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Abstract—Epidemics dynamics can describe the dissemination
of information in delay tolerant networks, in peer to peer
networks and in content delivery networks. The control of such
dynamics has thus gained a central role in all of these areas.
However, a major difficulty in this context is that the objective
functions to be optimized are often not additive in time but are
rather multiplicative. The classical objective function in DTNs,
i.e., the successful delivery probability of a message within a
given deadline, falls precisely in this category, because it takes
often the form of the expectation of the exponent of some
integral cost. So far, models involving such costs have been solved
by interchanging the order of expectation and the exponential
function. While reducing the problem to a standard optimal
control problem, this interchange is only tight in the mean field
limit obtained as the population tends to infinity.

In this paper we identify a general framework from optimal
control in finance, known as risk sensitive control, which let us
handle the original (multiplicative) cost and obtain solutions to
several novel control problems in DTNs. In particular, we can
derive the structure of state-dependent controls that optimize
transmission power at the source node. Further, we can account
for the propagation loss factor of the wireless medium while
obtaining these controls, and, finally, we address power control
at the destination node, resulting in a novel threshold optimal
activation policy. Combined optimal power control at source and
destination nodes is also obtained.

Index Terms—Delay Tolerant Networks, Markov Decision
Process, Risk Sensitive Control

I. INTRODUCTION

Delay Tolerant Networks (DTNs) gained the interest of
the research community in recent past [2], [3]. They have
been identified as a promising mean to transport data in
intermittently connected networks. DTNs in particular, sustain
communications in a networked system where no continuous
connectivity guarantee can be assumed [4], [5]. Messages are
carried from source to destination via relay nodes adopting
store and carry type forwarding protocols; such protocols
basically rely on the underlying node mobility pattern. The
core problem in DTNs is to efficiently route messages to-
wards the intended destination. We observe that traditional
techniques for routing perform very poorly in this context
due to frequent disruptions, and furthermore mobile nodes
rarely possess information on the upcoming encounters they
are going to experience [6], [7]. An intuitive and rather robust
solution is to disseminate multiple copies of the message in
the network. This is meant to ensure that at least some of them
will reach the destination node within some deadline [5], [8].

The above scheme is referred as epidemic-style forward-
ing [9], which is similar to the spread of infectious diseases.
Each time a message-carrying node encounters a node without
message, infects it by passing on a copy. Finally, the destina-
tion receives the message when it meets an infected node. As
in biology, DTNs literature refers to contacts as those events
when the message can be forwarded.

In this paper, we confine our analysis to the two hop routing
protocol. This choice is dictated both by efficiency reasons
and by the possibility to implement all the forwarding control
on board of the source node. In fact, under the two hop
routing protocol, the source transmits copies of its message
to all mobiles it encounters. A relay, conversely, forwards the
message copy it has to the destination only [10].

Optimizing the performance of DTNs requires to maximize
the successful delivery probability of a message within a given
deadline. However, in order to do so, one has to trade off
system resources to increase the success rate.

A natural assumption is that both source and destination
nodes aim at maximizing the delivery success probability. But,
they have their own individual constraints on their resources
(e.g., power) both of which are pivotal in influencing this
delivery probability. So, we consider a joint optimization
problem with soft constraint on the power of both the source
and the destination. At the source, we consider two types of
power control: 1) controlling power per transmission which in
turn effects the transmission range and hence the contact rate;
2) controlling the number of copies delivered to the contacted
mobiles while keeping the power per transmission fixed. The
destination only controls the power per transmission.

For power control of the first type, our model accounts also
for the influence of pathloss factor of the wireless medium.

The technique used in this paper helps in obtaining the
complete characterization of the optimal control for some of
the aforementioned control problems while for the others,
interesting analytical properties are derived. In particular, the
technique adopted here is a general framework from optimal
control in finance, known as risk sensitive control, which
deals effectively with the multiplicative costs involved in this
context. Below, we introduce the fundamental structure of this
general optimization problem.
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Delay Tolerant Networks and Risk Sensitive MDP

Consider a network with a set of I communities. A commu-
nity i consists of a time varying number of members which we
denote by Xi(t). In the context of DTNs, Xi usually denotes
the number of infected nodes within the i-th community.
Now, consider some tagged node which we shall call the
“destination”. We assume that each member of community
i has a Poisson contact process with the destination at rate νi.
Conditioning on the processes Xi(t), these Poisson processes
are assumed to be independent, and thus the destination
receives messages carried by members of the whole network
at a time varying rate of

∑I
i=1Xi(t)νi. The probability that

it receives no messages during [s, t] is (see equation (3), [8])

P (no reception|Xi(r), r ∈ [s, t], i = 1, ..., I)

= exp

(
−
∫ t

s

∑
i

νiXi(r)dr

)

Unconditioning, we get

Pf := P (no reception) = E

[
exp

(
−ν
∫ t

s

c(r)dr
)]

;

c(r) =
∑
i

νi
|ν|
Xi(r) (1)

where ν 6= 0 is some appropriate constant and E denotes the
expectation operator. If Xi(t) are piecewise constant over the
intervals [n∆, (n+ 1)∆) then the integral in the exponent can
be replaced by a summation over time: this is precisely the
case considered in the rest of the paper.

Now assume that Xi(t) is the function of some controlled
Markov decision process Y (t), λ(t) where Y is the state of the
process and λ(t) is the control. Then the expression Pf is a
standard object in the theory of controlled Markov chains: this
is the so called ”risk sensitive cost criterion”, which has had
many applications in financial mathematics. The cost function
we need to optimize in the paper, will actually be of the form
(1) with ν > 0; risk-sensitive control literature in economics
classify this case as risk avert.1

In previous delay tolerant literature [8], [11], one changes
the order of expectation and exponent and is thus faced with
an optimization of the exponential function of the expected
integral. By Jensen’s inequality, this is equivalent to optimizing
a bound over the original function. Nevertheless, this bound
has been shown to be tight in several contexts as the population
size grows. Thus, in the mean field limit, it is still possible
to overcome the optimization of the expectation of the expo-
nential of the integral [12]. The technique shown in this paper

1Given a probability distribution of a nonnegative payoff, an agent is said
to be non-sensitive to risk, if the agent has no preference between receiving
that payoff or receiving its expectation. This case results in the limit ν → 0
in (1) (actually logarithm of the cost in (1) divided by ν), which converges to
the original (additive cost) optimal control problem. A risk seeking agent, the
case with ν < 0, prefers receiving the random variable over its expectation,
and a risk avert agent, case with ν > 0, prefers always the expectation.

works without this exchange of expectation and exponent and
hence works even in the case of finite populations.

What is common to the standard interpretation of a risk
sensitive cost and to the one we have in our case? The risk
sensitive cost criterion accounts for the time correlation of
the integrand. In contrast, the risk neutral bound obtained by
optimizing the expectation of the exponent is only a function
of the marginal distribution of the random variables.

There is a wealth of tools to solve control problems with
risk sensitive cost. In general one finds the same tools as
in standard additive cost MDPs but they take instead, a
multiplicative form as seen later. Thus a Bellman equation
exists as well, and under suitable conditions the controls that
optimize the corresponding dynamic programming operator at
a given state define the optimal policy. As in standard MDPs,
we can use value iteration under a multiplicative form [13]) to
compute the optimal value and policy for finite horizon cost.

In literature, heterogeneous DTNs with multiple communi-
ties, i.e., several classes of nodes, are a current interest of the
research [14]. The tools we introduce throughout this work fit
the general case (1); however, within the scope of this paper,
we shall consider a single community DTN example.

II. SYSTEM MODEL

Consider a large area with N active DTN mobiles and
assume that full connectivity is not guaranteed at each point
in time. We consider a static source and destination: the
communication between the two has to happen only with
the help of the active mobiles. Source and destination can
transmit/receive only with mobiles that are within their radio
range. The radio range depends upon the power used by
the transmitter per transmission. The mobiles are wandering
freely in the area. A contact is said to happen with the
source/destination whenever a mobile enters the radio range
of the source/destination.

When the area is large and transmission range is small,
this contact process is a rare phenomenon and is modeled
by a Poisson process, i.e., the time to contact is exponen-
tially distributed ( [15]). The validity of this model has
been discussed in [15], and its accuracy has been shown
for a number of mobility models (Random Walker, Random
Direction, Random Waypoint). We further assume that each
contact duration is sufficient to fully transfer the message.

Also, every message generated at the source has to be
delivered to the destination within a given deadline T .

The source passes on the copy of the message to some of the
contacted mobiles, taking into consideration its own resources.
Recall that since we consider the two hop protocol, infected
mobiles can only deliver the message to the destination. We
say a delivery failed if none of the infected mobiles come
in contact with the destination before the deadline T . The
source has to spend its power for two purposes: 1) it has to
continuously show its presence (done with help of beaconing),
2) it has to deliver the message to the contacted mobiles using
a wireless link, which requires positive transmission power.
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In any case, these devices are power limited and hence have
constraint on the total power that can be used.

The more power the device uses per transmission the bigger
is its transmission range and hence larger will be the rate
with which the mobiles can contact. This identifies a clear
trade off for active time and power in the system. In fact,
larger power per transmission causes more mobiles infected
per unit time but for a shorter duration, while lower power
per transmission causes lesser number of mobiles infected
per unit time but for longer duration. Thus the source has
to use an optimal power strategy before the deadline T
in order to to minimize the probability of delivery failure.
Also, the transmission range depends upon the propagation
coefficient of the wireless medium. Finally, the optimal power
strategy depends both upon the total power constraint and the
propagation coefficient.

Unlike the source, the destination receives the message only
once and hence it spends most of its power to signal its
presence (i.e., for beaconing). In some cases it might wish
to receive more copies of the messages, due to the possible
communication errors. Even in this case, the number of copies
received at the destination is much smaller than the number
of mobiles infected by the source, as the reception is possible
only after the joint occurrence of two rare events. Hence, in all
cases, the destination mostly spends its power for signaling.

The source and destination have a common goal, to min-
imize the delivery failure probability. This they have to do,
under their own power constraints. We obtain optimal policies
for both the source and destination which minimize the power
spent and maximize the probability of successful delivery.

The rate of contacts, (λ, γ respectively for source-mobile,
destination-mobile contacts), depend upon the speed of the
mobiles, propagation characteristics of the wireless medium,
the power per transmission at which the source/destination is
operating [10], [15]. In Appendix B we relate the power spent
to sustain a given contact rate and the attenuation coefficient.

We consider a time slotted system and the goal is to design
{λk, γk}k optimally. Let Xk denote the number of infected
mobiles at the beginning of time slot k, where time slots have
unit duration without loss of generality. This represents the
state of the system. Let Ik represent the number of nodes
infected in slot k. Then, Xk+1 = Xk + Ik where with qλ :=
e−λ (probability of no contact in one time slot)

pλn1,n1+n2
:= P (Ik = n2|Xk = n1) = pλn2

(N − n1) with

pλn2
(r) :=

(
r

n2

)
(1− qλ)n2qr−n2

λ for all n2 ≤ N − n1,

represents the control-dependent transition probabilities.
Now, assume a message is not delivered within the deadline

T . Then it is ”not delivered” by any one of the Xt infected
mobiles present at the beginning of the slot, during the slot
t and if this ”no delivery” happens in all the T slots. Condi-
tioned on the state trajectory, the events in various slots are
independent and thus the overall delivery failure probability is
the product of the delivery failure probability in each slot. The

unconditioned delivery failure probability will be the expected
value of this product of slot failure probabilities. Thus the
probability of the message not reaching the destination within
the time deadline T , for a given sequence of contact time
parameters Λ := {λt}0≤t≤T−1, Υ := {νt}0≤t≤T−1 is

Pf (Λ,Υ) = E
[
e−

∑
t νtXt

]
Aim is to choose Λ ∈ ΩTS , Υ ∈ ΩTD with ΩS :=

{0, λ1, . . . , λMS
} ΩD := {0, ν1, . . . , νMD

} in a optimal
way so as to minimize the failure probability Pf along side
minimizing the power consumption at both the source and
destination. We further assume that λi ≤ λj for i ≤ j.

The power constraint can be modeled in two ways:
Soft Power Constraint. In some applications, there is no hard
constraint on the power spent, but rather one needs to minimize
the total power spent p. In this case we have two contrasting
costs a) the cost for spending the power represented by a
function c(p) or equivalently ec(p), b) the cost if the message
has not been delivered in terms of Pf .

In order to give fair importance to both the costs, propor-
tional fairness is attained by minimizing:

E
[
Pfe

hc(p)
]

= E
[
e−

∑
t νtXt+hc(p)

]
,

where h is the weight given to the power cost.
Hard Power Constraint. Some applications have hard con-
straint on the total power spent: one needs to minimize the
failure probability under power constraint (for some B <∞):

minE
[
e−

∑
t νtXt

]
subject to c(p) ≤ B.

The current paper works under the soft constraint. We
consider two types of power costs c(p) in the following and
consider the resulting source and or destination controls. We
end this section by introducing the two types of pure source
controls, i.e., the case when destination rate ν is constant.
The other controls, namely pure destination and combined
source-destination controls, are introduced incrementally in the
sections after pure source control.
Pure source Delivery Control. The source does not change
the power per transmission but rather optimizes the total power
spent by controlling the number of message copies. Thus the
transmission range remains constant and hence the exponential
contact rate remains a constant, namely λ. However, when
the source comes in contact with a mobile, it delivers the
message with probability qt ∈ [0, 1]. In turn, the effective
contact rate is λt = λ qt. This case is appropriate whenever
the source uses some smart techniques to spend minimal power
for beaconing while most of it’s power is utilized only for
delivery of copies of the message. One such example is when
the mobiles themselves detect the existence of the source and
wake up the otherwise sleeping source. Overall, the power
spent by the source depends directly upon the total number of
infected mobiles, XT , at the end of the delivery deadline and
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thus c(p) ∝ XT . The control problem writes:

min
Λ∈ΩTS

E[e−ν
∑
tXt+hXT ]. (2)

Pure source Power Control. The source does not control the
number of message deliveries but rather controls the power
per transmission. The transmission range varies, depending
upon the path loss coefficient, with the power per transmission;
this in turn varies the mean contact time, 1/λ (see Appendix
B). With this control, the power is also used for maintaining
the transmitting range high/low throughout and hence the
beaconing capabilities also vary from slot to slot. This case is
appropriate for the situations in which the source has to spend
significant power for both beaconing purposes as well as for
delivery of message copies. In this case, the power is inversely
proportional to the contact rates (proportionality coefficient
depends on path loss coefficient) and hence consider the
following minimization2

min
Λ∈ΩTS

E
[
e−ν

∑
iXi+h

∑
i(λi)

β
]
. (3)

In the next sections we detail the above control problems
and derive, solve for each case the corresponding risk sensitive
dynamic programming equations ( [16]).

III. PURE SOURCE CONTROLS

In this section, we obtain complete characterization of the
optimal delivery control and some interesting properties of
the optimal power control, when destination maintains it’s
power constant (and hence its contact rate remains constant
at ν). We also obtain complete characterization of the optimal
power control for the special case of hard controls, i.e., the
controls for the case with only two possible actions ΩS =
{0, λ1}. Results are obtained using the risk-sensitive dynamic
programming (Risk-MDP) equations [16] under perfect state
information. Observe that the state of the system, i.e. number
of infected customers Xk, is known at the source.

A. Delivery control

The delivery control problem (2) results in the following
Risk-MDP equations, for every n:

uT (n) = e−νn+hn (4)

ut(n) = min
λ∈ΩS

e−νn ∑
n≤n′≤N

pλn,n′ut+1(n′)

 (5)

λ∗t (n) = argmin
λ∈ΩS

e−νn ∑
n≤n′≤N

pλn,n′ut+1(n′)

 (6)

Here, λ∗t (n) represents the optimal control at time t if the state
Xt was at n. The optimal cost and control for any given initial
condition X0 are obtained by solving the above Risk-MDP
equations using backward recursions. Starting with t = T − 1

2where, as explained in Appendix B, β = α or α/2, with α the loss factor.

one obtains ut(n), λ∗t (n) for all possible states 0 ≤ n ≤ N
and all possible times T ≥ t ≥ 0. The minimum cost can
now be read as u1(X0) while the optimal control given by the
sequence, λ∗1(X0), λ∗2(X∗1 ) · · · λ∗T (X∗T−1), where X∗k is the
optimal state trajectory obtained via forward recursion after
replacing at each step, λt with λ∗t (X

∗
t−1). Solving the MDP

equations recursively we obtain (proof in Appendix A)
Lemma 1: Define, t∗Dc := inft≤T {(T − t)ν ≤ h} . Then,

λ∗t (n) = 0, ut(n) = e−(T−t+1)νn+hn if t ≥ t∗Dc and

λ∗t (n) = λM if t < t∗Dc for all n. �

Thus the optimal delivery control is a threshold control
(deliver with maximum probability till threshold t∗Dc and stop
it completely afterwards). The interesting feature here is that
the threshold is independent of the state n and the strength
of the active population N . It only depends upon h, which
represents the weight given to the power cost, ν the contact
rate for the destination and T the delivery deadline. Larger
deadlines (T ), larger destination contact rates (ν) increase the
threshold t∗Dc. These two factors give more weight to the
delivery probability cost and hence demand to deliver the
message copies for larger durations. On the other hand, with
larger h threshold t∗Dc decreases because a larger weight is
given to power expenditure.

B. Power control

The power control (3) will result in the following Risk-MDP
equations ( [16]) for any state n:

uT (n) = e−νn

ut(n) = min
λ∈ΩS

e−νn+hλβ
∑

n≤n′≤N

pλn,n′ut+1(n′)


λ∗t (n) = argmin

λ∈ΩS

e−νn+hλβ
∑

n≤n′≤N

pλn,n′ut+1(n′)


Again, the optimal control can be computed as done in the
previous section, as reported in Appendix A:∑
n≤n′≤N

pλn,n′uT (n′) = e−νn(e−ν + qλ(1− e−ν))N−n

Clearly at N = n, λ∗(T − 1, N) = 0. For n < N ,

uT−1(n) = e−ν(n+N)

[
min
λ∈Ω

(
eQnλ

β

[PT−1qλ + 1]
)]N−n

where Qn := h
N−n and PT−1 := eν−1. In this case we could

only obtain a partial characterization of the control (proof in
Appendix A and recall ΩS = {0, λ1, · · · , λMD

}):
Lemma 2: For all n ≥ noff (β, h) := N − hλβ−1

1

λ∗t (n) = 0 and ut(n) = e−(T−t+1)n for all t.

For all n < noff (β, h),

λ∗t (n) ≥ λ1 for all t. �
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The following are consequences of the above lemma:
Switch off population : Immediately after the source infects
noff (β, h) mobiles (which we refer as switch off population),
it goes off to sleep mode. As β increases, i.e., as the path
loss factor of the wireless medium increases, the switch off
population decreases. This is intuitive as with β increasing
more amount of power has to be spent for remaining on
and or for delivering the message. Thus the power would be
consumed more quickly.
Switch off/Sleep time : The above lemma only proves that
there again exists a threshold beyond which the source does
not deliver messages. In this control, it is done by not using
any power for transmission. Hence, here the source actually
goes to complete sleep mode after the threshold period. The
threshold till which the source delivers is given by:

t∗Pc = inf
t≤T
{X∗t > noff (β, h)},

where X∗t is the optimal state trajectory.
Need not be a threshold policy: For delivery control the
optimal policy was threshold type, but here the optimal policy
may not be threshold, i.e., it is possible that the optimal control
(which is non zero till t∗Pc) can be time varying till t∗Pc.
More power for adverse conditions : Whenever N ≤ hλβ−1

1 ,
the optimal control is to never switch on. This situation can
arise either because the population is not large enough, or
because the path loss factor β is high or because the first
non zero contact rate λ1 is high. This trivial situation can be
avoided by reducing the constraint on power, by reducing h.
Optimal control spreads over larger time frame and
larger states if the first non zero contact rate λ1 is small
enough because as λ1 decreases the switch off population noff
increases to N . That is, when control is possible over finer
grid, then the control spreads over larger time frame and for
more states. Further, this spread increases with the increase in
the path loss factor β (as for λ1 < 1, λβ−1

1 → 0 as β →∞).
Finally, the following lemma provides complete characteri-

zation of the optimal risk-sensitive control for the case of two
level control which is a direct consequence of the Lemma 2.

Lemma 3: When ΩS = {0, λ1} for all t,

λ∗t (n) =
{

0 if n ≥ noff (β, h)
λ1 if n < noff (β, h).

C. Numerical examples:

In general, since Qn is a function of the state, the relations
that appear in the DP backward recursion at earlier stages
do not provide a simple closed form. Numerical results can
be obtained for a certain choice of the parameters. In all
these results u∗ represents the optimal cost. We set ΩS =
[0, λM/M, · · · , λM ] with M = 10. In particular we are
interested here in the impact of the coefficient β since it
expresses the cost paid by the source due to path loss factor
on the optimal control. In Fig. 1 we observe the effect of such
parameter for β = 1, 2. For β = 1, there exists a thresholding
effect both on the state and time. Conversely, for β = 2, we
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Fig. 1. Power control in the case of β = 1 (left), β = 2 (right); λM =

2ν = 2 · 10−2; log(u∗) = −1.53, M = 10, N = 20, and T = 50.

observe a rather smooth decrease of the optimal control. As
given by Lemma 2, for h > N and β = 1 the control vanishes.

As indicated by the analysis, higher values of the path
loss coefficient force the control to become less and less
concentrated at small values of the state, compared to the case
β = 1, i.e., to spread the control over larger time scales and
larger number of states. It becomes more convenient to forward
even when the number of infected nodes is high. However, this
is done using a lower probability for smaller values of n. This
kind of spread is seen only if the source can also operate at
a very small but non zero contact rate (i.e., if λ1 is small).
On the other hand, if the source does not operate at sufficient
number of levels of contact rates (as result λ1 could be large),
with larger values of β the control can become trivial. Hence
whenever the wireless medium experiences large propagation
losses the source has to operate with higher granularity in the
control space, i.e., it will require more smoother controls.

In Fig. 2 we first depicted the effect of the risk parameter h
on the forwarding control: it is apparent that larger penalties
(larger h) force the control to switch off at earlier stages. In
particular, for h = N the control vanishes, i.e., no forwarding
is performed at the source node.

Also, we depicted the impact of the path loss factor on
the optimal control given a fixed optimal utility (u∗); we
emulated the generation of 1000 optimal control sample paths
at the source node and compared the average optimal control
corresponding to the same average utility. We maintained
u∗ the same, by varying h with β. We considered two
different values of u∗: smaller value, i.e., higher successful
delivery probability, obtained using smaller penalty for power
expenditure, i.e, smaller h, and larger one with larger penalty.

We observe in Fig. 2 that for small values of the penalty, the
behavior of the controls is similar, and resembles a threshold
type policy. However, for larger penalties – this has the
meaning of increasing the weight of energy expenditure - the
control for β = 1 has still a threshold-like shape, whereas for
larger values of the path loss factor, the decrease is gradual.
Hence, even in time power spreading occurs, i.e., the source
node is forced to reduce the forwarding probability, and to
keep on forwarding over time. As in the case of threshold
type policies, however, it is still convenient to spend energy
as much as possible at the beginning of the interval, which
explains the decreasing shape of the control.



6

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

stage t

λ*

Optimal control

h = 1
h = 3

h = 7

�
�	

h = 20

0 10 20 30 40 500

2

4

6

8

10

12

stage t

X*

Optimal state trajectory

 

 

beta=1
beta=1.5
beta=2

u∗ = e−0.71

u∗ = e−2.76

0 20 40 600

0.2

0.4

0.6

0.8

1

1.2

stage t

λ*

Optimal control

 

 

beta=1
beta=1.5
beta=2

u∗ = e−0.71

u∗ = e−2.76

Fig. 2. Effect of h on the optimal control for β = 1 (left); Effect of β: optimal state trajectory (center) and optimal control (right); settings as in Fig. 1,
control values are normalized, reference utilities are superimposed.

IV. PURE DESTINATION CONTROLS

In this section, we consider the pure destination controls:
the source node contact happens at a constant exponential rate
λ, whereas the destination operates power control. Recall that
the destination cannot control the number of nodes infected
and hence the only meaningful control in this case is power
control. Thus we consider the following:

min
Υ∈ΩTD

E
[
e−

∑
t νtXt+h

∑
t ν
β
t

]
.

Recall that the message has to reach the destination before
the end of time slot T . Here, we further assume that only the
infected mobiles present at the beginning of the slot can reach
destination during the slot. Thus, the destination has to control
even at time slot T (while the source can control only till slot
T − 1). Thus the corresponding Risk-MDP equations are:

uT+1(n) = 1

ut(n) = min
ν∈ΩD

e−νn+hνβ
∑

n≤n′≤N

pλn,n′ut+1(n′)


ν∗t (n) = argmin

ν∈ΩD

e−νn+hνβ
∑

n≤n′≤N

pλn,n′ut+1(n′)

 .

The evolution of state Xt is independent of control and hence,

ut(n) = min
ν∈ΩD

(
e−νn+hνβ

) ∑
n≤n′≤N

pλn,n′ut+1(n′)∀n.

Thus, for all t and n, the optimal control

ν∗t (n) = gν(n, β) where

gν(n, β) := arg min
ν∈ΩD

(−νn+ hνβ). (7)

With Xt representing the state trajectory, optimal policy,
ν∗(t) = gν(Xt, β). It is interesting to observe that even if
the state evolution is independent of the control, the state

still influences the system performance and hence the optimal
policy depends upon the state value. However the optimal
policy could be computed easily, because of the control

independent state evolution. This policy is obtained assuming
that the destination also has access to the current state, Xt,
the number of infected mobiles. This assumption is satisfied3 if
the source and destination have a very low rate link (back-haul
kind), via which few control signals can be exchanged.

A. State estimation

When the destination does not have access to the full state
information, it can estimate the channel state Xt under the
following conditions4:
Large population limit: For large population, i.e., when N is
very large, using the strong law of large numbers, for almost
all realizations,

Xt+1 = Xt +
N−Xt∑
j=1

ζj(t) ≈ Xt + (N −Xt)(1− e1−λ),

where ζj(t) is the indicator of the event that mobile j meets the
source at time t, whose probability P ({ζj(t) = 1}) = 1−e−λ.
Continuous approximation: As the slot duration tends to zero
(note λ by our notations is a product of the actual contact
rate and the slot duration and hence as λ → 0), one can
approximate the state dynamics with a solution of ODE

�
X= λ(N −X), X(0) = 0;

Thus the corresponding approximated optimal policy will be:

ν∗(t) = gν(N −Ne−λt, β).

B. Switch on Threshold

From (7), the optimal destination contact rate ν∗ depends
upon time t only via the state at time t, i.e., it depends only
upon the number of infected mobiles n. From (7), the optimal
control increases with n in the sense: gν(n, β)β−1 ≤ n/h. In

3Note that our solution assumes that state information is available. While
this assumption may not be realistic in some applications, it does hold in
hybrid networks where 3G or other network is used for signaling, while the
data transfer uses a DTN contact based transfers. Such a scenario is reasonable
when the transfered content is much larger than the signaling traffic.

4This situation can be better handled by partial information Risk MDP tools
(for example, [1]), but this paper works only with full information case.
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fact, there exists a switch on population and a switch on time,
reaching which the destination will be switched on:

non(β, h) := inf
n
{n > hνβ−1

1 }, t∗Dest := inf
t
{Xt ≥ non}.

The above is so because for all n ≥ non, −nν1 + hνβ1 < 0
and hence gν(n, β) ≥ ν1 > 0. It is interesting to note that
destination has a switch on threshold while the source has a
switch off threshold for optimal policies. We will notice in
the coming sections that even for combined source-destination
control, we have same (w.r.t. to the number of infected mobiles)
switch on threshold for the destination.

V. COMBINED SOURCE-DESTINATION CONTROL

The destination always performs power control while the
source can either do the power control or the delivery control.
Accordingly we have two different combined controls.

A. Power Control at Source :

The source and destination are far way and static. Hence
they can be working in very different geographical locations
and hence can experience different path losses. The objective
function to be minimized in this case will be :

min
Λ∈ΩTS ,Υ∈ΩTD

E
[
e−

∑
t νtXt+hd

∑
t ν
βd
t +hs

∑
t λ

βs
t

]
Corresponding risk MDP equations for all n and t ≤ T :

uT+1(n) = 1

ut(n) = min
ν,λ

e−νn+hdν
βd+hsλ

βd
∑

n≤n′≤N

pλn,n′ut+1(n′)


ν∗t (n), λ∗t (n)

= argmin
ν∈ΩD,λ∈ΩS

e−νn+hdν
βd+hsλ

βd
∑

n≤n′≤N

pλn,n′ut+1(n′)


The above optimization can be separated as before,

ut(n) = min
ν∈ΩD

(
e−νn+hdν

βd
)

min
λ∈ΩS

ehsλ
βs

∑
n≤n′≤N

pλn,n′ut+1(n′)∀n.

Thus ν∗t (n) = gν(n, β) where gν is defined in (7). That
is, the destination optimal control will be same as that in
pure destination control. The source control will however be
different, as now, the cost in the new state will depend upon
the new state also via the optimal destination control. The
optimal destination control only depends upon state n and not
on time t directly. Hence, it is possible to define,

nνMD := min
0≤n≤N

{gν(n′, β) = νMD
for all n′ ≥ n} ,

which is the minimum number of infected mobiles for which
the destination forever switches to the maximum contact rate,
νMD

. The number nνMD can easily be estimated as it is result

of a simple optimization defined in (7). In the special case of
hard controls, i.e., when ΩD = {0, ν1},

nν1 = non(β, h) = min
n
{n ≥ hdνβd−1

1 }.

Once the destination forever switches to its maximum rate,
analysis will be similar to that in pure source control and thus,

Lemma 4: Let noff (β, h) := N − hsλβs−1
1 . For all t,

λ∗t (n) = 0, ut(n) = e−(T−t+1)n if n ≥ max{nνMD , noff}

and λ∗t (n) ≥ λ1 for all t if nνMD ≤ n < noff (β, h).�

Numerical Examples: Here we would like to provide insight
into the behavior of the joint source-destination control. In
Fig. 3 we reported on the the effect of the power control
operated at the destination, i.e., based on its dependence on
the parameter hd, on the power control operated at the source
node for β = 1 and hs = 1. In Fig. 3 (left) we observe
the optimal policy: the presence of a switch on policy for the
destination discourages forwarding at later stages in the case
when the number of infected nodes is small. Thus the control
in this case is much different from what happens in the case
hd = 0, where the threshold seen in over the companion graph
in Fig. 1 is decreasing with the state for the same stage lag.

At larger states, there exists the opposite effect due to the
cost of forwarding at the source, so that it is not worth to
forward at too high rate when a large fraction of nodes have
already been infected. Interestingly, the model predicts the
presence of states, namely n = 5, when the optimal control
operates for much longer number of stages at maximum rate.

However, if we increase the cost at the destination, which in
turn means that the destination switches on later, there exists a
sudden increase of the cost function: as seen in Fig. 3 (center)
and (right), once hs passes from 7 to 8, the optimal control
vanishes abruptly, showing a thresholding effect on the cost at
the destination.

B. Delivery Control at Source :
The objective function to be minimized in this case is:

min
Λ,Υ

E
[
e−

∑
t νtXt+hd

∑
t ν
β
t +hsXT

]
Corresponding risk sensitive DP equations for all n are:

uT+1(n) = ehsn

ut(n) = min
ν,λ

e−νn+hdν
β ∑
n≤n′≤N

pλn,n′ut+1(n′)


ν∗t (n), λ∗t (n)

= argmin
ν,λ

e−νn+hdν
β ∑
n≤n′≤N

pλn,n′ut+1(n′)


The above optimization can be separated again and as before,
the destination optimal control is same as that in pure destina-
tion control case, i.e., ν∗t (n) = gν(n, β). Further using similar
logic as before, we have



8

0

20

40

60

0
10

20

0

0.01

0.02

stage t

Combined s.d. power control (source)

state nop
tim

al
 c

on
tr

ol
 λ

*

0 10 20 30 40 500

2

4

6

8

10

12

stage t

X*

Combined s.d. control: optimal state trajectory

hd = 1, 6, 7, 8

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

stage t

λ*

Combined s.d. control: optimal source control

hd = 1, 6, 7, 8

Fig. 3. Effect of hd on the optimal control for β = 1 and hs = 1: combined optimal control source destination at the source node (left), average optimal
state trajectory (center), optimal source control policy (right); settings as in Fig. 1.

Lemma 5: For all t ≥ t∗Dc and for all n ≥ nνMD ,

λ∗t (n) = 0, ut(n) = e−(T−t+1)νMDn+hn,

where t∗Dc is as in Lemma 1 with ν replaced with νMD
. �
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VI. CONCLUSIONS

In this paper we introduced a novel framework for the
control of systems where the objective function has the form of
a risk-sensitive cost. We applied such theory to DTNs, where
delivery probability presents natively a risk-sensitive form. We
provided several variants of the basic control problem where
the success probability is traded off for power consumption
in presence of propagation loss effects. We specialized the
solution to the case when the control is performed at the
source, at the destination or jointly. Compared to existing
works, a whole set of new state-dependent closed loop policies
provide here new insight in the control of DTNs.
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APPENDIX A
Proof of Lemma 1: We start with time t = T − 1. For this
time, one can easily simplify the λ dependent part of (5) as,∑

n≤n′≤N

pλn,n′uT (n′)

=
∑

0≤n′≤N−n

(
N − n

n′

)
qN−n−n

′

λ (1− qλ)
n′

e−(ν−h)(n′+n)

= e(−ν+h)n(qλ + (1− qλ)e
−ν+h)N−n

Now if ν < h then, e−ν+h > 1 and because of monotonicity
of the function λ 7→ e−ν+h + qλ(1− e−ν+h) we have,

λ∗T−1(n) = 0 and uT−1(n) = e−2νn+hn
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If instead ν > h then λ∗T−1(n) = λM for all n. Assume that
at the t-th step ut(n) = e(−(T−t+1)ν+h)n. We can we write
the inductive step

ut+1(n) = min
λ∈ΩS

(
e−νn

∑
n≤n′≤N

pλn,n′e(−(T−t+1)ν+h)n
)

= e(−ν(T−(t+1)−1)+h)n

min
λ∈ΩS

(qλ + (1− qλ)e(−(T−t+1)ν+h)n))N−n

from which again the control, as at stage T − 1, only takes
extreme values. Thus the first part of the lemma is proved.

For the second part, let t1 represent the greatest t less than
t∗Dc, i.e., t1 is the greatest time with (T − t1)ν > h. Define
χ := e−(T−t1)ν+h and note that χ < 1 and that ut1+1(n) =
χn. As before, for any n, the following simplification results∑

n≤n′≤N

pλn,n′ut1+1(n′) = χn (χ+ qλ(1− χ))N−n .

By monotonicity of the function λ 7→ χ+ qλ(1−χ) we have,
λ∗t1(n) = λM and

ut1(n) = ζn(χ+ qλM (1− χ))N for all n where

ζ :=
e−νχ

χ+ qλM (1− χ)
.

Let t2 := t1 − 1. Then by simplifying as before,∑
n≤n′≤N

pλn,n′ut1(n′)

= ζn (χ+ qλM (1− χ))N (ζ + qλ(1− ζ))N−n.

Clearly ζ < 1 and hence for all n, λ∗t2(n) = λM and

ut2(n) = (χ+ qλM (1− χ))N (ζ + qλM (1− ζ))N(
ζe−ν

ζ + qλM (1− ζ)

)n
.

The last sentence of the lemma is proved by backward
induction, using similar logic, all the way till t = 1. �

Proof of Lemma 2: Note that λ∗t (n) =
arg minλ∈ΩS fT−1(λ) with

fT−1(λ) := eQnλ
β−λ[PT−1 + eλ] (8)

We obtain λ∗t with the help of continuous space minimizer
λ∗ := arg minλ∈[0,λM ] fT−1(λ) While fT−1 is minimized
over the interval [0, λM ], we note that it is a product of two
functions. The first function is initially decreasing with λ and
then starts to increase while the second function is always
increasing with λ. The first function at maximum can decrease
till λ̄ := infλ{Qnλβ < λ}, because after this λ̄, both the
functions are increasing with λ. Thus, λ∗ < λ̄. Thus if the
first non zero rate λ1 > λ̄, i.e., if

Qnλ
β
1 > λ1, then arg min

λ∈ΩS
fT−1(λ) = 0, uT−1 = e−2νn,

as in this case fT−1(0) < fT−1(λ1) and fT−1 is increasing
beyond λ1. Therefore,

λ∗T−1(n) = 0 and uT−1(n) = e−2νn for all n ≥ noff (β, h).

For such n, in similar way we can write that,

uT−2(n) = e−ν(n+2N)

[
min
λ∈Ω

fT−2(λ)
]N−n

with

fT−2(λ) :=
(
eQnλ

β−λ[e2ν − 1 + eλ]
)

Now using similar logic as before,

λ∗T−2(n) = 0 and uT−2(n) = e−3νn for all n ≥ noff (β, h).

This continues and we have the first part of the lemma.
When n < noff , Qnλ

β
1 < λ1 and so from (8),

fT−1(0) > fT−1(λ1) =⇒ λ∗T−1(n) = λj for some j ≥ 1.

With otλ(n) := e−νn+hλβ
∑
n≤n′≥n p

λ
n,n′ut+1(n), ut(n) =

minλ∈ΩS o
t
λ(n). The result is proved by backward mathemat-

ical induction: if it holds for some t + 1 with λ∗t+1(n) = λj
for some j ≥ 1, then it holds at t, as for this n

ot0(n) = e−νnut+1(n) = e−2νn+hλβj
∑

n≤n′≤N

p
λj
n,n′u

t+2(n′)

= e−νn+hλβj
∑

n≤n′≤N

p
λj
n,n′o

t+1
λj

(n′)

≥ e−νn+hλβj
∑

n≤n′≤N

p
λj
n,n′u

t+1(n′) = otλj (n),

and so, λ∗t (n) 6= 0 and hence λ∗t (n) ≥ λ1. �

APPENDIX B

Contact times and propagation coefficient:
Let v be the speed of a tagged mobile with range R. Assume

that most of the power is used to send short beacons spaced by
some time interval dt. Case (i): velocities and ranges are such
that all the mobiles in its range are likely to be different than
those in the previous beacon transmission. Then the contact
rate is proportional to the area covered at each transmission
of a beacon, i.e. to R2. The range needed for a given contact
rate is thus of the order of square root of the rate.
Case (ii): If in contrast, the velocities are not so large, then
the rate of contacts is proportional to πRvdt.

Assume we need power p to be able to receive a beacon at
a range R. If the path loss is α then we need to transmit at a
power of pRα. Within case 2, the contact rate is linear in R
so the transmission power needed behaves like pλα (where λ
is the contact rate). If the price is proportional to the power
then we conclude that the price for a given contact rate is of
order of λα. Within case 1, since the range is of the order
of
√
λ, then the power needed to obtain λ is of the order of

λα/2. With cost linear in the power used, this is also the order
of the cost for a rate of λ.


