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ABSTRACT
Semiblind/blind equalizers are believed to work unsatisfactorily
in fading MIMO channels compared to training based methods,
due to slow convergence or high computational complexity. In
this paper we revisit this issue. Defining a ’composite’ channel
for each equalizer, we compare the three algorithms based on the
capacity of this channel. We show that in Ricean (with Line of
sight, LOS) environment semiblind/blind algorithms outperform
training equalizers. But in Rayleigh channels it is better to use
training based methods. We also find the optimum training size in
training and semiblind methods.

1. INTRODUCTION

An important component in any communication system is effi-
cient, accurate channel estimation and equalization. Due to time
varying nature of the wireless channel, for a good channel estimate
one generally uses the training based methods and needs to send
the training sequence frequently. Therefore, a significant (∼ 18%
in GSM ) fraction of the channel capacity is consumed by the train-
ing sequence. The usual blind equalization techniques have been
found to be inadequate ([4]) due to their slow convergence and/or
high computational complexity. Therefore, semi-blind algorithms,
which use some training sequence along with blind techniques
have been proposed (Chapter 7 of [4] and references therein). In
this paper, we provide a systematic comparison of the training,
blind and semi-blind algorithms.

In comparing training based methods with blind algorithms
one encounters the problem of comparing the loss in BW (Band-
width) in training based methods (due to training symbols) with
the gain in BER (due to better channel estimation/equalization ac-
curacies) as compared to the blind algorithms. We overcome this
problem by comparing these methods via the channel capacity they
provide. Towards this goal, we combine the channel, the equalizer
and the decoder to form a composite channel. The capacity of
this composite channel will be a good measure for comparison.
We assume block fading channel, with independent fades between
frames and the capacity is computed for a frame.

Similar problem for the training based methods has also been
studied in [1] and [5]. They obtain a lower bound on the channel
capacity and find the optimal training sequence length (and also
placement in case of [1]). We not only study the problem of opti-
mal training sequence length, but also compare it to blind and semi
blind methods. Obtaining channel capacity of the composite chan-
nel for training based methods, in our model is not difficult. But
for the blind and semiblind methods, one needs to know the equal-
izer value at the end of the frame (or till the point the algorithm
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is updated ). At that point the equalizer will often be away from
the equilibrium point. Thus, we need the value of the equalizer
at a specific time under transience and it depends upon the initial
conditions, the value of the fading channel and the receiver noise
realizations. Thus it is not practically feasible to obtain the capac-
ity of such a composite channel. We circumvent this problem by
using the result in [9], where given the initial conditions, the equal-
izer value at any time (even under transience) can be approximated
by the solution of an ODE. Based on this analysis we find that in
LOS conditions even though the (semi) blind algorithm might not
have converged, it can perform better than training based methods.

The paper is organized as follows. Section 2 describes our
model and approach . Section 3, 4, and 5 consider training, blind
and semiblind algorithms respectively. Section 6 compares the 3
algorithms using few examples and Section 7 concludes the paper.
Notation
The following notation is used throughout the paper. All Bold
capital letters represent complex matrices, capital letters represent
real matrices and small letters represent the complex scalars. Bold
small letters with bar on the top represent complex column vectors,
while the same bold small letters without bar represent their real
counter parts given by (for an n dimensional complex vector ȳ),
y�

=Real(ȳ):=[ ȳ1,r ȳ2,r · · · ȳn,r ȳ1,i · · · ȳn,i ]T .
Here ȳk,r+iȳk,r is the kth element of ȳ. AH , AT , AHT repre-
sent Hermitian, transpose and conjugate of matrix A respectively.
Two more real vectors corresponding to a complex vector are de-
fined as, ỹ=Real(ȳHT ) and y̌=Real(iȳHT ). Note that eT ỹ, eT y̌
equal the real and imaginary parts of the complex inner product
ēH ȳ respectively. For any complex matrix H, vect(H) represents
H in vector form by concatenating elements of all row vectors one
after the other. We will represent vect(H) by h̄. vect({Hl}L−1

l=0 )
denotes vect([H0 H1 · · ·HL−1]). E(.) represents expectation.

For any vector (matrix) ȳ (H), ˆ̄y (Ĥ) represents its estimate.
Complex sequence {āl : n1≤l≤n2} is represented by ān2

n1 . Same
notation is used for a real sequence. El represents l length convo-
lutional matrix of dimension lm×(l+M−1)n, formed from m×n
dimensional complex matrices {Ep}M−1

p=0 . L, M represents chan-
nel and equalizer length respectively and ML

�
=M+L−1.

2. THE MODEL AND OUR APPROACH
Consider a wireless channel with m transmit antennas and n re-
ceive antennas with m≤n. The time axis is divided into frames;
each frame consisting of N channel uses. The transmitted sym-
bols are chosen from a finite alphabet, S={s1, s2, · · · , snS}. At
time k, vector ā(k)εSm is transmitted from the m transmit anten-
nas. We use S(Nt) to represent the set Sm(N−Nt). We represent
the elements of S(Nt) by {s̄i; 1≤i≤(nS)m(N−Nt)} i.e., each s̄i is
a m(N−Nt) length complex vector formed from elements of S.
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The channel {Hl}L−1
l=0 is assumed constant during a frame (quasi

static channel). We assume it to vary independently from frame to
frame. We further assume that the training length Nt≥ML. This
assumption is required for designing an equalizer directly (like in
CMA algorithm). Thus, the channel estimate and/or equalizer, for
a frame depends upon the received symbols during that frame only.
Therefore, we will consider a single frame in this paper.
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Fig. 1. Block Diagram of the System

The vectors received at the n receive antennas in any frame
are, (we assume the first Nt correspond to training symbols )

ȳ(k)=
∑L−1

l=0 Hlā(k−l)+n̄(k), ∀1≤k≤N
where n̄(k) is an iid sequence of complex Gaussian vectors with
mean 0 and co-variance σ2

nI (denoted by CN (0, σ2
nI)) and

h̄ ∼ CN (µh̄, Ch) (Note h̄ =vect({Hl}L−1
l=0 ) ). This is a Rayleigh

or Rician channel. At the receiver one wants to estimate ā(k) (This
is hard decoding. Quantized soft decoding can be taken care of in
the same way). One common way is to use an equalizer at the re-
ceiver to nullify {Hl}L−1

l=0 and then detect the transmitted symbol.
We assume that the channel statistics is available at the trans-

mitter and the receiver but the actual channel {Hl}L−1
l=0 is not known

to the receiver and the transmitter. The receiver tries to estimate
{Hl}L−1

l=0 , or directly obtain an equalizer to estimate/detect the in-
formation symbols transmitted. For this the most common method
used in wireless channels is to send a known training sequence in
the frame. This is used by the receiver to estimate {Hl}L−1

l=0 (say
via Minimum Mean Square Error (MMSE) estimator) and then ob-
tain an equalizer. In the rest of the frame, information symbols are
transmitted and are decoded at the receiver using the equalizer. If
a longer training sequence is used, we obtain a better channel es-
timate resulting in lower BER. However, we loss in channel BW
(capacity) because information symbols are sent for a shorter dura-
tion. Thus one needs to find the ’optimal’ training sequence length
for a given channel. Alternatively, one can estimate an equalizer
using only the statistics of the received and transmitted signal.
These are blind methods and do not require training sequences,
but may not be accurate. One can expect that by combining some
of the blind methods with the training based methods we can ob-
tain the same performance with a shorter training sequence and
hence more capacity.

To address the issue of fair comparison of various equalizers
(training, blind and semiblind), we form a ’composite’ channel,
made of the channel, equalizer and the decoder, with input as the
transmitted information data vector corresponding to one complete
block āN

Nt+1. Corresponding decisions ˆ̄a
N
Nt+1form output for this

composite channel. It forms a finite input - output alphabet time
invariant channel. This is because the channel state is not known
to the transmitter and hence the transmitter would experience av-
erage behavior in every frame. We will show that one can compute
the composite channel’s transition matrix and hence it’s capacity
C(Nt), for a given Nt, once the statistics of the original channel
are known at the transmitter and receiver. We then find the optimal
Nt which maximizes C(Nt).

Obtaining the capacity of the composite channel for training
based methods is easy at least conceptually, and is carried out in
section 3. Next we will consider blind algorithms. We consider,
CMA as it has been one of the most used and successful algorithms

([4]). Here using the results in [9], we obtain a lower bound on ca-
pacity by limiting the set of input distributions to stationary and
ergodic processes (stationarity can be relaxed to asymptotic sta-
tionarity). Comparing the capacity of the training based equalizer
with that of a lower bound in case of blind/semi-blind algorithms
ensures that the later is better by at least the amount obtained.

3. TRAINING BASED CHANNEL EQUALIZER

The MMSE estimator (Wiener filter)([8]) of the channel is ob-
tained using mNt training symbols. A MMSE equalizer is then
designed using the channel estimate. The symbols obtained from
the equalizer are decoded using minimum distance criterion (equiv-
alent to ML decoding in Gaussian channels).

Let ȳTS
�
=ȳNt

L =ATSh̄+n̄Nt
L . This represents received sam-

ples corresponding to the last m(Nt−L+1) training symbols. Here
ATS is an n(Nt−L+1)×Lnm matrix formed appropriately using
training symbols āNt

1 . Note that only the last Nt−L+1 samples
of the output corresponding to training symbols can be used for
channel estimation. The MMSE channel estimator ([8]) is given

by ˆ̄h=µh̄+ChA
H
TS(ATSChA

H
TS+σ2

nI)−1(ȳTS−ATSµh̄), and

(h̄, ˆ̄h) are jointly Gaussian with mean (µh̄, µh̄).
The corresponding M length left MMSE equalizer (of dimen-

sion m×Mn) equals, E(ˆ̄h)=

[(
ĤMĤH

M +σ2
nI

)−1

ĤMIMLn,m

]H

,

where IMLn,m is the matrix formed by first m columns of the
identity matrix of dimension MLn×MLn, and ĤM represents the

Mn×MLm dimensional convolutional matrix formed using ˆ̄h. Us-

ing h̄ and E(ˆ̄h), define convolutional matrices, HN−Nt+M−1 and
EN−Nt , each of dimensions (N−Nt+M−1)n×(N−Nt+ML−1)m,
and (N−Nt)m×(N−Nt+M−1)n respectively. The equalizer out-
put corresponding to transmitted input vector āN

Nt+1will be,
x̄N

Nt+1=EN−Nt

(
HN−Nt+M−1ā

N
Nt−ML+2+n̄N

Nt−M+2

)
. (1)

It is clear that the vector āNt
Nt−ML+2, corresponding to the tail

of the training sequence is common to all the frames and is known.
The output, ˆ̄a

N
Nt+1, of the decoder is obtained from symbol by

symbol decoding of x̄N
Nt+1. We compute the overall transition

probabilities, {P (ˆ̄a
N
Nt+1/ā

N
Nt+1)}, of the composite channel by

first computing transition probabilities, {P (ˆ̄a
N
Nt+1/ā

N
Nt+1, h̄, ˆ̄h)},

given h̄, ˆ̄h and then averaging over all values of h̄, ˆ̄h. (h̄, ˆ̄h are
Gaussian with known joint distribution). By defining Bi as
Bi:={xN

Nt+1∈R2m(N−Nt) : ∩l�=i‖s̄l−x̄N
Nt+1‖2≥‖s̄i−x̄N

Nt+1‖2},
the transition probabilities given (h̄, ˆ̄h), from (1), are given by

P (ˆ̄a
N
Nt+1=s̄i/ā

N
Nt+1=s̄j ;h̄, ˆ̄h)=P rob(xN

Nt+1∈Bi/ā
N
Nt+1=s̄j ;h̄, ˆ̄h).

It is easy to see that the overall transition probabilities of the
composite channel, {P (ˆ̄a

N
Nt+1/ā

N
Nt+1)}, can be computed at its

receiver and transmitter once the statistics of the original channel is
known. Given Nt, the composite channel becomes a time invariant
channel with C(Nt)= supP (āN

Nt+1)∈P(S(Nt))I(ˆ̄a
N
Nt+1, ā

N
Nt+1),

where I(ˆ̄a
N
Nt+1, ā

N
Nt+1) represents the mutual information with

input pmf (probability mass function) P (āN
Nt+1) and transition

probabilities {P (ˆ̄a
N
Nt+1/ā

N
Nt+1)}. P(S(Nt)) is the set of proba-

bility mass functions on S(Nt) and is compact (Note āN
Nt+1∈S(Nt)).

Since P (ˆ̄a
N
Nt+1/ā

N
Nt+1) is independent of the input pmf P (āN

Nt+1),

the mutual information I(ˆ̄a
N
Nt+1, ā

N
Nt+1) is a strictly concave func-

tion of P (āN
Nt+1) ([2], p.31) and hence optimization over the con-

vex set results in a global maximum. Capacity for training equal-
izer equals C(N∗

t ), where N∗
t is the optimum training length.
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3.1. Computation of C(Nt)

As in GSM, the block length N can be as large as 140 or even
more. In such cases direct computation of C(Nt) may be difficult.
Hence we calculate a lower bound to the capacity by restricting the
input vector āN

Nt+1 to be Markov chain. Given a specific Markov

chain, I(ˆ̄a
N
Nt+1; ā

N
Nt+1), is computed recursively (note that output

ˆ̄a(i) is Hidden Markov) similar to the way in [10]. We show below
that this provides a tight lower bound.

Let θh:=[ µT
h̄ vect(Ch)T ]T . This parametric vector char-

acterizes complex Gaussian random variable h̄ completely. Let
g(θh) represent the conditional probabilities of the composite chan-
nel for a given θh and let f(P (.|.)) be a capacity achieving input
distribution for given conditional probabilities P (.|.). The proof
of the following lemma is provided in [7].

Lemma 1 g and f are continuous functions. Hence fog is con-
tinuous in θh.

For channels with zero ISI (say with θ0
h as parametric vector),

it is easy to see that g(θ0
h) is memoryless and fog(θ0

h) will be IID.
Therefore, by the above lemma, for channels with small ISI or for
systems with equalizers compensating the ISI to a good extent, a
tight lower bound on the capacity can be achieved by restricting the
input distributions to l-step Markov chains. Recently, we found
that the lower bound obtained by using the uniform IID input is
itself tight in most cases.

4. BLIND CMA EQUALIZER

The CMA cost function for a single user MIMO channel with same
source alphabet for all m transmit antennae can be written as ([3]),

ECMA= arg minE=[ē1,...,ēm]T Σm
l=1E

(|ēH
l ȳk

k−M+1|2−R2
2

)2

or equivalently (terms in the summation are positive )

ēcmal= arg minēl E
(|ēH

l ȳk
k−M+1|2−R2

2

)2
, l=1, 2, . . . m

where ēT
l , nM length vector, represents the lth row and

R2=E|āN
N−ML+1|4/E|āN

N−ML+1|2(we assume input is stationary).
To obtain the above optimum, the corresponding m update

equations for a given value of h̄ are ( 1≤l≤m, ML≤k≤N ), (Note
that ȳk

k−M+1=z̄(k)+n̄k
k−M+1, with z̄(k)�=HM āk

k−ML+1 )

el(k+1)=el(k)+µHCMA

(
el(k), z(k),nk

k−M+1

)
(2)

where with ȳ=z̄+n̄ ( ỹ and y̌ are defined in notations)
HCMA(e, z,n)�=((eT y)2+(eT y̌)2−R2

2) ((eT ỹ)ỹ+(eT y̌)y̌) .
A close look at (2) shows that all m sub cost functions are

same and the different equalizers should be initialized appropri-
ately to extract the desired source symbols. In [3] a new joint CMA
algorithm is proposed that ensures that the MIMO CMA separates
all the sources successfully irrespective of the initial conditions. In
this work, we choose the initial condition E∗

0 (which will be used
in all frames) such that the channel capacity is optimized. This
solves initialization problem to a great extent in blind case with
the original CMA itself. The problem will be solved to a greater
extent in the semiblind algorithm, as here a rough estimate of the
training based equalizer forms the initializer.

The equalizer adaptation(2) can be started only after leaving
out the first ML−1 received samples. This ensures that the equal-
izer adaptation is independent of previous frame symbols. One
may also update the equalizer tap only for a fraction of the symbols
in the frame. This reduces delay in processing.

For real constellations like BPSK, a more suitable CMA cost
function would be ((eT y)2−R2

2)
2
+(eT y̌)4. We conducted simu-

lations with this cost function for BPSK over complex channels.

In the next subsection, we show how analytically we can ob-
tain the value of CMA equalizer approximately at any time t and
then proceed with obtaining the channel capacity.

4.1. CMA Equalizer approximated by ODE

Now we assume that the input is stationary and ergodic. Each
of the m update equations in (2) is similar to the CMA update
equation for SISO. Therefore it is easy to see that all the proofs
in [9] for convergence of the CMA trajectory to the solution of
an ODE (Ordinary differential equation) hold. Thus the update
equation(2) for any given h̄, can be approximated by the trajectory
of the ODE,

ėl(t)=ĤCMA(el(t))
�
=Ez[En(HCMA(el(t), z,n))] (3)

where z̄�
=HM āN

N−ML+1 (under stationarity). The approximation
can be made accurate with high probability by taking µ small.

We can solve (3) numerically for each l and obtain the equal-
izer E(T ) at time T=µ(N−ML+1) (smaller T if equalizer is up-
dated only for a fraction of the frame) which approximates the
CMA equalizer at the end of the frame. These co-efficients are
used for decoding of the entire frame. It is clear that E(T ) is a
function of h̄,E0 and P (āN

N−ML+1). Define E(T ):=EN−Nt(T ),
the N−Nt length convolutional matrix constructed using E(T ).

Let ER�
=

⎡
⎣ Re(E(T )) −Im(E(T ))

Im(E(T )) Re(E(T ))

⎤
⎦. Here Re(E(T )), Im(E(T ))

represent matrices formed by keeping only the real or imaginary
part, respectively of, each component of the matrix E(T ).

As in the previous section, conditioned on h̄, P (āN
Nt+1) and

E0, the transitional probabilities of the approximate composite
channel obtained by solving the ODE are (the probabilities of the
initial L−1 symbols will be different, but the number is very small
with respect to the block length and hence it can be neglected),
P (ˆ̄a

N
Nt+1=s̄i/āN

Nt+1=s̄j ;E0, P (āN
Nt+1), h̄)=

Prob(ERyN
Nt−M+2∈Bi/āN

Nt+1=s̄j ;E0, P (āN
Nt+1), h̄)

The overall transition probabilities for a given P (āN
Nt+1) and E0

are now obtained by averaging over h̄. The capacity(lower bound
as input is restricted to be stationary and ergodic)
C(E0):= supP (āN

Nt+1) I(ˆ̄a
N
Nt+1; ā

N
Nt+1/E0, P (āN

Nt+1)) of the ap-

proximate channel for a given E0, is finite. The overall capacity
of this discrete memoryless channel is CCMA ≈ supE0

C(E0),
which is also finite. When the receiver and the transmitter have
channel statistics, one can choose E0

∗ and P ∗(āN
Nt+1), such that

I(ˆ̄a
N
Nt+1; ā

N
Nt+1/E

∗
0, P

∗(āN
Nt+1)) is as close as possible to CCMA

in principle at least. In simulations we obtained a lower bound
by estimating the mutual information for uniform IID input distri-

bution and E∗
0=E(µh̄) (E(ˆ̄h) is defined in previous section) and

found it to be tight.
For SIMO, m=1, we have, (see proof in [7])

Lemma 2 I(ˆ̄a
N
Nt+1; ā

N
Nt+1/ē0, P (āN

Nt+1)) is a continuous func-
tion of ē0 and P (āN

Nt+1). Also C(ē0) is continuous in ē0.

Thus in SIMO case, there exist ē∗
0 and P ∗(āN

Nt+1), such that
the corresponding suprema are achieved (when ē0 is restricted to a
compact domain). More recently, we have obtained this result for
MIMO case also.

5. SEMI-BLIND CMA ALGORITHM

In this variant of the semi-blind algorithm, we use MMSE equal-

izer of the training based channel estimator E(ˆ̄h) obtained in sec-
tion 3 as the initializer for the CMA algorithm. The equalizer
co-efficients obtained from the CMA at the end of the frame (or
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fraction of the frame) are used for decoding of data for the whole
frame. Once again we use the ODE approximation of the CMA
trajectory in the capacity analysis. The difference from the blind
case, being that the initializer E0 for the CMA is given by the
training based channel estimator. Now T=µ(N−Nt). Then the
conditional probabilities are obtained by first conditioning on and

then averaging with respect to h̄, ˆ̄h as in section 3.
As before, given Nt, the capacity (lower bound),

CSB(Nt)= supP (āN
Nt+1) I(ˆ̄a

N
Nt+1; ā

N
Nt+1/P (āN

Nt+1)), exists and

CSB ≈ CSB(N∗
t ). Again for SIMO, we have (proof is in [7]),

Lemma 3 I(ˆ̄a
N
Nt+1; ā

N
Nt+1/P (āN

Nt+1)) is a continuous function
of P (āN

Nt+1) and hence supremum can be achieved.

6. SIMULATIONS
Simulations have been carried out over complex Gaussian chan-
nels with BPSK modulations. We consider 2×2 MIMO channels
for simulations. We set Ch=σ2

hI . We normalized the channel gain
to one for both the receive antennas. We fixed N =64, L =M =2. We
calculated the capacity of the composite channel for all the equal-
izers. We noticed that the equalizer value at the end of the frame
was away from the equilibrium point in both blind and semiblind
algorithms. In Figure 2 we plotted capacity versus transmitted
power with σ2

n=1. We varied K-factor (ratio of power in the mean
component to that in the varying component) of the channel during
our experiments. For large K, there is an improvement of up to 2
dB (≈ 50% improvement in TX power) in semiblind/blind (blind
being the best) algorithms at around 12dB compared to the training
method. At K =1, the improvement is ≈ 26% and semiblind is the
best. As the K-factor approaches 0 (Rayleigh channel), improve-
ment in semiblind diminishes but the blind becomes much worse.
Infact, in Rayleigh channel, the blind capacity is almost zero.

We have observed that for training and semiblind equalizers,
the capacity increases with Nt, reaches a maximum and starts de-
creasing. From this, one can estimate the ’optimal’ number of
training symbols, N∗

t (see Table 1 for some examples).
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Fig. 2. Capacity versus transmitted power

Table 1 also shows comparison of various equalizers with re-
spect to noise variance for two different K factors, for a fixed trans-
mit power EA=12dB. These channels have non zero mean for
imaginary terms but ISI and ICI have zero mean. For high K
systems, blind algorithm is the best at reasonable SNR’s. This is
because the other algorithms are loosing in capacity because of
training symbols. But we have seen that at very low SNR’s (near
0dB, not shown in the table, but this effect can be seen in Figure2)
eventually the blind algorithm becomes worse. As commented in
section 4, we observed in case of high K, the blind algorithm was
successfully separating all the sources (which also explains com-
paratively good performance of blind algorithms at high K). But

for low K, the blind algorithm was not separating the sources re-
sulting in bad performance (K = 0.7 case in Table 1). Also from Ta-
ble 1, we can see an SNR improvement of 66% (18%) at σ2

n=1 for
K=2.5 (K=0.7) in semiblind/blind over the training based method.

Table 1. µh̄=
√

K/(1 + K) [0.8+i0.6 0 0 0 0 0.8+i0.6 0 0], EA=12dB

σ2
n K = 2.5 K = 0.7

Training Semi Blind Training Semi Blind
(C, N∗

t ) (C, N∗
t ) C (C, N∗

t ) (C, N∗
t ) C

1 ( 102.6, 3) (110.8, 3) 114.4 (64.2, 9) (66.4, 7) 62.0
1.2 ( 99.9, 4) (108.5, 2) 112.3 (61.9, 9) (64.4, 5) 60.2
2 (89.7, 3) (99.0, 3) 102.8 (54.5, 8) (57.8, 4) 53.7
4 (70.9, 3) (76.6, 2) 80.3 (41.4, 7) (43.4, 4) 41.3

7. CONCLUSIONS

We compared blind/semiblind equalizers with training based algo-
rithms. Information capacity is the most appropriate measure for
this comparison. We observed that the semiblind methods perform
superior to training as well as blind methods in LOS conditions
(≈50 to 66% improvement in transmit power) even when they have
not converged to the equilibrium point. But for Rayleigh fading,
the semiblind methods are bad compared to training based and the
blind methods become completely useless. Our approach could
also be used to obtain the optimum number of training symbols.
Experiments have been conducted for flat fading (no ISI) channels
also. But the improvement was only about 20% [6]. More recently,
we modified the semiblind algorithm, where we change the step-

size µ in (2) based on ˆ̄h and obtained a significant improvement.
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