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Abstract. We consider a multi-criteria control problem that arises in a
delay tolerant network with two adversarial controllers: the source and
the jammer. The source’s objective is to choose transmission probabilities
so as to maximize the probability of successful delivery of some content
to the destination within a deadline. These transmissions are subject to
interference from a jammer who is a second, adversarial type controller,
We solve three variants of this problem: (1) the static one, where the
actions of both players, u and w, are constant in time; (2) the dynamic
open loop problem in which all policies may be time varying, but inde-
pendent of state, the number of already infected mobiles; and (3) the
dynamic closed-loop feedback policies where actions may change in time
and may be specified as functions of the current value of the state (in
which case we look for feedback Nash equilibrium). We obtain some ex-
plicit expressions for the solution of the first game, and some structural
results as well as explicit expressions for the others. An interesting out-
come of the analysis is that the latter two games exhibit switching times
for the two players, where they switch from pure to mixed strategies and
vice versa. Some numerical examples included in the paper illustrate the
nature of the solutions.
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1 Introduction

We consider in this paper a delay tolerant network, i.e. a sparse network of mobile
relay nodes, where connectivity is very low. There is some source that transmits
a file to mobiles that are in the communication range. Each mobile is assumed
to be in range with the source at some instants that form a Poisson process. A
node that receives a copy of the file stores it so that it may transmit it to some
potential destinations that may search for a copy of the file. We consider two
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controllers whose goals are not aligned: the source and the jammer. They both
determine at each time the probability of transmission. Transmission at a time
t is successful if and only if the source attempts transmission while the jammer
is silent.

We consider three frameworks, which lead to three different games:
(1) The static one, where the actions of both players, that is the probabilities

of transmission and of jamming, u and w, respectively, are considered to be
constant in time;

(2) The dynamic open-loop problem. Here, all policies may be time varying,
but dependent only on the initial state. In solving the open-loop problem, we
first show that the game is equivalent (strategically) to a zero-sum differential
game, and then seek the saddle-point solution of that game.

(3) The dynamic closed-loop framework, where actions that may change in
time are allowed to depend on the current value of the state (the number of
mobiles with a copy of the file). In this case the underlying game is a genuine
nonzero-sum differential game, where the solution sought is the feedback Nash
equilibrium.

This work is another step in our effort of developing a control methodology
for delay tolerant networks, which we initiated with our paper [1]. In contradis-
tinction with the simple threshold structure of [1], we obtain here a much richer
set of possible structures for the equilibrium policies, exhibiting in some cases
multiple switching times between pure and proper mixed strategies.

The use of game theory for jamming problems. Jamming problems
are among the first capturing conflicts in networks that have been modeled
and solved using tools and the conceptual framework of game theory. The first
publications on these games go back almost thirty years with the pioneering work
[6] The question of the capacity achievable in channels prone to jamming was
one of the main concerns, and was thus naturally studied within the information
theory community, as for example in [7, 9]. For a recent survey on wireless games
that includes jamming games, see [12]. Jamming of specific wireless local area
networks were investigated in [11] who study the jamming of IEEE802.11 and
[10] who study the jamming of slotted ALOHA. Our current paper falls in this
category of papers by specializing to the context of DTNs.

The paper is organized as follows. The next section (Section 2) provides a
precise formulation of the problem, which is followed by Sections 3 and 4 which
discuss the static and dynamic cases, respectively. These are followed by Section 5
which includes a number of numerical examples, and the concluding remarks of
Section 6 concludes the paper.

2 Model and Problem Formulation

2.1 Model

In the model adopted in this paper, there are n relay mobile nodes, a source,
and a destination which is assumed to be static. The network serves as a channel



that enables the information to reach the destination. Whenever a relay mobile
meets the source, the source may forward a packet to it. We consider the two-hop
routing scheme [4] in which a mobile that receives a copy of the packet from the
source can only forward it if it meets the destination. It cannot copy it into the
memory of another mobile. The details of the basic model are as follows:

The source meets each relay node according to a Poisson process with a pa-
rameter λ. Each relay node meets the destination according to another Poisson
process, with parameter ν. The source attempts to maximize the probability that
a packet arrives successfully at a given destination by time ρ. A second trans-
mitter (jammer), however, tries to jam the transmission, and hence attempts
to minimize this probability. The jammer is assumed to be located close to the
source. Jamming relay nodes is a separate problem that will be considered later.
Note that we consider only two hop routing. Therefore jamming at the relays
means jamming when transmitting to the destination.

Let X(t), ut, wt denote, respectively, the fraction of mobiles with the mes-
sage, the source’s control, and the jammer’s control. Here ut is the probability
to transmit at time t if at that time the source meets a relay and wt is the
probability of jamming at time t. We assume that if jamming and transmission
occur simultaneously, then the transmitted packet is lost.

Let xt = E[X(t)] be the expected value of X(t). Then xt is generated by

ẋt = ut(1 − wt)λ(n − xt), (1)

with known initial condition x0 at t = 0, and this constitutes the system dy-
namics.

2.2 Performance Measure: Successful Delivery Probability

During the incremental time interval [t, t + dt), the number of copies of the
packet in the network is X(t)dt. Then the number of packets that the destination
receives during this time interval is a Poisson random variable with parameter
νX(t)dt. In particular, the probability of not receiving any copy of the packet
during [0, ρ], conditioned on X(t), is given by

P (T > ρ|X(t), 0 ≤ t ≤ ρ) = exp

(

−
∫ ρ

0

νX(t)dt

)

where T is the random variable describing the instant when the packet first
reaches the destination. Its expectation (over X(t)) gives the failure probability,
i.e. the complementary of the probability of successful delivery.

Instead of minimizing P (T > ρ), we will minimize a bound on that quantity:

P (T > ρ) = E

[

exp

(

−
∫ ρ

0

νX(t)dt

)]

≤ exp

(

−E

∫ ρ

0

νX(t)dt

)

(2)

where the inequality is obtained by applying Jensen’s inequality to the concave
function exp(−x). Minimizing the latter (and hence the upper bound on P (T >



ρ)) is equivalent to maximizing the quantity

J(u, w) :=

∫ ρ

0

νxtdt , (3)

which we will take as the utility function of the source.
We consider the mean field limit (when we have large number of nodes), in

which the randomness in the number of mobiles that have a copy of the nodes
as a function of time disappears (we obtain a deterministic time varying limit).
In this regime, the difference between the objective function (the delivery failure
probability) and the bound (2) vanishes. Indeed, the bound was obtained by
exchanging the order of expectation and exponent (using Jensen’s inequality),
but in the mean-field regime, Jensen’s inequality is obtained with equality since
the randomness vanishes.

2.3 Related Game Theory Concepts and Some Properties

Saddle-point, maximin and minimax policies: Let J(u, w) be the utility
function of the source, as introduced earlier by (3). We assume that the jammer
wishes to minimize this quantity and the source wishes to maximize it.

Let Πc be a set of policies for the controller (both source and relay mobiles)
and let Πj be a set of policies for the jammer. (We will introduce later specific
classes of policies.)

We say that u∗ ∈ Πc and w∗ ∈ Πj are saddle-point policies for the game
(J, Πc, Πj) if for every u ∈ Πc and w ∈ Πj we have1

J(u, w∗) ≤ J(u∗, w∗) ≤ J(u∗, w)

J(u∗, w∗) is then called the value of the game.
In a general zero-sum game saddle-point need not exist. In that case, we

are interested in the upper and lower values (V and V ) which are always well
defined:

V = inf
w∈Πj

sup
u∈Πc

J(u, w), V = sup
u∈Πc

inf
w∈Πj

J(u, w),

w∗ is optimal for the minimax problem if V = supu∈Πc
J(u, w∗). Given such a

w∗, the controller u∗ is a best response policy if V = J(u∗, w∗). Likewise, u∗ is
optimal for the maximin problem if V = infw∈Πj

J(u∗, w) , and given such a u∗,
w∗ is a best response policy if V = J(u∗, w∗).

A policy is said to be open loop if it does not depend on the state of the
system. It is said to be Markov (or a feedback policy) if it takes at time t an
action that is allowed to depend not only on t but also on the state at time
t. A pure policy is one for which the actions at all times are deterministic. For
example, a pure policy u for the source is a mixed strategy that takes as values

1 By some abuse of notation, we will be using u and w both as policies as well as the
realized values of these policies under the adopted information structures which also
characterize the sets of policies for the two players (controller and jammer).



only 0 or 1, with a possibility of switching between the two values, depending
on t and possibly also the state.2

A multiple-criteria game: We next introduce a multiple-criteria problem
(game) as follows. The source wishes to maximize with respect to u the function
Lu(x0, u, w), where

Lu(x0, u, w) = J(x, u, w) − µ

∫ ρ

0

utdt ,

and the jammer wishes to minimize with respect to w the function

Lw(x0, u, w) = J(x, ρ, u, w) + θ

∫ ρ

0

wtdt ,

where we have included x0 in the set of arguments of J (defined earlier by
(3)) to emphasize the dependence on the initial state. The pair (u∗, w∗) is a
Nash equilibrium for this multiple-criteria problem (nonzero-sum game) if u∗

maximizes Lu(x, ρ, u, w∗) over u ∈ Πc and w∗ minimizes Lw(x, ρ, u∗, w) over
w ∈ Πj .

Note that in the multi-criteria game, there is antagonism between the two
players (related to success probability), but yet it is not a zero-sum game because
each player has in addition a second term in his objective function, its own
energy cost. However, we can show that this nonzero-sum game is strategically
equivalent to a zero-sum game [3], as long as the underlying information structure
is open loop; hence every open-loop Nash equilibrium of the multi-criteria game
is a saddle-point equilibrium for that particular zero-sum game and vice versa.

A strategically equivalent zero-sum game: Let the information structure
be open loop for both players, and introduce the objective function

L(x, u, w) := J(x, u, w) − µ

∫ ρ

0

utdt + θ

∫ ρ

0

wtdt ,

which is obtained by adding θ
∫ ρ

0 wtdt to Lu or equivalently by subtracting

µ
∫ ρ

0
utdt from Lw. Let Gzs be the zero-sum game in which the source max-

imizes L(x, ρ, u, w) and the jammer minimizes it. Note that the addition and
subtraction of these additional terms have not changed the Nash equilibrium of
the multi-criteria game, because the first term does not depend on the control of
the source and the second term does not depend on the control of the jammer,

2 Note that this definition is somewhat unconventional, and is made to capture the
realization that the ‘actions’ of the players here are actually probabilities, and hence
if these probabilities take the extreme values, 0 or 1, and if this is true for all t, then
we call the underlying policies pure.



that is3

max
u

L(x, u, w) = max
u

Lu(x, u, w) + θ

∫ ρ

0

wtdt = [max
u

Lu(x, u, w)] + θ

∫ ρ

0

wtdt,

min
w

L(x, u, w) = min
w

Lw(x, u, w) − µ

∫ ρ

0

utdt = [min
w

Lw(x, u, w)] − µ

∫ ρ

0

utdt ,

where the first one holds for all open-loop w and the second one for all open-
loop u. Then clearly if (u∗, w∗) is an open-loop Nash equilibrium for (Lu,−Lw)
where both players are maximizers, it is also an open-loop Nash equilibrium for
(L,−L), and hence an open-loop saddle-point of L (that is game Gzs). Likewise,
any open-loop saddle-point solution of the zero-sum game Gzs is also an open-
loop Nash equilibrium of (L,−L), and hence of (Lu,−Lw).

2.4 The Constrained Problem: Energy Constraints

We introduce the constrained game as finding the saddle-point of J(x, ρ, u, w)
subject to the following constraints on the source and the jammer controls

∫ ρ

0

utdt ≤ Ds, and

∫ ρ

0

wtdt ≤ Dj , respectively.

This constrained problem turns out to be related to the open-loop zero-sum
game in the following sense: (u∗, w∗) is a saddle-point if and only if u∗ is optimal
against w∗ and vice versa. By the Karush-Kuhn-Tucker (KKT) conditions, there
exists µ ≥ 0 such that u∗ is optimal against w∗ if u∗ achieves the maximum of
Lµ(x, u, w∗), where

Lµ(x, u, w) = J(x, u, w) − µ(

∫ ρ

0

utdt − Ds).

Similarly, there exists θ ≥ 0 such that w∗ is optimal against u∗ if w∗ achieves
the minimum of Lθ(x, u∗, w), where

Lθ(x, u, w) = J(x, u, w) + θ(

∫ ρ

0

wtdt − Dj)

Hence (u∗, w∗) is an equilibrium in the constrained problem if it is a saddle-point
in the zero-sum game

L(x, u, w) = J(x, u, w) − µ

∫ ρ

0

utdt + θ

∫ ρ

0

wtdt for some µ and θ.

As indicated earlier, we will take the success delivery probability as a perfor-
mance measure, so that

J(x, u, w) =

∫ ρ

0

νxtdt ,

where xt is generated by (1), with initial state x0.

3 This argument is not valid if the control policies depend on the state, that is if they
are for example feedback policies.



3 The Static Game

We first restrict the analysis to u and w that are constants in time, in which
case we have the unique solution of (1), with initial state x0, given by

xt = n + (x0 − n) exp(−λκt) (4)

where κ := u(1 − w). Then the objective function of the equivalent zero-sum
game can be expressed as:

L(x0, u, w) = ν

∫ ρ

0

xtdt − ρ(µu − θw) = −ν(n − x0)F (κ) + νnρ − ρ(µu − θw) ,

where

F (κ) :=
1 − exp(−κλρ)

λκ
.

With F ′ denoting the first derivative of F (κ) with respect to κ, and F ′′ its second
derivative, we readily have, for κ ∈ (0, 1]:

F ′(κ) =
−1 + (1 + κλρ) exp(−κλρ)

λκ2

F ′′(κ) =
−κ3λ2ρ2 exp(−κλρ) + 2κ − 2κ(1 + κλρ) exp(−κλρ)

λκ4

=
2 − (2 + 2κλρ + κ2λ2ρ2) exp(−κλρ)

λκ3

>
2 − 2 exp(κλρ) exp(−κλρ)

λκ3
= 0

and for κ = 0,

F ′(0) = −λρ2

2
, F ′′(0) =

λ2ρ3

3
.

Hence F (κ) is strictly convex in κ, on [0, 1], which implies that L(x0, u, w) is
strictly convex in κ = u(1 − w) as long as x0 < n. Since the additional terms in
L that depend on u and w are linear, this readily implies that for each x0 < n
L(x0, u, w) is strictly concave-convex in the pair (u, w) on (0, 1] × [0, 1), and
concave-convex on the closed square [0, 1] × [0, 1]. Hence, we have a concave-
convex game defined on a closed and bounded subset of a finite-dimensional
space, which is known to admit a saddle-point solution [3].This result is now
captured in the following theorem, which also addresses the uniqueness and
characterization:

Theorem 1 Assume throughout that x0 < n. Then:

(i) The static zero-sum game has a saddle-point on [0, 1] × [0, 1], and it is
unique.

(ii) If ν(n − x0)ρλ ≤ 2µ, (u∗ = 0, w∗ = 0) is the unique saddle-point.
(iii) The game cannot have a saddle-point with w = 1.
(iv) If ν(n − x0)ρλ > 2µ, the unique saddle-point is in (0, 1] × (0, 1).



Proof.

i) As stated prior to the statement of the theorem, existence follows from
a standard result in game theory. since we have a concave-convex game.
Uniqueness will follow from the proofs of parts (ii) and (iv) below, carried
out separately in two regions of the parameter space.

ii) Let M(u) := −ν(n − x0)F (u) − ρµu , and note that M ′(u) = −ν(n −
x0)F

′(u) − µρ . Using the earlier expression for F ′(0), M ′(0) = ν(n −
x0)ρ

2λ/2 − µρ and thus M ′(0) ≤ 0 under the given condition. Further,
since F ′′(u) > 0 for all u, F ′(u) is an increasing function of u and hence
M ′(u) is decreasing for all u, which means that

M ′(0) < 0 implies M ′(u) < 0 for all u > 0. ,

and hence that M(u) attains its maximum uniquely at u = 0. This means
that u = 0 is the unique best response to w = 0. Further, since L(x0, 0, w) =
νx0ρ + ρθw, the unique minimizing response to u = 0 on [0, 1] is w = 0.
Hence, (0, 0) is a saddle-point solution, and by the ordered interchangeability
property of multiple saddle-points and the uniqueness of responses in this
case, there can be no other saddle-point.

iii) This readily follows from the observation that the unique maximizing re-
sponse to w = 1 is u = 0 while the unique minimizing response to u = 0 is
w = 0. Hence w = 1 cannot be part of a saddle-point.

iv) From part (i), we already know that there exists a saddle-point under this
condition. Suppose that the saddle-point is not unique, and let (u∗, w∗)
and (ũ, w̃) be two such solutions. By ordered interchangeability of multiple
saddle-points, (ũ, w∗) and (u∗, w̃) are also saddle-point solutions. We know
from part (iii) that w∗ 6= 1, w̃ 6= 1, and hence under each of them the
objective function is strictly concave in u, which implies that the only way
for both u∗ and ũ to be optimal responses to w∗ (as well as w̃)) is if they
are equal. Hence, u∗ has to be unique. Now, if u∗ 6= 0, then L(x0, u

∗, w)
is strictly convex in w, and hence the optimal response by the jammer is
unique; hence w∗ = w̃ if u∗ 6= 0. This then leaves out only the case u∗ = 0
not covered. We already know from the proof of part (ii) that the unique
minimizing response to u = 0 on [0, 1] is w = 0, and under the given
condition u = 0 is not a maximizing response to w = 0 since M ′(0) > 0.
Hence, u∗ = 0 is ruled out. What we then have is that the saddle-point
solution (u∗, w∗) is unique, and necessarily u∗ ∈ (0, 1] and w∗ ∈ (0, 1). �

We now further elaborate on the case when the saddle-point is inside the
square, which we know from part (iv) of the Theorem that it happens only when
the condition ν(n − x0)ρλ > 2µ holds. We also know that for an inner saddle-
point solution, since the game kernel is strictly concave-convex, and jointly con-
tinuously differentiable, a necessary and sufficient condition is satisfaction of the
stationarity conditions. Toward this end, let

K(κ) := −ν(n − x0)
dF (κ)

dκ
= −ν(n − x0) ×

−1 + (1 + κλρ) exp(−κλρ)

λκ2



Then, the inner saddle-point solution (u∗, w∗) uniquely solves

dL(x, u∗, w∗)

du
= 0,

dL(x, u∗, w∗)

dw
= 0 ,

which can be written as

K(κ)(1 − w) − ρµ = 0, −K(κ)u + ρθ = 0.

We thus conclude that θ(1 − w∗) = µu∗ , which leads to

κ∗ = u∗(1 − w∗) = (u∗)2µ/θ or u∗ =
√

θκ∗/µ

Finally, substituting this into the second stationarity condition above leads to a
single equation for κ∗ as below: K(κ∗)

√
κ∗ = ρ

√
θµ , which we know admits a

unique solution in (0, 1). u∗ and w∗ are then obtained from

u∗ =
√

θκ∗/µ and w∗ = 1 − (µ/θ)u∗ .

4 The Dynamic Game

We now return to the original dynamic game, and discuss derivation of the
equilibrium solution, first for the case of open-loop information and following
that for the closed-loop feedback case.

4.1 Open-Loop Information

As discussed earlier, in the open-loop case, every Nash equilibrium of the original
differential game is also saddle-point equilibrium of a related strategically equiv-
alent zero-sum differential game. Following the standard derivation of open-loop
saddle-point solution [3], we have the single Hamiltonian

H(u, w; x, p) = −µu + θw + νx + pu(1 − w)λ(n − x), (5)

which will be maximized over u ∈ [0, 1] and minimized over w ∈ [0, 1]. Here p is
the co-state variable, which satisfies the associated co-state equation:

ṗ = −∂H

∂x
= pu(1 − w)λ − ν , p(ρ) = 0 , (6)

which constitutes a two-point boundary value problem along with the original
state equation

ẋ = u(1 − w)λ(n − x) . (7)

The source will be maximizing H , and the jammer will be minimizing the same,
and if exists we seek a saddle-point solution (u∗, w∗) for the game, which nec-
essarily will also be a saddle-point solution for the Hamiltonian for each t, that
is

max
u∈[0,1]

H(u, w∗; x, p) = min
w∈[0,1]

H(u∗, w; x, p) = H(u∗, w∗; x, p) .



Now, maximizing H(u, w; x, p) over u ∈ [0, 1] for each w ∈ [0, 1], and mini-
mizing the same over w ∈ [0, 1] for each u ∈ [0, 1] we obtain the complete set of
solutions:

arg max
u∈[0,1]

H(u, w; x, p) =







1 if p(1 − w)λ(n − x) > µ
0 if p(1 − w)λ(n − x) < µ

[0, 1] if p(1 − w)λ(n − x) = µ
(8)

arg min
w∈[0,1]

H(u, w; x, p) =







1 if puλ(n − x) > θ
0 if puλ(n − x) < θ

[0, 1] if puλ(n − x) = θ
(9)

Since p(ρ) = 0, the unique saddle-point of the Hamiltonian at the terminal
time t = ρ is clearly u∗ = w∗ = 0. And clearly, by continuity, the same holds in
some left neighborhood of ρ. Integrating the co-state equation backwards from
t = ρ with u = w = 0, we obtain p(t) = ν(ρ − t). Note that u∗(t) = w∗(t) = 0
is a valid solution as long as

p(t)λ(n − xt) < µ , (10)

and the first time (in retrograde time) this is violated will determine the switch
time from u∗ = 0 to some other action for the source. Further note that it is
the inequality associated with the source and not the one associated with the
jammer that will determine the switching time (in retrograde time) because the
LHS of the inequality associated with the jammer, (9), is zero as long as u = 0.
We denote this switching time by t̄s,

t̄s := sup{t ≤ ρ : ν(ρ − t)λ(n − xt) < µ}

When θ > µ, there exists another threshold ts such that during the interval
[ts, t̄s],

µ ≤ p(t)λ(n − xt) < θ

and hence from (8) and (9) u∗ = 1 while w∗ = 0 during [ts, t̄s].
The above two switch times also depend on xt and p(t), which in turn are

generated under the players’ actions in the earlier stages of the game. Another
observation worth pointing out is that it is not possible for w∗(t) = 1 for any t,
because this would imply that u∗(t) = 0, which in turn implies that w∗(t) = 0,
a contradiction.

All this reasoning leads to the following theorem which captures the saddle-
point solution to the open-loop differential game.

Theorem 2 (i) If θ > µ, there exist two switch times ts, t̄s with ts < t̄s ≤ ρ
and there exists a saddle-point solution given by

u(t) =







θ
m(t) when t < ts
1 when ts < t < t̄s
0 when t ≥ t̄s

and w(t) =







1 − µ
m(t) when t < ts

0 when ts < t < t̄s
0 when t ≥ t̄s.



(ii) When θ ≤ µ, there exists a single switch time ts such that for t > ts, the
saddle-point solution dictates both players to play u∗(t) = w∗(t) = 0, and
for t < ts

u∗(t) =
θ

m(t)
, w∗(t) = 1 − µ

m(t)
where

m(t) := p(t)λ(n − ξ(t)),

with p and ξ solving the coupled set of mixed boundary differential equa-
tions:

ξ̇ =
θµ

p2λ(n − ξ)
, ξ(0) = x0 ; ṗ =

θµ

pλ(n − ξ)2
− ν , p(ts) = ν(ρ − ts)

and ts is solved from m(ts) = µ.

Proof : Please see the Appendix, where also the computation of the two switch
times, ts, t̄s, are discussed. �

Remarks: The following are some observations on the saddle-point solution
(equivalently Nash solution) obtained in Theorem 2:

– It is an open-loop Nash equilibrium, i.e., the policies obtained depend only
upon the time t elapsed from the birth of the message and not on the state
x, the number of already infected messages.

– When µ > θ, i.e., when the power constraint on the source is higher than that
on the jammer, the jammer and source are active during the same period
and switch off at the same time threshold (ts of Theorem 2). In a way the
jammer is dominating here as it has bigger power resources and hence keeps
jamming whenever the source is active.

– When θ > µ, i.e., when the power constraint on the jammer is high, the jam-
mer is forced to switch off even when the source is active (at time threshold
ts of Theorem 2). The source continues being active for a longer time, until
time threshold t̄s. In fact after ts, the policy is similar to situation with-
out jammer ([1]): the source always infects the contacted mobiles till the
threshold t̄s after which it never infects any further mobiles.

– During the initial time interval, i.e., in the interval [0, ts] (when the policies
are equalizing in nature), the source’s probability of transmitting is high
whenever the jammer’s probability of jamming is low and vice versa.

4.2 Closed-Loop Feedback Information

Here we have to stay with the non-cooperative game framework, and seek for
Nash equilibria (NE). Let V u and V w be the value functions for the two play-
ers, where again player u is maximizer and Player w is minimizer. Assuming
that these value functions are continuously differentiable jointly in (x, t) (they
can even be piecewise continuously differentiable solutions with possibly a finite



number of discontinuities in the derivative), the associated HJB equations are
([3]):

∂V u

∂t
+ maxu∈[0,1]

[

∂V u

∂x
u(1 − w∗)λ(n − x) + νx − µu

]

= 0 (11)

∂V w

∂t
+ minw∈[0,1]

[

∂V w

∂x
u∗(1 − w)λ(n − x) + νx + θw

]

= 0 (12)

with boundary conditions V u(ρ, x) ≡ V w(ρ, x) ≡ 0 where (u∗, w∗) is a NE. The
corresponding feedback policies are:

u∗(x, t) = arg max
u∈[0,1]

[

∂V u

∂x
λu(1 − w∗)(n − x) − µu

]

(13)

w∗(x, t) = arg min
w∈[0,1]

[

∂V w

∂x
λu∗(1 − w)(n − x) + θw

]

(14)

Using these two dynamic programming equations, one can easily establish the
following two lemmas.

Lemma 1. Any feedback Nash equilibrium (NE) will feature a jammer policy
taking values only in the semi-open interval [0, 1).

Proof : If w∗ was 1, at some (t, x), then, from equation (13) the corresponding
optimal controller would be u∗ = 0. This in turn implies from equation (14) that
w∗ = 0, which is a contradiction. �

Lemma 2. If νλ(n − x0)ρ < µ then at NE, u∗ = w∗ ≡ 0, i.e., the optimal
policies of both the jammer and the source are to never jam/transmit.

Proof : From the pair of HJB equations (11) and (12), if it is possible to make
the point-wise optimizers in both the Hamiltonians equal to zero, the solution
of both PDEs would have been V u(x, t) = V w(x, t) = νx(ρ − t) for all x, t. And
this is exactly the case under the given hypothesis as for any x ∈ [x0, n], t ∈ [0, ρ]
and for any w ∈ [0, 1],

∂V u

∂x
u(1 − w)λ(n − x) = ν(ρ − t)(1 − w)λ(n − x) < νρλ(n − x0) < µ

and hence u∗ ≡ 0, and thus from equation (14) w∗ ≡ 0 �

The first lemma rules out the possibility of pure-strategy NE with nonzero
jammer policy.4 What this leaves as possibility is a NE which is 1) completely
inner (or completely mixed NE, i.e., where both players’ policies take values in
the open interval (0, 1)) for some states and time and 2) with w∗ = 0 for the

4 Again, by pure strategy here we mean one that does not take the extreme values 0
or 1, for both players. A mixed-strategy NE in this context is one where at least one
player’s policy takes values in the open interval (0, 1) for some time and state.



rest of the states and time. Lemma 2 gives the condition under which the second
situation always (for all states and time) happens. We now consider the case in
which this condition is negated, i.e., henceforth we assume that νλ(n−x0)ρ > µ.
We show the existence of a switching time until which the first possibility occurs
and beyond which the second scenario (that of w∗ = 0) occurs.

Let us consider the first possibility. This would happen if the policies would
actually be equalizer rules, with u∗ ∈ (0, 1) making the expression to be min-
imized on the right-hand-side of (14) independent of w, and simultaneously
w∗ ∈ (0, 1) making the expression to be maximized on the right-hand-side of
(13) independent of u. Such a (u∗, w∗) would be the solution of the fixed point
equations:

∂V u

∂x
λ(1 − w∗)(n − x(t)) = µ (15)

and

∂V w

∂x
λu∗(n − x(t)) = θ. (16)

If there exist such solutions, then the HJB equations will be simplified to

∂V u

∂t
+ νx = 0 ,

∂V w

∂t
+ νx + θ1{u∗>0} = 0; (17)

V u(ρ, x) = 0 = V w(ρ, x) for all x.

The simplification in the second PDE is obtained using (16). For future reference
we note that we would have arrived at these PDEs if both u and w were taken
to be identically zero–a property we will have occasion to utilize shortly.

One can easily solve and obtain the solution V u(t, x) = νx(ρ − t) and hence
that ∂V u/∂x = ν(ρ− t). Hence the objective function in (13) is non-positive for
all t > tc(x), where

tc(x) :=
ρνλ(n − x) − µ

νλ(n − x)
and hence u∗(x, t) = 0 for all t ≥ tc(x).

This in turn yields from equation (14) that w∗(x, t) = 0 for all t ≥ tc(x). Now
the second PDE in (17) can be solved:

V w(t, x) = θ(tc(x) − t)1{t<tc(x)} + νx(ρ − t).

Both PDEs can be brought to the above simplified form and hence the simplified
solutions of the fixed point equations (15) and (16) can be obtained for all
t ≤ tc(x). By definition of tc, whenever t < tc(x), the fixed point equation (15)
can be satisfied with a w∗ ∈ (0, 1) if we assume µ/θ − λ(ρ − tc(x0)) > 1 as then

∂V w(t, x)

∂x
λ(n − x) =

(

ν(ρ − t) − µθ

νλ(n − x)2

)

λ(n − x)

> µ − µθ

ν(n − x)
= θ

(µ

θ
− λ(ρ − tc)

)

> θ



for all (t, x) with t < tc(x). Under this assumption, the fixed point equation (16)
can also be satisfied with 0 < u∗ < 1. Thus we have

Theorem 3 Under the assumption µ/θ − λ(ρ − tc(x0)) > 1, the closed-loop
mixed strategy NE exists with the optimal state trajectory given as the solution
of the following ODE:

�

x= f(x, t) with f(x, t) :=
µθ(n − x)

(ρ − t)(ν2λ(ρ − t)(n − x)2 − µθ)
1{t≤tc(x)}.

and the optimal controls are given by,

u∗(t) =
θ1{t≤tc(xt)}

λ(n − xt)
(

ν(ρ − t) − µθ

νλ(n−xt)2

)

w∗(t) =

(

1 −

µ

ν(ρ − t)λ(n − xt)

)

1{t≤tc(xt)}. �

Optimal controls for larger values of θ. Now we consider the cases that
may not satisfy µ/θ−λ(ρ− tc(x0)) > 1. We may not find a w∗ ≤ 1 that satisfies
the fixed point equation (16) for all t ≤ tc. Let us start with the extreme case:
assume θ is very large (θ >> µ) such that the fixed point equation can not be
satisfied for all (x, t) with t ≤ tc(x). In this case, one can easily verify that the
jammer’s optimal strategy is to never jam (i.e., w∗ ≡ 0) and the source’s optimal
policy is

ū(t, x) := 1{λ(n−x) dV̄ u

dx
>µ}

where V̄ u is the solution of the PDE

dV̄ u

dt
+ νx +

(

λ(n − x)
dV̄ u

dx
− µ

)

ū(t, x); V̄ u(ρ, x) = 0 (18)

and the optimal state trajectory x∗ is the solution of
�

x (t) = λ(n − x)ū(t, x).
The corresponding Hamiltonian PDE for the jammer will be

dV̄ w

dt
+ νx + ū(t, x)λ(n − x)

dV̄ w

dx
= 0. (19)

Thus, a sufficient condition for the optimal jammer policy to be zero is that

dV̄ w

dt
λ(n − x)ū(t, x) < θ for all (x, t). (20)

This condition can only be verified on numerical examples.
Remark : The PDE solutions V̄ u, V̄ w are both equal to νx(ρ − t) for all

(x, t) with t > tc(x) (the boundary condition is at left boundary t = ρ). Thus,
ū(t, x) = w̄(t, x) = 0 for all (x, t) with t ≤ tc(x). �



Continuing further, consider now the case when (20) is not true for some
(x, t). Then there exists an 0 ≤ t̄c(x) ≤ tc(x) such that,

t̄c(x) = inf
t<tc(x)

{

dV̄ w

dx
ū(t, x)λ(n − x) > θ

}

. (21)

Let Ṽ u, Ṽ w represent the solutions of the PDEs,

dṼ u

dt
+ νx +

(

λ(n − x)
dṼ u

dx
− µ

)

ū(t, x)1{t̄c(x)≤t<tc(x)} = 0; Ṽ u(ρ, x) = 0

dṼ w

dt
+ νx + ū(t, x)λ(n − x)

dṼ w

dx
1{t̄c(x)≤t<tc(x)} + θ1{t<t̄c(x)} = 0; Ṽ w(ρ, x) = 0

Then the optimal controls will be given by,

u∗
t : = ũ(t, x∗

t ) with ũ(t, x) := ū(t, x)1{t≥t̄c(x)} + 1{t<t̄c(x)}
θ

dṼ w

dx
λ(n − x)

(22)

w∗
t : = w̃(t, x∗

t ) with w̃(t, x) := 1{t<t̄c(x)}

(

1 −

µ
dṼ u

dx
λ(n − x)

)

(23)

where x∗
t is now the solution of the ODE,

�

x= λ(n − x)ũ(t, x)(1 − w̃(t, x)).

Remark. The PDE solutions (Ṽ u, Ṽ w) equal to (V̄ u, V̄ w) for all (x, t) with
t > t̄c(x). Further, the solution can be obtained numerically. �

Remarks: The following are some observations on the closed-loop feedback NE
policies:

– The solution is a genuine closed-loop feedback NE, i.e., the policies depend
both upon the time t elapsed from the birth of the message and upon the
state x, the number of already infected messages.

– The nature of these controls is exactly the same as that in the case of open
loop controls.
• When µ/θ − λ(ρ − tc(x0)) > 1 (the case of Theorem 3), i.e., when the

power constraint on the source is higher than that on the jammer, the
jammer and source are active during the same period and switch off
at the same time threshold (tc(x),). The jammer is dominating even in
closed-loop strategies, as it has bigger power resources and hence keeps
jamming whenever the source is active. The switch off threshold tc, unlike
in the case of open loop strategies, also depends upon the number of
infected mobiles, x.

• When the power constraint on the jammer is high, the jammer is forced
to switch off even when the source is active (at time threshold t̄c(x)
given by (21)). The source continues being active for a longer time, till
time threshold tc(x). In fact after t̄c(x), the policy is similar to situation
without jammer ([1]): the source always infects the contacted mobiles
till the threshold t̄s after which it never infects any further mobiles.



5 Numerical Examples

We now compute the optimal policies obtained in the previous section for the
closed-loop case for some numerical examples and verify the same using HJB
equations. For example, to verify that (u∗, w∗) is a NE, we obtain a second set
of PDEs by replacing the optimal value in the Hamiltonians of (11), (12) with
the values evaluated at u∗, w∗ respectively. We compare the solutions of this
new set of PDEs with that of the HJB solutions.

The two sets of PDE solutions are compared in Figure 1. In Figure 1 the thick
lines represent the solution of the simplified HJB equations (17) while thin dotted
curves represent the corresponding ones of the PDEs with the optimal policies.
We note that the two trajectories almost match, thereby reinforcing the existence
of Mixed strategy NE. We also plot the optimal policies as a function of time in
Figure 2. It is interesting to observe that the jammer jams with higher probability
in the beginning while the probability, with which the source transmits, increases
with time till it reaches the switching threshold. This behavior could be because,
whenever the jammer jams with large probability, the source better attempt with
smaller probability and use the resources at some other time point. Further both
the jammer and the source do not transmit after the switching threshold. Note
that this threshold is given by inft{t > tc(x

∗
t )} where x∗

t is the optimal state
trajectory.
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Fig. 1. HJB solutions versus PDE Solu-
tions at the computed NE
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Fig. 2. Optimal Controls

We conclude this section with an example which considers two values of θ
in Figures 3 4, 5 and 6. For θ = 9, the condition of Theorem 2 is satisfied and
hence the optimal control is given by Theorem 2. For θ = 200, we compute the
optimal policies using the procedure explained and verify the same by showing
that the optimal policies satisfy the HJB equations given earlier in this section.
We plot the optimal policies for both cases in Figure 4 while both optimal
state trajectories are plotted in Figure 3. In this example, the switching period
tc(x0) ≈ 1981 is very close to ρ = 2000 and hence in both cases the source is
active for almost all the time. We notice that with large θ, there exists another



switching time t̄c ≈ 1698 beyond which the source is completely active, while
the jammer is completely inactive. For small θ t̄c coincides with tc. And before
this switching time the optimal policies are always mixed in nature (equalizer
rules) for all the cases. We finally verify that the optimal policies satisfy the HJB
equations and the corresponding PDE solution is plotted in Figure 5 for large θ.
Both the switching periods tc, t̄c , when θ = 200, are plotted as functions of x in
Figure 6. We also plot the two optimal state trajectories in Figure 3. For larger
values of θ the jammer is constrained more and hence the infected population
size at any point in time is bigger with larger θ.
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6 Conclusions

We have considered a multi-criteria control problem that arises in a delay tol-
erant network with two adversarial controllers: the source and the jammer. The
source’s objective was to choose transmission probabilities so as to maximize
the probability of successful delivery of some content to the destination within a
given time interval, and the jammer’s objective was to cause collisions. We con-
sidered two types of information structures; the closed loop and the open loop.
In the closed loop structure we assume both the jammer and the source have
the knowledge of the current number of mobiles with a copy of the message and
in this case the game is a genuine nonzero-sum differential game. In the open
loop structure they do not have such knowledge and the game becomes strate-
gically equivalent to a zero-sum differential game. The structure of the policies
are similar for both types of information structures. In both cases, the optimal
policies have two or one switch time(s) depending upon the energy constraints
of the source and the jammer. When the jammer has a tighter constraint on
its energy resources than the source, the policies have two switch times. Before
the first switch time, both the source and jammer policies are inner (i.e., the
transmission probabilities are not one of the extreme cases, 0 or 1) and are given
by equalizer policies. After the first switch time, the jammer switches off and
the source continues transmitting at maximum probability and after the second
switch time, both the source and jammer are off. When the source has a tighter
constraint on its energy resources than the jammer, there exists only one switch



time before which both use inner equalizer policies and after which both are
switched off.
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6. T. Başar, “The Gaussian test channel with an intelligent jammer,” IEEE Trans.
Inform. Theory, 29(1):152-157, Jan. 1983.

7. M. Medard, “Capacity of correlated jamming channels,” Allerton Annual Conf.
on Comm., Control and Computing, 1997.

8. S. Shafiee and S. Ulukus, “Capacity of multiple access channels with correlated
jamming,” MILCOM, vol. 1, pp. 218-224, Oct. 2005.
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Appendix : Proof of Theorem 2

Case 1: θ > µ: In the interval [0, ts], both u∗ and w∗ are simultaneously inner
(i.e., have values in (0,1)). For this to happen, we need equalizer policies, i.e., u∗

should make Hamiltonian (5) independent of w and w∗ should make the same
Hamiltonian independent of u simultaneously. Thus,

u(t) =
θ

m(t)
and w(t) = 1 − µ

m(t)
where m(t) := p(t)λ(n − x(t)).

In the above, p(t) and x(t) are the co-state and state trajectories for the saddle-
point that we are constructing and these are obtained in retrograde while con-
structing the saddle-point policy. The equalizer policies must be in open interval
(0, 1) and hence for all t < ts,

m(t) > max{θ, µ} = θ.

Thus ts is given by
ts = inf{t : m(t) ≤ θ}

or by continuity it satisfies m(ts) = θ. Substituting the policies back in the state
and co-state equations, the state and co-state trajectories in the interval [0, ts]
are obtained by solving the ODE’s:

ẋ =
µθ

λp2(n − x)
with x(0) = x0 (24)

ṗ =
µθ

pλ(n − x)2
− ν with p(ts) = pts

. (25)

where the expression for pts
will be given shortly.

In the interval [ts, t̄s], u∗ = 1 and w∗ = 0 and µ < m(t) ≤ θ and hence the
co-state trajectory can be solved for this interval as

p(t) = c(t̄s)e
t + ν with c(t) := e−t (pt̄s

− ν) for all t ∈ [ts, t̄s], (26)

where the expression for pt̄s
will also be given shortly. Now pts

is calculated in
terms of pt̄s

as:

pts
= c(t̄s)e

ts + ν = ets−t̄s (pt̄s
− ν) + ν.



The state trajectory in this interval would be,

x(t) = n − (n − x(ts))e
−λ(t−ts) for all t ∈ [ts, t̄s]. (27)

For all t > t̄s u∗(t) = 0 = w∗(t). Thus solving backwards,

p(t) = ν(ρ − t) and x(t) = x(t̄s) for all t ∈ [t̄s, ρ].

Thus,

pt̄s
= ν(ρ − t̄s) and hence pts

= ets−t̄s (ν(ρ − t̄s) − ν) + ν. (28)

Further,
m(t) = λν(n − x(t̄s))(ρ − t) for all t ∈ [t̄s, ρ]

and hence m(t) is strictly decreasing for t beyond t̄s, i.e., in the interval [t̄s, ρ].
It is possible that there can be no t ≤ ρ for which m(t) = µ and in this case
we define t̄s = ρ. In the other case we define t̄s as the time which satisfies the
equation m(t̄s) = µ, i.e.,

λν(n − x(t̄s))(ρ − t̄s) = µ.

From (27),
x(t̄s) = n − (n − x(ts))e

−λ(t̄s−ts)

and hence

λν(n − x(ts))e
−λ(t̄s−ts)(ρ − t̄s) = µ. (29)

From (26) and (27) for all t ∈ [ts, t̄s],

m(t) = λc(t̄s)e
(1−λ)t(n − (xts

))eλts + λν(n − x(ts))e
−λ(t−ts)

= λν(n − x(ts))
(

e−(t̄s−t)(ρ − t̄s − 1) + 1
)

e−λ(t−ts) (30)

Further at ts, m(ts) = θ and hence we get the second equation in terms of ts
and t̄s:

m(ts) = λν(n − x(ts))
(

(ρ − t̄s − 1)ets−t̄s + 1
)

= θ (31)

The thresholds ts and t̄s are obtained by solving (29) and (31), and by further
using the solutions of the ODEs (24) and (25) with boundary condition (28).
Case 2: µ ≥ θ: The solution can be obtained as in the previous case but now
with t̄s = ts. With µ ≥ θ, at ts m(t) = max{µ, θ} = µ and hence it is not possible
for u∗ to be 1. Thus the solutions are obtained by solving the joint ODEs (24)
and (25) where ts is obtained from (29) after replacing t̄s = ts. �


