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Abstract—We consider a time varying wireless fading chan-  to its nonlinearity, makes the study all the more difficult. A
nel, equalized by an LMS Decision Feedback equalizer (DFE). DFE mainly exploits the finite alphabet structure of the hard
We study how well this equalizer tracks the optimal MMSE- decoder output ([4], [12]) and hence the hard decoder cannot

DFE (Wiener) equalizer. We model the channel by an Auto- be i d (i it f is better th t ith
regressive (AR) process. Then the LMS equalizer and the AR e ignored (i.e., its performance is better than a system wi

process are jointly approximated by the solution of a system of @ Soft decoder).
ODEs (ordinary differential equations). Using these ODEs, we For a DFE, statistics of the previous decisions are not

show via some examples that the LMS equalizer moves close to known. Hence till recently, there was no known technique
the instantaneous Wiener filter after initial transience. We also \,hich provides an MMSE DFE (we will call is as DFE-WF

compare the LMS equalizer with the instantaneous optimal .
DFE (the commonly used Wiener filter) designed assuming [OF the rest of the paper) even for a fixed channel ([3], [12],

perfect previous decisions and computed using perfect channel [15]). We addressed this issue in [8] (see details below). Prior
estimate (we will call it as IDFE). We show that the LMS to [8], one usually designed an MMSE DFE by assuming
equalizer outperforms the IDFE almost all the time after initial  perfect decisions (see, e.qg., [12], [17]). For convenience, for
transience. o _ _ the rest of the paper, we will call such a DFE as IDFE (Ideal
Keywords : LMS—DF_E, ODE gpprommatlon, Wiener filter, DFE). In this paper IDFE is also computetsing perfect
Convergence analysis, Tracking performance. channel estimatesThe IDFE often outperforms the Linear
|. INTRODUCTION Wi(_aner filter significantly ([1], [15], [16]). But itis generglly
A ch | i . . cant ¢ of believed that DFE-WF, the true MSE optimal DFE (designed
channel equalizer 1S an important component o %onsidering the decision errors), can outperform even this.
communication system and is used to mitigate the ISI (inter » .o way to obtain an optimal filter is to replace the

gymbol interference) introduced by the char_mel. The e_quqJéedback filter at the receiver by a precoder at the transmitter
izer depends upon the channel characteristics. In a wwelegE

h | d ltinath fadi he ch L eh o §], [15]). This way one can indeed obtain the optimal
channel, due to multipath fading, the channel characteristigg o 1 ¢ this requires the knowledge of the channel at the

change with time. Thus It may be necessary for_ the channﬁ nsmitter. For wireless channels, which are time varying,
equalizer to track the time varying channel in order 9his is often not an attractive solution ([12], [15]).

provide reasonable performance. Some research has been done to deal with the decision

Least Mean Square linear equalizer (LMS-LE) is a simpl,., s " Either the distribution of the decisions errors were

equalizer and is extensively usc_ad ([21’ [5)). For a ﬁxeda proximated in designing an MSE optimal filter (IDFE
channel its convergence to the Wiener filter has been studi ing one such example) or some other appropriate criterion

in 2], [.14] (see glso the r'eferences therein). Its performanqﬁas used to get the optimal filter considering the errors
on a wireless (time varying) channel has been studied the- . isions. For example, in [19], authors approximated

oretically in [71 (se_e al_so [5]2 [10] Where_the_performance[he errors in decisions with an AWGN (Additive White
has been studied via simulations, approximations and UPPEL, ;ssian Noise) independent of the input sequence and

bounds on probability of error etc). obtained a DFE Wiener filter. But as is stated in the paper

Decision feedback equalizers (DFE) are nonlinear equaligqis o hroximation is not realistic. In [4], the authors obtain
ers, which can provide significantly better performance tha&n H* optimal DFE taking into account the decision errors.

LE ([1], [15], [16]). A DFE feeds back the previous deCiSionﬁﬂowever no comparison to DFE-WF was provided.

of the transmitted symbols, to nullify the ISI due to them and possibility of obtaining DFE-WF is via LMS-DFE

makes a better decision about the current symbol. Although, .. convergence of LMS-DFE is not well understood

these equalizers have also been used for quite sometime, dUe . -1 4 fixed channel Trajectory of the LMS-DFE al-

to feedback their behavior is much more complex than that, ... . on a fixed channel. with goft decoderin the

of the LEs. Hence their performance is not well understoo eedbaék loop has been app,roximated by an ODE in [11]

Existence of a hard decoder inside the feedback loop, dg: his ODE does not approximate the LMS-DFE with a.
This research is partially supported by DRDO-IISc program on advancddard d(?COd_er- Beneveniste et al . ([2]) have shown the ODE

research in Mathematical Engineering. approximation of an LMS-DFE with a hard decoder. But the



ODE obtained by them is not explicit enough. FurthermoreZ, = [ 25,05 Zk1 Rk L—1 ] The channel outputs

they do not relate the attractors of this ODE to the DFE-WHhy;, pass through a DFE with a hard decoder. The details
In [8] we showed that the LMS-DFE asymptotically comesabout the equalizer are given below. We use the following

close to the DFE-WF at high SNRs. We also showed thatotations and assumptions.

it can outperform the commonly used Wiener filter IDFE, at , We assume BPSK modulation, i.e; € {+1, —1}.

all practical SNRs. We thus concluded that the LMS-DFE , sequencegs;} and {n;} are IID (independent, iden-

can be used to obtain an equalizer close to the DFE-WF.

In this paper we study the behavior of an LMS-DFE while
tracking a wireless channel. To study the tracking behavior
theoretically, one needs to have a theoretical model of the
fading channel. Auto Regressive (AR) processes have been’
shown to model such channels quite satisfactorily ([10], [13],
[18]). We will model our channel by an AR(2) process as in
[7]. The class of AR(2) processes includes the Random Walk
model and the Filtered Random Walk model ([13]). Thus it
is a very useful model for many wireless channels.

In this paper, we approximate the trajectory of the LMS-
DFE tracking an AR(2) process by a set of ODEs. Using
these ODEs we demonstrate via examples that an LMS-

DFE in fact comes close to the instantaneous DFE-WF after ®

some initial transience. We also show that it significantly
outperforms the commonly used IDFE (even when designed

using perfect channel estimates) at all practical SNRs. An ¢

interesting observation is that, the improvement is significant
even at high SNRs where an IDFE does not suffer from error

propagation.

The paper is organized as follows. Our system model,
notations and assumptions are discussed in Section Il. In
Section Ill, we obtain an ODE approximation for the tracking
trajectory of an LMS-DFE. Section IV provides some exam-
ples verifying our claims, while Section V concludes the

section. Some of the proofs are provided in the Appendices. »

Il. SYSTEM MODEL AND NOTATIONS
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Fig. 1. Block diagram of a Wireless channel followed by a DFE.
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We consider a system with a wireless channel and a DFE (see

Figure 1). Inputs{s;} enter a time varying finite impulse
response channe{lzm}f:‘ol, and are corrupted by additive
white Gaussian noisé¢n,} with variances?. The channel

output,uy, at any timek, is given by,
L—-1

Up = g Sk—12k,l + Nk-
1=0

The time variations of the channel are modeled by an AR(2)

process,
Zy =d1Zg—1 + doZp—o + Wy,

where W}, is an 1ID vector sequence of Gaussian random

tically distributed) and independent of each other.

The equalizer forward filter is given byéy, fg{l,
while the feedback filter is given b{/@bl}lj\jl.
NLEN;+L-1.

The decisions are obtained after hard decoding. Hence
decisions; is given by,

Ny—1 N,
S, = Q Z Gfluk_l + Zebl§k_[ where
=0 =1
_ +1 4if x>0,
Q) = { ~1 if x<0. )

For any vector,z, we use z; to represent its
I component.zf, I < k, represents the vector
T

Ty Th—1 o @y |
The following vector notations are used throughout.

k

Sk 2 SllszLqu’ N, 2 N Np+1
Uk z uﬁfoH’ S’k = §]13—Nb+1a
Xe £ (Uf S PG = ISP OXT)E
oy = 0r0" ", b, = 0by",

0 = [0, 07 |

0, represent the time varying equalizer at tire
LetS := {+1,—1}. For a fixed(0, Z), G}, is a Markov
chain made of the channel inp§f,, channel output/y,
and the decoder outphﬁk,l when the channel is the
fixed vectorZ and the equalizer is fixed &t G, takes
values inSNr x SNo x RNs, whereR is the set of
real numbers. We represent throughout this paper the
current and previous state values of this Markov chain
by the ordered pair&, y), (4,y’) respectively. Heré, j
take values from the discrete part of the state space,
SNt x 8N, while g,/ take values irfRNs .
70 = {20,}]%" represents the convolution of the
channel{z; }and forward filterd;.
B(6,6), B(6,6) are the open and closed balls respec-
tively with centerf and radius).
K(e, M) := {(61,62) € RNs x RN -
e < |91| < M, |92| < M}

Eff represents the expectation of the Markov chain
Gy, for fixed channel, equalizer paii9, Z) when the
initial condition isj, y'.
E; .0,z represents the expectation of the Markov chain
{Gk, 0k, Zy, Z;,—1 } with initial condition (j,',0, Z).

?Jiﬁ(fy) represents the expectation of the Markov
chain pair {(G;,G))} under the initial condition
7,y',1,y. HereG,, is the Markov chain for fixed chan-

variables (Gaussian assumption is not really needed) and nel, equalizer pair(¢,Z) with initial condition 3,3’



while G, is the one for channel, equalizer p&f', Z')
with initial condition i, y. When both the initial po/ndi— approximates the channel trajectory better. We will plot these
tions are same it is simply represented By, "% .

. POZ5(|), 1%%, E%Z respectively represent the

1 to be very small. In this case, the second order ODE

approximations in Section V.
One can easily see that the above system of ODEs have

k—step transition function, the stationary distributionUnique global solutions that are bounded for any finite time

and the expectation wrt to the stationary measure (exi§nore details are in the technical report [9] ).
tence will be shown) for a fixed channel, equalizer pair Let Z(t,to, Z),0(t, t0,6) represent the solutions of the

0, 2).

ODEs (5), (6) with initial conditionsZ () = Z, 0(ty) = 0,

« We use a DFEf, to track the wireless channel modeledand 7 (to) = 0 whenever the channel is approximated by a
by an AR(2) process,Z; }. The LMS algorithm is used second order ODE.

to continuously update the equalizérto cater to the

time varying channel.
0 — pHyg, (Gx) where
X (X'0—5s).

Or+1
Hqp(G)

IIl. ODE APPROXIMATION

2

We can rewrite the channel AR(2) process (1) as,

(1 — dQ)Zk +doZy_1 + M(Wk + nZk>- (4)

Zp1 =

©)

We will show below that the trajector{fy., Z;.) given by

equations (4), (3) can be approximated by the solution of the

following system of ODEs,

®)

(6)

(I+d2) Z(t) = h(Z(t)), ifdye(-1,1],
dzj,gt) = w2, ifd =1,
T2 2w = hzw),
if ds is close to —1,
() = m(o), (),
where
WZ) £ EWi+nZ)=EW)+nZ,
h(6,2) = B [Xi (XL0—s1)]
= —Ruu(0,2)0+ Ryus(0, 2),
_— di+dy —1
w7
R..(0,Z2) = E%Z(XX"),
R.s(0,Z2) = E%#(Xs).

In (5), whend, is close but not equal te-1, two ODEs ap-

Let Vi2(Ze,01) and V(£)2(Z(uok, 0, Z),0(uk, 0,6)),
wherea =1 if Z(.,.,.) is the solution of a first order ODE
and = 1/2 otherwise. We prove Theorem 1, as in [7].

Theorem 1: For any finiteT > 0, for all § > 0 and for
any initial condition (G, 0, Z), with doZ_1 + d1Zy = Z,

Z (to) = 0 whenever the channel is approximated by a
second order ODE anéh = 6,

Pg 70 sup |[Vy—=V(k)|>¢dp —0,

{1<k< %

ne

asu — 0, uniformly for all (Z,0) € @Q, if @ is contained

in the bounded set containing the solution of the ODEs (5),
(6) till time T

Proof : Please see the Appendix A.

Thus we obtain the ODE approximation for the LMS-
DFE tracking an AR(2) process. The approximating ODE
(6) suggests that, its instantaneous attractors will be same
as the LMS-DFE attractors when the channel is fixed at the
instantaneous value of the channel ODE (5) (as in [8]). We
have shown in [8] that these LMS-DFE attractors are close
to the DFE-WF at high SNRs. Hence the ODE suggests that
the LMS-DFE may move close to the instantaneous DFE-
WFs. We will in fact see that this is true for the examples
we study in the next section.

One can easily see that the solution of the channel (AR(2)
process) ODE is,

Cleﬁt _ E(W)

n
EW) n 7& 07d2 € (_17 1]1
T+ds t + Cla

n= Ode € (717 1]3
Crcosh(\/n t) EW)

_77

proximate the same AR(2) process. This is an important case
and results when a second order AR process approximates
a fading channel with a U-shaped band limited spectrum.
It is obtained for small values of ;7" where f; is the
maximum Doppler frequency shift an@ is the symbol
transmission time. For example if;7 equals0.04, 0.01

or 0.005 the channel is approximated by an AR(2) pro-
cess with(dy,ds, ) equal to (1.9707,—0.9916,0.00035),
(1.9982, —0.9995, 1.38¢ %) and(1.9995, —0.9999, 8.66¢ %)
respectively (see e.g., [10])). One could approximate such
an AR(2) process with the first order ODE of (5). However
this approximation will not be very accurate and will require

77>07d2 = _17
Cheos(y/In] 1) — £02,

n <O7d2 = _17 (7)
E(;/V) t2—|—01,

n= 07 d2 = 717
Clef2at+ Eg‘;v) t7
n=0,ds close to — 1,

Cre~tcos(y/f = a? 1) - E0,
n < —a?,ds close to — 1,
Cre~%cosh(\/n+a? t) — %,
otherwise,



where the constanf’; is chosen appropriately to match thethe same figure. We can see that the ODE approximation is
initial condition of the approximated AR(2) process. quite accurate for all the co-efficients. The approximation for
One of the uses of the above ODE approximation is thahe feed-forward coefficients is better than for the feed-back
we can approximately obtain the performance (e.g., BERpefficients. We also see that the LMS-DFE is very close
MSE) of our LMS-DFE at any time by using the trajectoryto the instantaneous DFE-WF after some initial transience.
of this ODE. Of course, obtaining BER theoretically is stillFurthermore, the IDFE trajectory is away from the DFE-WF
a problem because the BER of a system with a fixed knowin most of the cases. We also plot the instantaneous BER
channel and a fixed DFE is still not available. But our ODEand MSE of the IDFE and the LMS-DFE (both calculated
approximation is still useful because one can obtain thieom the corresponding ODE approximations) in last two sub
performance (transient as well as stationary) of the LMSfigures of Figure 2. One can see a huge improvement (upto
DFE with only one simulation, which would not be possible35%) of LMS-DFE (also of DFE-WF) over the IDFE both

otherwise. in terms of BER, MSE after the initial transience (Figure 2).

On the other hand, performance of the LMS-DFE is quite
IV. EXAMPLES close to that of the DFE-WF.
We use the ODE approximation of the previous section to

obtain some interesting conclusions. The ODE approxima- Channel Trajectory Feedforward filter trajectory

tion gives accurate deterministic approximation of the LMS-  * o ey e I

DFE and the channel trajectory for practical values of step 0‘4& g rme e

sizes. Hence as commented above, using these ODESs one can x& ot

get good estimates of instantaneous performance measures” | e

like, Bit Error Rate (BER) and Mean Square Error (MSE) , __ __— _—————— |"%

for almost all realizations of the LMS-DFE and the channel 7 T

trajectory. Using the channel ODE, one can also obtain the - - s

same performance measures for instantaneous IDFE. Then,,

5000 10000 15000 "o 5000 10000 15000

one can compare the IDFE and the LMS-DFE along the

entire time axis. Feedback filter trajectory Feedback filter trajectory
In all the examples below, we estimate the DFE-WF as °’ 02 =

in [8] (directly using steepest descent algorithm by approxi- e e

mating the gradient of the MSE with difference of estimated e s

MSEs at two close points divided by the distance between thes*=_ ™" |- oz

same two points). In the figures solid line, dash dot line, dash e

dash line respectively represent the true coefficient trajectory;s; #

the ODE approximation and the IDFE trajectory respectively """"

while the stars represent the DFE-WFs. ot
To begin with we consider a stable channel (for which all

the poles are inside the unit circle), BER Versus Time MSE Versus Time

0
5000 10000 15000 0 5000 10000 15000

Zi = .A995Z;_1 + 0.5Z;_5 + 0.0001W.

Here W}, is a Gaussian IID random vector with independent , < we 07
components of unit variance and its mean given by, '

[026 034 025 0064 —0.13 —0.19 —0.16
0 0.064 0.064 ].

0 5000 10000 15000 ~o 5000 10000 15000

. . . . Fig. 2. A Stable channel with d = 0.4995,
We consider a five tap feed-forward filter and a five tanQQ — 05 pu = le* and mean a constant multiple  of

feed-back filter. The LMS step-size equals= 0.001. (In [0.26, 0.34, 0.25, 0.064, —0.13, —0.19, —0.16, 0, 0.064, 0.064].
theory it is assumed that the step-sizeof LMS is also

equal to the channel step-size. However one can absorb the ) ] o
difference into one of thef; (), H() functions.) The noise Next, we consider a marginally stable channel in Figure 3.
variances? = 0.05. We plot some of the channel andZk = 1.9999998Zy 1 — Zy 5 +0.0000001W}, (One can see

the equalizer filter coefficient trajectories along with theifrom (7) that,/ “++£2=1 gives the period of oscillations),
ODE approximations in Figure 2 (the trajectories for thds generated as before. Again there are five taps in the feed-
other co-efficients behave in the same way but we do nédrward filter and five in the feed-back filter. The step size
present due to lack of space. These are provided in [9f the LMS equalsy = 0.001. Here the channel trajectory
which also contains additional examples). We start the LM approximated by a cosine waveform. From Figure 3 we
and the ODEs at time = 0 with the instantaneous IDFE. can make the same observations as in the stable case. In

We also plot the instantaneous DFE-WF and the IDFEs iparticular we see that the LMS-DFE has BER and MSE upto



50% less than for the IDFE. We also see that the LMS-DFE Channel Trajectory
is always (after initial transience) very close to the DFE-WF — Actual
while the IDFE stays quite away. This again explains the

0.8 — Actual
poor performance of the IDFE (in terms of BER, MSE) over /\A/v oo

the LMS-DFE after initial transience. T 7 T 7 - ODE

VAVAVAVA

3000 6000

0.5

Channel Trgjectory —s Feadforward filter trgjectory

N E
/

0.6

Feedforward filter trajectory

Feedback filter trajectory

—LMS
—LMS
-'-0DE
--ODE
= - -IDFE
+7| |-~ -IDFE
/

* WF
+ WF

0 2000 6000 0 3000 6000

BER Versus Time MSE Versus Time

0.14

05 1 15 2

- - IDFE
—LMS
+ WF

0.1
0 3000 6000

Fig. 4. A Stable channel with mean a constant multipl¢0of1, .82, .41].

It is obtained forfyT" = 0.001, i.e.,d1 = 1.999982, do = —.9999947
0 04 08 12 16 2 04 05 1 15 2 andp = 1.3997e — 010 .
x 10 x 10
Fig. 3. A Marginally stable channel withp = le 7,
dy = 19999998, do = -1 and mean a constant multiple of V. CONCLUSIONS

[0.26, 0.34, 0.25, 0.064, —0.13, —0.19, —0.16, 0, 0.064, 0.064].

We study an LMS-DFE tracking a wireless channel, ap-
proximated by an AR(2) process. We considered a long-
Finally, in Figure 4, we consider a stable channel wittptanding problem of tracking the true MSE optimal DFE.
dy close to—1 (from the Figure, it actually looks like a We approximated the LMS-DFE trajectory with the solution
marginally stable channel but its magnitude is reducing & @ system of ODEs. Using this ODE approximation, we
a very small rate}£% asd, is very close to -1). In this Showed that the LMS-DFE comes close to the instantaneous

case, as is shown theoretically, a better ODE approximatidAFE-WF after the initial transience. We also saw that the
is obtained by a second order ODE. Here, the channBfrformance measures BER and MSE of the LMS-DFE are
trajectory is approximated by an exponentially reducin%\;“te close to that of the DFE-WF after the transient period.
cosine waveform. We considered the 2Rprocess, which We thus, conclude that the LMS-DFE can be used to track
approximates the fading channel with band limited and uthe DFE-WF.
shaped spectrum and received wWithil’ = 0.001. One can Furthermore, we also compared the LMS-DFE with IDFE,
see that, the LMS-DFE once again tracks the instantaneoil¢ popular WF designed assuming perfect past decisions
DFE-WF after initial transience (in this case more than halfalso designed from perfect channel estimate). IDFE is shown
of the first cycle, as this is a fast varying channel) and thde be far away from the DFE-WF (also from the LMS-DFE)
the IDFE performs poorly in comparison with the LMS-DFEtrajectory throughout the entire time axis. Its performance
and the DFE-WF. (BER, MSE) is substantially worse than that of the DFE-
WF and the LMS-DFE.




APPENDIXA Verification of Assumption B.3a :

Proof of Theorem 1 : We consider a general system (13)- One can easily see that ft#, Z), (¢', Z') from a compact

(14) in Appendix B and prove the ODE approximation forSet,Q, there exists a consta6t depending upoi) such that,

this in Theorem 2. The channel, equalizer p@y, Z;,) given  for all & > Ny,

by equations (4), (3), is a specific e>_<amp|e of _the genera’Hle(Gk(Q’ Z)) — Hig(Gy (8, 2)))| (12)

system (13), (14). Thus Theorem 1 is proved if we show L

that (0, Z.) given by (4), (3) satisfies the assumptioghd- < Cl0,2) = (6, Z')| (1 + [ Nil)-

A.3 andB.1-B.4 of Theorem 2 in Appendix B. Using limit (10) and the upper bound (12) we get,
The AR(2) process Zi} in (4) clearly satisfies the as- L

sumptionsA.1 - A.3 as is shown in [7]. If(6x, Z;) stay 01(0,2) — (6", 27)]

constant and_ equa(IH,Z)_,_ Fheg in} is a Markov _chain lim (P"’ZkHw(j,y’) _ Pe',z/kle (j,y’))‘

whose transition probabilitie®’“ (G, A) are a function of k—o0

(0, Z) alone. Thus conditioB.1 is satisfied. One can easily

see that condition8.2, B.4 are satisfied by the LMS-DFE

(the details are in [9]). Next we verif3.3 (More details of

mEG 5 Hg(Gr(8, 2)) — Hio (Gu(0, Z’))}‘

this proof are in [9]). < C0,2)- (9,2,
Verification of Assumptions B.3(b) and B.3(c)i : whenever(0, Z), (¢', Z') are in a compact se}.
One can clearly see that for all initial conditiong/’, 7,y  Verification of Assumption B.3(c)ii :
and all equalizerg, Note that,
0.2 17 P C if p>Nj Py 2 (i y) = P2 H (') — h(0, 2) V.
EVZ (U7 < { P i nen. ® 0.2(7. /) kzx{ w0G.y) — h(9,2)}

0.2 0 ¢ if p> Ny
S Ne(s Un - Un S - 9
Bl " { C'ly—yl if p<NO

?

Hence, for any(d, Z), (¢’, Z’) pair and anyj, y’,

’PG’ZVG,Z(j» y') — P % vy (3, yl)’
whenever the channel € B(0,¢') for any ¢’. Using (8),

(9) and Lemma 1, 2 of the Appendix C we show that all
the hypothesis required for the Proposition 2, p.253, [2] are |/
satlsf|eo! in [9]. By this Proposition (which is reproduced in +(n—1)|hi(0,Z) — hi (0, Z")]
Appendix D of [9]), n

k . 1 ok .
(PG’Z Hio(j,y') — P*7 Hle(l,y))‘

’ Ik 7 /k
+ Z(Pg Z ng(jay/)ipe Z Hl@’(jay/))|

. k )
hi(0,2) = klirr;o P2 Hi4(j,9/), (20) —
exists for every channel, equalizer pdif,Z), and for k ,
> bkl b, Z) ok - Z{PO’Z Hw(J,y’)—h(&Z)}
any initial conditionj,y’. Please note here thd”“" as =

mentioned in Section Il represents thestep transition
function of the Markov chain{G}}, with the channel and o 7k o, L
the equalizer fixed &, Z. Also, by the same Proposition, + Z {P Hig (G y') = W', Z )} :
for some constant§’ < oo, ¢ >0 andp < 1, k2n

A The second term is bounded by a constant multiple of the
hi(6,2) - P"? Hle(l}y)’ <CpP+1yl"). (1) term,n|(6,Z) — (¢, Z')|, ash, is locally Lipschitz (proved
in the previous para). Using the upper bound (11), one can
see that the fourth and fifth terms are bounded by a constant
multiple of the termp™(1+y’|?). Without loss of generality,
we can further choosg > 2. The third term can be bounded
because Hyy(i,y) — Hig: (i,y)| < C|y|* |0 — 6’| whenever
for all channel, equalizer pair¢y, Z), which satisfy the ¢ ¢’ come from a compact set and becad%géy’,zlk ly[* <
assumptiorB.3b. Finally, by uniformity of all the inequalities o (1 4 g b H ¢ '
forany 6 € K(e, M), Z € B(0,¢'), assumptiorB.3(c)i is ( +1y] ) or any k. Hence we get,
satisfied, i.e.,

We also get the existence of,

vo2(G) 2 S POZN(HN(0,G) — (6, 2)),

k>0

’ ’ . 2
_ ‘PG’ZVG,ZU»?J/) - P77 Vaf,Z/(J,yl)’
ve,z (i, y)] < Co(1+ [y|?), with Cg < oo n . . )
S Ban‘PG7Z ng(j,y’)—PG Z Hl@(jay/)‘

In [9], we showed that for every fixe¥, Z), a unique P

stationary measure of the Markov chair, exists and is ) o2 ) 2
continuous in(4, Z). Henceh, (0, Z) = E%Z Hy,. + (an 1(0,2) = (¢',Z")]” + Bsp ”) I+ 1Y)



Fix ¢ > 0, M > 0, € > 0. Define We make the following assumptions for the system (13) :
A > = .

r=inf, {(0n, Z,) ¢ K(e, M) x B(0,¢')}. By Lemma A.1 {W,} is an IID sequence.

3 and 4 for anym, A2 h(Z)=E[H (W, Z)] is aC* function.

A.3 For any compact s&, there exists a constadt(Q),
. < Om+1,Zm+1
Biyo,zo{I(m+1<7)|P Vo1, Zmss (Gme1) such that E|H(Z,W)]> < C(Q) forall Z € Q.

—P""”ZT'Zz/,gmzm (GT,L+1)|2} where the expectation is taken Wit .
We make the following assumptions for (14), which are

2 0.5 4 2 0.5 2q
< BinCsp (1 + 1yl ) + Ban"Copt (1 +1yl ) similar to that in [2]. LetD c R% be an open subset.
4 Byp?" (1 + ‘y|2Q) B.1 There exists a familf{ P 4} of transition probabilities
Pz (G, A) such that, for any Borel subsét,
< B (712/10‘5 +p2n) (1 i |y|2q> )
P[Gn—i-l S A|f7v] = PZ”,On(Gna A)
-1
NOW, we Choose,n - .loguo{). (logp2) —‘ ’ Where PL‘-I Wherefkéo—(a(h ZO; Zl7 Wla WQ, Ty Wka G07 G17 ) Gk)
represents the smallest integerz. Then, This in turn implies that the tupléGy, Ok, Zi, Zr_1)
logp®™ > logu®®. forms a Markov chain. .
_ B.2 For any compact subsé of D, there exist constants
Hence we have for some constartdepending upomp, C1, ¢ such that for all(Z,6) € D we have
n2u®s + p*n < C (1 + |logu0~5}2) ul® + pufe, |H\(Z,0,G)] < Ci(1+]|G|™).

Then for any\ < 0.5 (aslim,_.o 2 (log(x))? = 0 whenever B.3 There exists a functioh; on D, and for each?, ¢ € D
a > 0, by applying L'Hospital’s rule twice), a functionvz ¢(.) such that
a) hy is locally Lipschitz onD.

Om+1,Zm+1
Bryo. 2o 1(m + 1<) [Py Goni) 5 (1~ Py oz ol@) = Hy (2,0, G) — ha(Z,6).

—POmZmy, (Gmﬂ)f} c¢) For all compact subsets Q of D, there exist constants
, N 2 C3,C4,q3,q4 and X\ € [0.5,1], such that for all
< B'(Mu (1+Iy| ) 7.0,7' .6 €Q
We have shown in the technical report [9] that the ODEs Dlrz6(G)l < Cs(1+1G|%), ,
(5), (6) have unique bounded solution for any finite time i) Eqa{|Pz..0.v2. 0{Gr) — Pz,.0.vz, 100 (G|
interval. Hence the condition (17) given below is satisfied Ik <7(Q)} < Cyi (14 |G|™) p.
for any finite timeT" for some pair of compact se3;, Q2. B.4 For any compact sef) in D and for anyq > 0,
Thus all the hypothesis of Theorem 1 are satisfiedll there exists au,(Q) < oo, such that for alln,G,
A= (Z,0)eR?
APPENDIX B : ODE APPROXIMATION OF A GENERAL Eca{l(Zy,0r € Q,k <n)(1+|Gpnt1]9)}
SYSTEM < (@) (1 +1G17),

We consider the following general system, . .
where Eg 4 represents the expectation taken with

Zikyr = (1—=do)Zy +doZi—1 + pH(Zi, Wi), (13) Go, Zo,00 = G, Z, 0.

Opt1 = Ok + pH1(Zy, 0k, Gryr), (14) Let Z(t,t0, Z),0(t,to,0) represent the solutions of the
ODEs (15), (16) with initial conditionsZ (ty) = Z, 0(ty) =

0. For second order ODEs the additional initial condition is
n%iven byZ (to) = 0. Let @, and Q> be any two compact
Subsets of), such that); C Q) and we can choosea > 0
such that there exists afy > 0 satisfying

where equation (13) satisfies all the conditionsAiri-A.3
and the equation (14) satisfies the assumptidisB.4, both
given in the next para. We will show that the above equatio
can be approximated by the solution of the ODE’s,

(1 +d2)22 t) = nZ®), ifdye(-11], d((Z(t,0,2),6(t,0,6)),Q5%) > &, (17)
d“Z(t .
dtg() = h(Z()), ifdy=—1, for all (Z,6) € Q; and allt, 0 < t < T. We prove
2Z(1) Theorem 2, following the approach used in [2]. Parts of
+m Z (@) = h(Z(@t), ifdyiscloseto—1 i - 2
a2 m ) 2 » this theorem are presented in [7]. L&,=(Z,0;) and

(15)  V(k)2(Z(u"k,0, Z),0(uk,0,0)), wherea = 1 if Z(.,.,.)

is solution of a first order ODE antl/2 otherwise.
0(t) = h(Z(t),00), (16) Theorgm 2: Assume,E|H(Z,W)|* < C1(Q) for all Z
in any given compact sef) of D. Also assumeA.1-A.3
where the functior; is defined in the assumptions givenand B.1-B.4. Furthermore, pick compact sefs, Q», and
below andh(Z) = E[H(Z,W)], with 1, = +52. positive constantd’, &, satisfying (17). Then for alf < &,



and for any initial conditionG, with Z_, = Z, = Z, 7z [8]
(to) = 0 (wheneverZ(.,.,.) is solution of a second order
ODE), andf, = 4,
Pg,z0q sup Vi, =V(k)| =6 —0aspy—0

1<k< | % | [9]
uniformly for all Z,6 € Q.
Proof : The proof is given in the Technical Report [6].

[10]

APPENDIXC
In this Appendix we state the Lemmas used in Appendix
A. Their proofs are provided in [9]. [11]
Lemma 1: Let A(n) {S*k £S80k=1,2,-- ,n}
Given €, M, ¢, there exist positively < oo, andp < 1
such that, for allZ € B(0,€¢'), 0 € K(e, M) and alln,

02 Gy (A) < Cap™

(4,9);(4,y")

[12]

(13]

[14]

Lemma 2: For anyé, Z, for any pair of initial conditions
(4,¥"), (1,y) and for anyn > Ny + Nz + N,

({$s1 =805, £5}) =0

[15]
0,2 [16]
(3:9");(4,9)
[17]

Lemma 3: There exists a constant; such that for all,

for all initial conditions(i, y), (6, Zo) € K(e, M)xB(0,€¢'),  [18]

Ei,y;Go,Zo {I(m +1< 7—) ‘Pem,+1,Z7n,+1nme+l (Gm+1)

n 2 5
_ pOm:Zm H19m+1(Gm+1)‘ < Csuld (1 + |y|4) .

Lemma 4: For any givene, €', M, there exists a constant
Cs > 0 such that for all initial conditiongi,y), (6o, Zo) €
(K(e, M) x B(0,€')) and for anyq > 0,

Biyio 70 {0+ 1< 7) (01, Znsr) = O Zon)
U+ |Unia )} < Con® (1+1yl")
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