
call will be the minimum of these two times.

A. Time to reach the boundary, T∂(X,V)
An user is traversing the cell with V = (V1, V2) = |V |Vθ

velocity, (i.e., with speed |V | and the unit norm vector Vθ

defining the direction) in a two dimensional grid. Let X =
(X1, X2) = |X|Xθ, be the initial position (Xθ represents the
direction of the initial position w.r.t. the BS located at 0).
The final position of the user (when he leaves the cell) is
X + VT∂ , where T∂ is the time at which the mobile leaves
the cell, i.e., the time at which it touches the boundary. Note
that |X + VT∂ | = L, as this point lies on the circumference
of the circle. Thus the time to reach boundary is given by,

T∂(X,V) =
−|X| cos(Ψ) +

√
|X|2 cos(Ψ)2 + (L2 − |X|2)

|V| (3)

where Ψ := ∠X− ∠V, represents the angular difference.



B. Time to Serve the S bytes, TS(S,X,V)
Let TS represent the time required to service the user under

consideration, i.e., the time taken for communication of S
bytes. The distance between the BS (located at the center 0)
and the user evolves according to d(t) = |X + Vt|. Thus,
for any sample, one can equate the file size requirement S,
position, velocity pair X,V and total service time TS using

S =

∫ TS

0

Prx(t)dt = PZ

∫ TS

0

(
h2 + |X + Vt|2

)−β/2
dt. (4)

The above is true if there exists a finite TS which satisfies
the above integral. In the other condition, it is not possible to
complete the service of the user and we set TS(S,X,V) =∞.

Special Case β = 21: We always have conjugate roots in
the integral (as 〈X,V〉2 < |V|2

(
h2 + |X|2

)
) and thus,∫

1

h2 + |X + Vt|2 dt =
2

d
tan−1 〈X,V〉+ |V |2t

d

where d :=
√
|V |2(h2 + |X|2)− 〈X,V〉2. For TS <∞,

TS =
1

2|V |2

(
d tan

(
dS

PZ
+ tan−1 〈X,V〉

d

)
− 〈X,V〉

)
. (5)

By using linear approximation for tan (which would be
quite accurate keeping view of the small ratios of S/(PZ),
especially for the samples for which the call gets completed
in the cell of interest) after expanding using tan(x + y) =
tan(x) + tan(y)/(1 − tan(x) tan(y)) we get the following
simplification

TS ≈
S(h2 + |X|2)

PZ
. (6)

C. Handover Distributions

We consider an interesting scenario and illustrate a proce-
dure to calculate handover distribution. This procedure can
be applied to other scenarios as well (see [10]). We assume,
position of arrival X is uniformly distributed over B(0, D),
i.e., PX = U(B(0, D)). The area is so large that we can
assume all the inner cells to be stochastically identical and
hence can analyze one of them. Further, we also assume that
the magnitude and direction |X| and Xθ to be uniform and
independent of each other. The speed and direction of velocity
vector are independent and are uniformly distributed, i.e.,
PVθ = U [0, 2π] and P|V | ∼ U [0, Vmax] and are independent
of X. The file size S is exponentially distributed.

Cellular networks are characterized by regular hexagonal
cells. Any cell has six neighbors. Without loss of generality,
we consider cell 0 (see figure 2). Handovers occur because
of the arrivals in these six cells whose service could not be
completed before the user reaches the boundary of the cell 0.
Because of the symmetry, the handovers that occur from cell
2 (placed above the cell under consideration) to cell 0 will
be statistically same as those handovers that occur out of cell

1Path loss β = 2 simplifies the analysis and gives us a tractable solution.
Also, the value considered is reasonable since we consider small cells

0 towards cell 5. In general, we can see that all the possible
handovers that occur towards cell 0 are statistically same as
those that occurs out of cell 0.

We approximate the hexagonal cells by circular ones to
simplify the analysis. The probabilities that a call originated
in the interior and the boundary of cell 0, gets handed over
to a neighboring cell before completing its service are,

Pho,int = PS,X,V (T∂(X,V) < TS(S,X,V))

Pho,∂ = PhS,hX,V (T∂(X,V) < TS(S,X,V))

New calls arrive at rate λL (which for this example equals
λL2) while the handovers arrive at λhL rate. If the new call
arrivals and the handover arrivals reach the boundary before
completing their service, they have to be handed over to
one of the neighboring cells, respectively with probabilities
Pho,int, Pho,∂ . Because the handovers occurring into cell 0
are statistically same as those going out of cell 0, the rate of
handovers into cell 0, λhL, satisfies the following:

λhLPho,∂ + λLPho,int = λhL

and so λhL =
λLPho,int
1− Pho,∂

.

Hence the handover arrival rate λhL can be calculated if
the handover distributions PhXV are known. For the example
of uniform distributions, we claim the following about the
handover distributions. We include a sketch of the steps
towards the proof of this claim is available in the technical
report [10]2.
Claim 1 : The marginal distribution of X in PhXV is uniform
over the boundary ∂B(0, L). The marginal distribution of the
direction Vθ is also uniform, but for any given position X ∈
∂B(0, L) is concentrated uniformly on {〈X,V〉 < 0}. The
speed of handover calls |V | depend upon the cell size L and
tends to be a uniform distribution as the cell size L decreases to
zero. Thus, the angular difference Ψ is uniform on [0, 2π] for
new arrivals while it is uniform on [π/2, 3π/2] for handover
calls.

We use the above result and also assume |V | to be uniform
as we are dealing with small cells.

D. Service time :

The service time is the time spent by a server of cell
B(0, L) with the user. It is equal to the minimum of
the time taken to reach the boundary and the time taken
to serve S bytes and hence is given by, B(S,X,V) =
min{TS(S,X,V), T∂(X,V)}. whose first and second mo-
ments are given by,

bL1 =
1

λL + λhL
(λLES,X,V [EZ [B(S,X,V)]||X| < L]

+λhLE
h
S,X,V [EZ [B(S,X,V)]||X| = L]

)
. (7)

In the above ES,X,V represents expectation w.r.t. new call
distribution PSPX,V while ES,hX,V represents expectation

2We are working towards the proof.



w.r.t. handover call distribution PhSPhX,V . For the scenario
considered, for example,

Pho,int =

∫ ∞
0

∫ 2π

0

∫ L

0

∫ Vmax

0

1{T∂<TS}(|x|, |v|, (xθ − vθ), s)

d|v|
Vmax

d|x|
L

d(xθ − vθ)
2π

µexp−µsds

Pho,∂ =

∫ ∞
0

∫ 2π

π

∫ Vmax

0

1{T∂<TS}(L, |v|, (xθ − vθ), s+Bh)

d|V |
Vmax

d(xθ − vθ)
π

µexp−µsds.

E. Block and Drop probabilities

In this paper, we consider non-elastic traffic and hence
are interested in calculating the call block and call drop
probabilities: PB , PD. As discussed earlier, the cell is modeled
by an M/G/K/K queue and its service time is given by (7).
Using the theory of M/G/K/K queue, the condition for stability
of the system is that the load factor,

ρ(L) :=
(λL + λhL)bL1

K
< 1 (8)

and the busy probability is given by,

PBusy(L) =
aK/K!∑K
k=0 a

k/k!
; a(L) := (λL + λhL)bL1 . (9)

When K is constant for all the cell sizes, it is easy to see
that,

Lemma 1: arg maxL PBusy(L) = arg maxL a(L) �
BY PASTA property both the new call block and the call

drop due to handover fail probabilities, are given by3

PB = PBusy(L) and Pho,fail = PBusy(L). (10)

We now calculate the drop probability, PD, the probability
that a call picked-up is ever dropped before its service is
completed. It is easy to see that,

PD = Prob( Call Dropped | Call is picked up)

= Pho,int (Pho,D(1− PBusy) + PBusy) + (1− Pho,int) (11)

In the above, Pho,D represents the probability of call drop at
any of the future instances of handovers, given that the current
handover (first handover in the context of the above equation)
is successful. Because of the memoryless nature of S, this
probability does not depend upon the number of the handover.
Probability Pho,D can be calculated by first conditioning on
the event that the call is completed in the current cell (call it
as C) and then on the event that the call is picked up in the
next cell (call it as S). Note that Pho(Cc) = Pho,∂ and that

3When a call is not completed in the current cell, it invokes a handover
arrival to the next cell, which is modeled as a Poisson arrival. By PASTA,
handover fail probability, i.e., the probability that all servers in the next cell
are busy at the instance when user reaches the boundary of the current cell,
exactly equals PBusy .

Pho(S|Cc) = Pho,fail = PBusy. Thus, by conditioning

Pho,D = Pho( Call dropped ∩ C)
+Pho( Call dropped ∩ Cc)

= 0 + Pho,∂Pho( Call dropped |Cc)
= Pho,∂ (Pho( Call dropped ∩ Sc|Cc)

+Pho( Call dropped ∩ S|Cc))
= Pho,∂ (Pho,D(1− PBusy) + 1PBusy)

Solving
=

PBusyPho,∂
1− Pho,∂(1− PBusy)

and hence,

PD =
Pho,intPBusy

1− Pho,∂(1− PBusy)
. (12)

It is clear from equations (10), (12) that PD will usually be
greater than PB . But on the other hand, applications often
require much smaller PD than PB . This can be achieved by
purposefully not picking up a new call arrival with probability
say pl (even if the servers are free). In this case, all the calcula-
tions remain same after replacing λ with λpl. However the new
call block probability changes to, PB = pl + (1 − pl)PBusy.
Note here that by replacing λ with a smaller rate λpl, the busy
probability PBusy improves and hence improves PD. This can
alternatively be achieved by picking a new call only when at
least K1 out of K servers are free, where K1 > 1, while the
handover calls are picked up whenever there is a free server.
The analysis for this case can be done in a similar way.

F. Virtual Server Held up Time

Non-elastic traffic can be of two types; real time traffic
and non real time traffic (for example multimedia streaming).
The real time traffic (for example packetized voice) is usually
generated by sampling and converting the analog voice call
to discrete packets, generated at regular points of time over
the entire duration of the call. For these calls to be perceived
properly at the receiver, the most important criterion is that,
every burst of the packet has to reach the receiver as soon as
possible (for example the play-out buffer at the receiver should
never go below a certain level). This criterion is mainly taken
care by ensuring that the call is never dropped once picked-
up (i.e., by keeping drop probability as small as possible).
However it is not sufficient that the call keeps going, without
interruption. The more important thing is that the voice packets
are transmitted at sufficient rate. In case of a 1-dimensional
(1D) small cell scenario, for example a car moving on a street,
the user with high probability will pass close to the base
stations (example, pico base stations are mounted on street
infrastructure) and the transmit rate can be ensured. We have
addressed mobility in such 1-dimensional networks in [9]. In
2-dimension (2D), the base station typically covers a street
grid and the user could move in a direction such that he is
constantly away from the base stations (see for example user
A of figure 2). Thus, one needs to study, Tc, the virtual server
time. This is the actual time spent by the server to transmit
all the voice packets of the call. The time Tc is precisely
the sum of the patches of time, each of which start at the
beginning of a packet generation point and end at the time



when the transmission of the packet finishes. Even though a
server is dedicated to the user for the entire duration of the
call, only the fraction, Tc of the call time is utilized by the user.
The remaining fraction of time can be used by the server for
other applications, for example, delay insensitive data traffic
applications. Also, even in the case of non-real time traffic,
time Tc is an important parameter, as in this case, it signifies
the delay with which the information is received.

The random variable S in our model exactly represents the
total number of bytes of data generated by a non elastic call.
We assume that this data is entirely available at the beginning
of the call itself in contrast to real time traffic. However, as
the server would be dedicated to the user during the entire call
duration, one can still analyze Tc even when we assume all the
data is available at the beginning itself. The difference is just
that the data is transmitted in fragments of time in reality while
in our model these fragments are joined together. These two
situations can depict statistically similar quantities, especially
because of the small cell radius. Thus we call Tc as the virtual
server held up time and study its average behavior.

The call is completed in time Tc as the user moves across
the cells. With Epick representing the conditional expectation
conditioned on the event that the call is picked up and never
dropped before completion,

Epick[Tc] = Epick[Tc; call finished in cell 1]

+Epick[Tc; call not finished in cell 1]

= E[TS |TS < T∂ |; |X| < L](1− Pho,int) + Pho,int

(Epick[Tc; call finished in cell 2| not in cell 1]

+Epick[Tc; call not finished in cell 2 | not in cell 1])

= E[TS ;TS < T∂ ||X| < L](1− Pho,int)
+Pho,int(1− Pho,∂)

(E[T∂ |T∂ < TS ; ||X| < L] + E[TS |TS < T∂ ; ||X| = L])

+Pho,intPho,∂ (E[T∂ |TS > T∂ ; |X| < L]+

E[T∂ |T∂ < TS ; |X| = L] + Epick,ho[Tc])

= E[min{T∂ , TS}||X| < L]

+Pho,intE[min{T∂ , TS}||X| = L]

+Pho,intPho,∂Epick,ho[Tc] (13)

where Epick,ho[Tc] gives the conditional expectation of the
remaining time of the call conditioned on the event that a call
is once again handed over to the next cell. By memoryless
property of S, this does not depend upon the numbers of
cells that the call lasted previously. This can be calculated
by conditioning as before,

Epick,ho[Tc] = E[TS ;TS < T∂ ||X| = L](1− Pho,∂)

+Pho,∂ (E[T∂ ;T∂ < TS ||X| = L] + Epick,ho[Tc])

By simplifying,

Epick,ho[Tc] =
E[min{T∂ , TS}||X| = L]

1− Pho,∂

By combining,

Epick[Tc] = EPX ,PV ,PS [min{TS , T∂}]

+
Pho,intEPhX,V ,PS [min{TS , T∂}]

1− Pho,∂
. (14)

G. Optimal cell size via Numerical examples

Using all the expressions derived in the previous sections,
we would like to study the optimal cell size for different
scenarios. Various notions of optimality can be considered; we
design optimal cell size that minimizes the block probability,

L∗ = arg min
L
PB , (15)

and notice that L∗ also optimizes the Drop probability PD in
most of the cases. This is not surprising, considering that PD is
a function of PB . We design this cell size under the constraint
that the maximum total power required by the system is
constant. Let KL, PL represent the number of servers and
the transmit power used for cell size L. Then maximum total
power required is given by D2/L2KLPL (D2/L2 gives the
number of cells). To maintain this constant we propose to use

PL = P̄L2−γ and KL = K̄Lγ , where P̄ , K̄ are constants.

H. Numerical examples

The various performance measures derived in the previous
sections are computed using numerical methods and optimal
cell sizes are obtained using exhaustive search method. We
currently do not consider the effect of shadowing and fading
in simulations. The first example (Figure 3) deals with the
case of γ = 2, i.e, when PL = 10L2 and KL = 15. We set
D = 200, h = 10 λ = 50, µ = 30 and Bh = 5. We notice
that the optimal cell size (w.r.t. PB) is achieved at small cell
radii 8.1, 10.1 and 12.1 when Vmax respectively equals 05,
20 and 60. The drop probability PD is also minimized around
the same L∗. We notice that L∗ is increasing with increase
in Vmax, i.e., larger velocity profiles requires larger cell sizes.
From figure 4, the corresponding virtual server held up time
is also minimized around optimal cell radius L∗.6.0

Now we consider the case with γ = 2 in figure 5, i.e., with
KL = 0.0625L2 and PL = 500. We set D = 200, h = 15
λ = 0.012, µ = 10 and Bh = .4. It is interesting to note in
this case that the L∗ optimal for PB and PD is same, in fact it
is same (equal to 36m) for all the velocity profiles. Further, the
virtual server held up time E[Tc] is exploding with L in this
case and is quite large at the optimal L∗. This is the situation
similar to the one faced by user A of figure 2, in which the
calls are not dropped due to availability of large number of
servers, but useful information is transmitted at very small
rate. Thus, this scenario is not a practically useful scenario.

In Table I, we study the system performance at optimal
cell sizes corresponding to different values of γ. This example
clearly shows the trade-off that exists between increasing the
power or the number of servers with cell size L. For small
values of γ, the number of servers remain constant for all L,
while the power per transmission increases as square of L.
In this case, the optimal system has very good performance
in terms of the average virtual server held up time, the
handover probability Pho,∂ . Thus if the call is picked and is
not dropped, it gets completed very soon and hence the calls
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Fig. 3. Block, Drop probabilities
when PL = 10L2.
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versus L when KL = 0.0625L2.
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Fig. 6. Expected virtual server held
up time for KL = 0.0625L2.

occupy relatively lesser time of the server, which is very much
a welcome feature. However, the drop and block probability
performances are not good (see Table I, rows with γ = 0 and
γ = 0.5). With larger values of γ the contrast effect is seen.
As the number of servers increase with L, the block and drop
probabilities are very small. However in this case the calls
are held without dropping, forever, but useful information is
transmitted at very small rates. In fact we see that E[Tc] is
very large for these case (see rows with γ = 2 and γ = 1.5).
Thus for small values of γ the calls are completed very fast
(or utilize very small server time) at higher risks of being
dropped/blocked while for larger values of γ the calls are
rarely blocked/dropped however the useful transmission takes
place at very small rates. It seems reasonable to chose optimal
system with intermediate values of γ close to 1.

γ Vmax L∗ PB(L∗) PD(L∗) E[Tc](L∗) Pho,∂(L∗)
0 5 5.00 .15 0.036 3.9 0.18

0.5 5 9.00 2.1e−2 5.6e−3 6.2 0.20
1 5 15.00 6.05e−5 2.76e−5 16.2 0.32

1.5 5 13.39 1.72e−7 4.15e−7 93.6 0.71
2 5 12.24 8.0e−21 7.0e−20 337.5 0.89
0 30 6.00 .17 0.22 4.6 0.62

0.5 30 9.00 3.2e−2 5.5e−2 7.3 0.64
1 30 15.00 7.25e−4 2.02e−3 20.8 0.74

1.5 30 13.39 2.30e−5 2.30e−4 113.9 0.94
2 30 12.24 2.4e−7 1.2e5 523.5 0.98

TABLE I
OPTIMAL SYSTEM PERFORMANCE FOR VARIOUS γ FOR D = 200, h = 10,

K̄ = 1, λ = 50, µ = 30, Bh = 3 PL = 25L2−γ AND KL = Lγ

One important observation that we make from all the above
examples is that, the optimal cell size in 2D scenarios is less
sensitive to the maximum velocity the system has to support,
in comparison with the one dimensional scenarios (see [9]).
In [9], we showed that the optimal cell size increases with the
maximum possible velocity.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we study mobility in small cell networks. We
analyze the impact of frequent handovers and derive explicit
expressions for useful system metrics like call block and
call drop probabilities, average server held up times. Further
we use these expressions to arrive at optimal cell sizes for
various profiles of user velocities. While obtaining the optimal
cell size, to maintain the total power in the entire system
constant, we scale either the power per transmission or the
number of servers or both of them, with the cell size. We
observe that the optimal cell size is less sensitive to the
maximum velocity the system has to support in contrast to
the one dimensional scenarios (see [9]). Another important
(and dangerous) contrast that arises in 2D scenarios is the
possibility of systems with very small values of drop/block
probabilities, but, with almost zero useful transmission rates.
We showed the existence of such behavior via the concept
of average virtual server held up time. This possibility can
be avoided by scaling both the power per transmission and
the number of servers almost linearly with cell size, while
obtaining the optimal cell size.
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