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Abstract— We consider a time varying wireless fading chan-
nel, equalized by an LMS linear equalizer. We study how
well this equalizer tracks the optimal Wiener equalizer. We
model the channel by an Auto-regressive (AR) process. Then
the LMS equalizer and the AR process are jointly approximated
by the solution of a system of ODEs (ordinary differential
equations). Using these ODEs, the error between the LMS
equalizer and the instantaneous Wiener filter is shown to
decay exponentially/polynomially to zero unless the channel is
marginally stable in which case the convergence may not hold.
Using the same ODEs, we also show that the corresponding
Mean Square Error (MSE) converges towards minimum MSE
(MMSE) at the same rate for a stable channel. We further show
that the difference between the MSE and the MMSE does not
explode with time even when the channel is unstable. Finally we
obtain an optimum step size for the linear equalizer in terms of
the AR parameters, whenever the error decay is exponential.

Key words: Fading channels, LMS Linear equalizer, track-

ing performance, ODE approximation.

I. INTRODUCTION

A channel equalizer is an important component of a

communication system and is used to mitigate the ISI (inter

symbol interference) introduced by the channel. The equal-

izer depends upon the channel characteristics. In a wireless

channel, due to multipath fading, the channel characteristics

change with time. Thus it may be necessary for the channel

equalizer to track the time varying channel in order to

provide reasonable performance.

Least Mean Square linear equalizer (LMS-LE) is a simple

equalizer and is extensively used ([1], [3]). For a fixed

channel its convergence to the Wiener filter has been studied

in [1], [10] (see also the references therein). For a time

varying channel, tracking behavior (how well LMS-LE tracks

the instantaneous Wiener filter) of the algorithm is also

important ([3]). However, although tracking of a channel

estimator has been extensively studied (see, e.g., convergence

analysis in [1], [6], [9], [14], and variable step size algorithms

in [2], [7], [13] and references therein), we are not aware

of theoretical studies on the tracking behavior of the LMS-

LE (although various studies have compared their behavior

with other schemes via simulations, approximations and

upper bounds on probability of error and found that the

tracking behavior of an LMS-LE may not be comparable

to some others, see, e.g., [3], [5], [11]). Since LMS-LE is
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an important equalizer, it is certainly useful to obtain its

tracking behavior theoretically. For example our study will

show a dependence of its tracking behavior on certain system

parameters which might not have been known before.

To study the tracking behavior theoretically, one needs

to have a theoretical model of the fading channel. Auto

Regressive (AR) processes have been shown to model such

channels quite satisfactorily ([8], [12]). Infact, it is sufficient

to model the fading channel by an AR(2) process ([5], [8],

[12]). Therefore in this paper we limit ourselves to AR(2)

processes. We will show that the trajectory of an AR(2)

process can be approximated by a set of ODEs. Using these

ODEs we show that the AR process can be approximated by

an exponential/polynomial or a cosine waveform. We will

also approximate the trajectory of the corresponding LMS-

LE by another ODE. Next we will study the error process of

the difference between the LMS-LE and the corresponding

Wiener filter using the ODEs obtained and show that the

error decays exponentially/polynomially with time unless

the channel is marginally stable in which case it may not

converge. We also show that the difference between MSE

and the MMSE (MSE corresponding to the Wiener filter)

decays exponentially at the same rate for a stable channel

and does not explode with time for an unstable channel .

Later on, for the cases, where the decay is exponential (this

includes all stable and a class of unstable AR(2) processes),

we obtain an optimum step size for the linear equalizer.

The paper is organized as follows. In Section II we explain

our model. Section III provides the ODE approximation

for the processes of interest. Section IV uses the ODE

approximation to provide exponential/polynomial decay of

the difference between the LMS-LE and the Wiener filter. We

also obtain an optimum step size in this section. Section V

provides examples to demonstrate the ODE approximations.

Section VI concludes the paper. The appendices contain

some details on the proofs.

II. SYSTEM MODEL AND NOTATIONS

We consider a system consisting of a wireless channel

followed by an adaptive linear equalizer. At time k, the input

to the channel is sk, the channel impulse response is Zk

(assumed a time varying finite impulse response linear filter

with length, L), and the channel output is yk where,

yk =
L−1
∑

i=0

Zk,isk−i + nk.

Here Zk,i is the ith component of Zk and nk is a zero mean

AWGN with variance σ2
n. We also assume sk to be an IID
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sequence from a finite alphabet with zero mean which is

independent of nk and Zk.

The adaptive equalizer at time k, is an FIR linear filter θk

of length M . The linear equalizer update equation is ,

θk+1 = θk − µYk(θT
k Yk − sk). (1)

where, the length M channel output vector Yk can be written

as Yk = πkSk + Nk, where Sk, Nk are the appropriate

length input and noise vectors respectively. We assume

E
[

SkST
k

]

= I . The convolutional matrix πk depends upon

channel values Zk, · · · , Zk−M+1 and is given by










Zk,1 Zk,2 · · · Zk,L 0 · · · 0
0 Zk−1,1 · · · Zk−1,L−1 · · · 0

0
...

0 0 · · · Zk−M+1,1 · · · Zk−M+1,L











.

We model the channel update process by an AR(2)

process,

Zk+1 = d1Zk + d2Zk−1 + µWk (2)

where Wk is an IID white noise error sequence, independent

of {sk} and {nk} processes. We assume E|Wk|4 < ∞.

An AR(2) process can approximate a wireless channel quite

realistically ([12], [5]). The class of AR(2) processes include

the Random Walk model, the Filtered Random Walk model

(when d1 + d2 = 1 and |d2| ≤ 1) and the Autoregressive

Second Order model (d1 = 2ρcosw0, d2 = −ρ2 with

ρ and w0 representing the degree of damping and the

dominating frequency respectively) ([8]). The analysis that

follows considers an AR(2) process. The general ideas of our

approach can be extended to an AR(n) process, n > 2 (see

[4] for comments).

III. ODE APPROXIMATION

Consider the AR(2) process (2). Define Zt = Z[ t
µn ], t ≥

0, where [x] represents the integer part of x. Here n = 1 for

d2 ∈ (−1, 1] and n = 1/2 if d2 = −1. In Appendix A we

will show that for µ small, for any T < ∞, {Zt, 0 ≤ t ≤ T}
can be approximated by the solution of the ODE,

�

Z (t) = 1
1+d2

[E(W1) + ηZ(t)] if d2 ∈ (−1, 1],
d2Z(t)

dt2 = E(W1) + ηZ(t) if d2 = −1,
(3)

where η
△
=d1+d2−1

µ , when Z0 = Z−1 = Z(0) (and
�

Z (0) = 0
for d2 = −1). The solution of the above ODEs is given by,

Z(t):=































C1e
η

1+d2
t −E(W1)

η η 6= 0, d2 ∈ (−1, 1],
E(W1)
1+d2

t +C1 η = 0, d2 ∈ (−1, 1],

C1cosh(
√

η t) −E(W1)
η η > 0, d2 = −1,

C1cos(
√

|η| t) +E(W1)
η η < 0, d2 = −1,

E(W1)
2 t2 +C1 η = 0, d2 = −1.

(4)

Now we consider the linear equalizer (1). In Appendix B

we will show that for any finite T , the process {(Zt, θt), t ≤
T} (with θt := θ[ t

µ ]) can be approximated by the solution

of system of ODEs (3) and (5), (Ryy(.), Rys(.) are defined

in the Appendix B)

�

θ (t) = −Ryy(Z(t))θ(t) + Rys(Z(t)). (5)

When η < 0 and d2 ∈ (−1, 1], i.e., when the channel

is stable, it is easy to see that the channel ODE (3) has a

unique global attractor. In the following Lemma we show

that the equalizer ODE (5) also has a unique global attractor

(the proof is provided in [4]).

Lemma 1: With η < 0 and d2 ∈ (−1, 1], if Z∗ is the

unique attractor of ODE (3) and θ∗ is the Wiener filter

corresponding to channel Z∗, then θ∗ is the unique globally

stable attractor for ODE (5).

IV. PERFORMANCE ANALYSIS

We will first show that a linear equalizer tracks the

instantaneous Wiener filter of the channel, whenever the

channel is not marginally stable. We study this performance

using the solutions of the ODEs (3), (5) which approximate

the trajectories of the channel and equalizer closely for

small values of µ. We will also show that the difference

between the instantaneous MSE of the linear equalizer and

the instantaneous MMSE converges to zero.

Towards this end we first define the error process E(t)
as the error between the equalizer θ(t) and the Wiener filter

corresponding to the channel value at t, i.e.,

E(t)
△
= θ(t) − θ∗(t) where

θ∗(t)
△
= [Ryy(Z(t))]−1Rys(Z(t)).

We have proved the following theorem (see [4]).

Theorem 1: The process E(t) decays exponentially with

time:

|E(t)| ≤ c1e
−σ2

nt + c2e
−|a|t,

whenever Z(t) = C1e
at + C2. It decays

linearly/polynomially with time :

|E(t)| ≤ c1e
−σ2

nt +
c2

tn
,

whenever Z(t) = C1t
n + C2, n = 1 or 2. �

Let M(t) define the difference between the MSE and

MMSE at time t, i.e.,

M(t)
△
= [θ(t)Ryy(Z(t))θ(t) − Rys(Z(t))θ(t)]

− [θ∗(t)Ryy(Z(t))θ∗(t) − Rys(Z(t))θ∗(t)] .

We have proved that (details in [4]), the process M(t) decays

exponentially with time whenever Z(t) = C1e
at + C2, with

a < 0 (i.e., for stable channels) :

|M(t)| ≤ c′1e
−σ2

nt + c′2e
−|a|t.

For unstable channels (exponentially / polynomially raising

channels) we have shown that M(t) does not explode with

time, if required by using the Optimum Stepsize given below

(details are in P.18, [4]).

When d2 = −1 and η < 0 (a marginally stable case) the

channel is approximated by a cosine waveform. Then we will
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see in Section V that the error may not decay to zero. For

all other cases, the above theorem shows that the processes

E(t) reduces to zero with time.

Optimum Stepsize for the equalizer :

With d1 + d2 6= 1 and d2 6= −1 (either stable or unstable

channels), we see that the error decays exponentially at a

rate, which is equal to the minimum of σ2
n, |d1+d2−1|

µ(1+d2)
. By

introducing a constant r in the equalizer adaptation as below,

θk+1 = θk − µrYk(θT
k Yk − sk),

we can see that the error Er(t) (we have introduced the

subscript r to show the dependence on factor r) decays as,

|Er(t)| ≤ c1exp−rσ2
nt + c2exp

− |d1+d2−1|

µ(1+d2)
t
.

Now the new error decay rate is equal to minimum of

rσ2
n, |d1+d2−1|

µ(1+d2)
. If σ2

n << |d1+d2−1|
µ(1+d2)

, the error decay rate

in Theorem 1, which equals minimum of {σ2
n,

|d1+d2−1|
µ(1+d2)

},

reduces considerably. This can be compensated by choosing

an appropriate scaling factor r. Hence one can choose

optimum

r∗ = max

{ |d1 + d2 − 1|
σ2

nµ (1 + d2)
, 1

}

,

to achieve the fastest decay in the error. But please note that

this decay only considers the first order analysis and hence

if the value of r is very large such that the overall equalizer

adaptation stepsize r∗µ is large then, one must choose a

smaller r.

Similar optimum stepsize can be obtained even for unsta-

ble channels, given by Z(t) = C1expat + C2 with a > 0.
In Section V, in Figure 4, we have shown the improvement

obtained, with µ∗ = r∗µ as stepsize.

Complex Signals and Channel :

The above analysis can be extended to a system with

complex input signals and a complex channel. Towards this,

we will have to convert each complex vector into a double

dimensional real vector and then get the corresponding ODEs

in the real domain. We have carried all these operations in

Section V of [4] and have shown that the norms of the

processes E(t) and M(t) behave in the same way as in the

case of real signals.

V. EXAMPLES

In this section we illustrate the theory developed so far

using some examples. We consider a three tap channel with

a two tap equalizer. Wk ∼ N (Mn, 1) for varying values of

mean Mn. Input is BPSK.

In Figure 1, in the first subfigure, we plot the actual

trajectory and the ODE solution of the AR(2) process. In

the second subfigure of Figure 1, we plot the corresponding

equalizer trajectory and the ODE solution for σ2
n = 0.1

and 0.5. We also, plot the instantaneous Wiener filter in

the same figure. In Figure 2, we plot the same (the real

and complex parts of the channel and equalizer coefficients),
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Fig. 1. Trajectories of AR(2) process (3 tap channel), Equalizer coefficients
along with the trajectory of Wiener filter
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Fig. 2. Trajectories of Complex Channel and Equalizer coefficients

for a complex channel with BPSK input for σ2
n = 0.5. The

channel parameters are provided in the two figures.

It is clear from both the figures, that the ODE solutions

approximate the actual trajectories well. Figure 1 shows that

the error E(t) decays faster with σ2
n = 0.5. This is also

evident from Theorem 1. But as one can see from Figure 1,

this is mainly because the Wiener filter itself does not change

much with time for the same channel if the noise variance

is increased.

We have also varied d1, d2 values keeping Mn, η fixed

and seen (via simulation results not provided here) that the

decay rate increases with decrease in d2, which is once again

evident from Theorem 1. In simulations we have seen that as

1 − (d1 + d2) increases, the AR process converges faster to

the attractor and this channel will be like a channel without

drift. In this case, it is very close to a IID Gaussian random

variable. This is also evident from the theory developed as

in this case |η| will be larger.

In Figure 4, we adapted the linear equalizer by optimum

stepsize, r∗µ, given in Section IV. We see that the linear

equalizer catches up with the instantaneous Wiener filter

faster even for small σ2
n. Also, please note that in this figure

we actually approximated the channel with an AR(4) process.

We used the ODE approximation suggested in [4]. We see

that the suggested ODE approximation is quite accurate even

for an AR(4) process.

In Figure 3, we considered a marginally stable channel.

Here the channel is approximated by an AR(2) process with

d2 = −1 and d1 < 2. We see that these channels can
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be approximated by cosine waveforms as suggested by the

theory developed. But one can see from Figure 3, that the

error between the LMS linear equalizer and the instantaneous

Wiener filter actually oscillates and does not converge to

zero. Thus, we can conclude that for this kind of channels,

the error may not reduce to zero with time. Please note that

we used a bigger stepsize for the equalizer to achieve better

tracking performance.

We plotted the instantaneous MSE versus time in Figure

5. We have plotted it for the channel of Figure 1 for two

values of noise variances σ2
n, 0.1 and 1.0. We can see from

the figure that the MSE converges exponentially to the steady

state value as is given by Theorem 1.
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Fig. 3. Trajectories of AR(2) process (3 tap channel), Equalizer coefficients
with d2 = −1 and d1 < 2.

VI. CONCLUSIONS AND REMARKS

In this paper we study an LMS-linear equalizer tracking

an AR(2) process. We obtain the first order analysis of the

error, which is defined as the deviation of the equalizer value

from the instantaneous Wiener filter, using the ODE method.

Towards this end we obtained the ODE of a general system

whose components may depend upon 2 previous values. We

then showed that the error between the equalizer and the

Wiener filter falls exponentially/polynomially with time if the

channel is not marginally stable. For the marginally stable

case the error may not converge to zero. The MSE is also

shown to approach the instantaneous MMSE exponentially

with time when the channel is stable. It is also shown that

the difference between the MSE and the MMSE does not

explode with time even when the channel unstable.

This study can be extended to an AR(n) process even for

n > 2. Also, we have only shown the theory when all the

taps of the channel are given by the same AR(2) process. But

in simulations we also considered different AR(2) processes

for different channel taps. This extension in the theory is

very easy but is not presented to make the explanations

simple. In future, we will also be extending the above results

to stationary non IID input signals. In this paper we have

not considered the problem of designing an equalizer with

delays greater than one. This is once again done to keep the

discussions simple and the analysis can be easily extended.
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Fig. 4. Trajectories of AR(4) process, Equalizer coefficients. The improve-
ment obtained with optimum Stepsize = µ∗ = r∗µ.
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Appendix A : ODE Approximation for AR(2) process

In this Appendix we consider a general system given by,

Zk+1 = (1 − d2)Zk + d2Zk−1 + µH(Wk, Zk). (6)

We have shown in [4] that, this system can be approximated

by ODE (with h(Z(t)) := E [H (Wk, Z(t))])

�

Z (t) = 1
1+d2

h(Z(t)), if d2 ∈ (−1, 1]
d2Z(t)

dt2 = h(Z(t)), if d2 = −1,
(7)

under the following assumptions.

A.1 Wk is an IID sequence.

A.2 h(Z) is a C1 function.

A.3 For any compact set Q there exist constants

C1(Q), C(Q) such that,

E|H(Z,W )|2 ≤ C(Q) ∀Z ∈ Q.

A.3.i E|H(Z,W )|4 ≤ C1(Q) ∀Z ∈ Q.

Let Z(t, t0, A) represent the solution of ODE (7) with

initial condition Z(t0) = A. With d2 = −1, we require the

additional initial condition
�

Z (0) = 0. Let Q1 and Q2 be

any two compact sets such that Q1 ⊂ Q2 and we choose

T > 0 such that there exists an δ0 > 0 and

d (Z(t, 0, A), Qc
2) ≥ δ0 ∀A ∈ Q1 and ∀t ≤ T. (8)

Theorem 2: Under the above Assumptions for all δ < δ0,

with Z0 = Z−1 = A,
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P
{

sup1≤k≤⌊T/µ⌋ |Zk − Z(kµ, 0, A)| ≥ δ
}

→ 0

if d2 ∈ (−1, 1],

P
{

sup1≤k≤⌊T/
√

µ⌋ |Zk − Z(k
√

µ, 0, A)| ≥ δ
}

→ 0

if d2 = −1,

as µ → 0 uniformly for all A ∈ Q1.
Theorems 1 and 2 of [4] constitute the above theorem.

Now we return to the specific example of the above

system, the AR(2) process (2). It can be written in the above

general form by,

Zk+1 = (1 − d2)Zk + d2 + µ(Wk + ηZk)

where η:=d1+d2−1
µ . Clearly assumptions A.1-A.3 are satis-

fied for the AR(2) process. It is easy to see that condition

(8) is satisfied by the ODE solution (4) for all T , when

appropriate Q1, Q2 and δ0 > 0 are chosen. Thus the AR(2)

process can be approximated by the ODE (3).

Appendix B : ODE Approximation for AR(2) and

equalizer processes

Consider the following general system,

Zk+1 = (1 − d2)Zk + d2Zk−1 + µH(Zk,Wk), (9)

θk+1 = θk + µH1(Zk, θk, Xk+1) (10)

where equation (9) satisfies all the conditions in Appendix

A and the equation (10) satisfies the assumptions B.1 to B.4

given below. We will show that the above equations can be

approximated by the solution of the ODE’s (7) and (11).

�

θ (t) = h1(Z(t), θ(t)), (11)

where h1(., .) is defined in assumption B.3 We make the

following assumptions, which are similar to that in [1]. We

assume in the following that D is an open subset of Rd.

B.1 There exists a family {ΠZ,θ;∀Z, θ} of transition prob-

abilities ΠZ,θ(X,A) on Rk such that, for any Borel

subset A of Rk, we have

P [Xn+1 ∈ A|Fn] = ΠZ,θ(Xn,A)

where Fk
△
=σ(θ0, Z0, Z1, X0, X1, · · · , Xk). This in turn

implies that the tuple (Xk, θk, Zk, Zk−1) will form a

Markov chain.

B.2 For any compact set Q of D, there exist constants C1, q1

such that ∀(Z, θ) ∈ D and all n, we have

|H1(Z, θ, X)| ≤ C1(1 + |X|q1).

B.3 There exists a function h1 on D, and for each Z, θ ∈ D
a function νZ,θ(.) on Rk such that

a) h1 is locally Lipschitz on D.

b) (I − ΠZ,θ)νZ,θ(X) = H1(Z, θ, X) − h(Z, θ).
c) For all compact subsets Q of D, there exist constants

C3, C4, q3, q4 and λ ∈ [0.5, 1], such that for all

Z, θ, Z
′

, θ
′ ∈ Q

|νZ,θ(X)| ≤ C3(1 + |X|q3),

|ΠZ,θνZ,θ(X) − ΠZ′ ,θ′ νZ′ ,θ′ (X)| ≤ C4(1 + |X|q4)
∣

∣

∣
(Z, θ) − (Z

′

, θ
′

)
∣

∣

∣

λ

.

B.4 For any compact set Q in D and for any q > 0, there

exists an µq(Q) < ∞, such that for all n, X ∈ Rk,

A = (Z, θ) ∈ Rd

EX,A {I(Zk, θk ∈ Q, k ≤ n) (1 + |Xn+1|q)}
≤ µq(Q) (1 + |X|q)

where EX,A represents the expectation taken with X0 =
X and (Z0, θ0) = A.

Let Z(t, t0, Z), θ(t, t0, θ) represent solutions of ODE’s

(7), (11) with initial conditions Z(t0) = Z, θ(t0) = θ. Once

again for d2 = −1, we need
�

Z (0) = 0. Let Q1 and Q2

be any two compact sets of D, such that Q1 ⊂ Q2 and we

choose T > 0 such that there exists an δ0 > 0 and, for all

(Z, θ) ∈ Q1, t ≤ T,

d ((Z(t, 0, Z), θ(t, 0, θ)), Qc
2) ≥ δ0 (12)

With V
△
=(Z, θ), representing the ordered pair Z, θ, we

have proved Theorem 3 in [4], following the approach used

in [1].

Theorem 3: With Assumptions A.1-A.3, A.3.i of Appen-

dix A and B.1-B.4 of Appendix B, for all δ < δ0 and for

any initial condition X , with Z−1 = Z0 = Z and θ0 = θ,

PX,Z,θ







sup
1≤k≤⌊T

µ ⌋
|Vk − V (kµ, 0, (Z, θ))| ≥ δ







→ 0

as µ → 0, uniformly for all Z, θ ∈ Q1 when d2 ∈ (−1, 1].
When d2 = −1, the same theorem follows, after replacing

V (kµ, 0, (Z, θ)) in the statement of the above theorem with

the ordered pair, (Z(k
√

µ, 0, Z), θ(kµ, 0, θ))(the details are

given in [4]).

Now we verify that the conditions of Theorem (3)

are satisfied by our system of Section III. Defining,

Xk+1
△
=[ST

k , Y T
k ]T , one can rewrite the AR process and the

equalizer adaptation as,

Zk+1 = (1 − d2)Zk + d2Zk−1 + µ(Wk + ηZk)

θk+1 = θk + µH1(θk, Xk+1)

H1(θk, Xk+1)
△
= −Yk(θT

k Yk − sk).

{Xk} is a chain whose transition probabilities ΠZk
(X,A)

are functions of Zk alone. Thus condition B.1 is satisfied.

B.2 is also satisfied as for any compact set Q and for any

θ ∈ Q,

|H1(θ, X)| ≤ 2

[

max

{

1, sup
θ∈Q

|θ|
}]

(1 + |X|2).

For any fixed Z, i.e., for a fixed channel, it is easy to see

that Xk(Z) has a stationary distribution given by

ΨZ([s1, s2, · · · sn] × A1) = Prob(S = [s1, s2, · · · sn])

Prob(N ∈ A1 − πZ [s1, s2, · · · sn]T )

where πZ is the M ×M +L−1 length convolutional matrix

formed from vector Z and S, N are the input and noise

vectors of length M + L − 1, M respectively.
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Define,

Ryy(Z)
△
= EZ

[

Y (Z)Y (Z)
T
]

= (πZπT
Z + σ2

nI),

Rys(Z)
△
= EZ [Y (Z)s] = πZ [1 0 · · · 0]T ,

h1(Z, θ)
△
= EZ(H1(θ, X(Z)) = −Ryy(Z)θ + Rys(Z),

νZ(X)
△
=

∑

k≥0

Πk
Z(H1(θ, X) − h1(Z, θ)).

Since h1 is continuously differentiable, it is locally Lipschitz.

Thus conditions B.3a, B.b are met. Also, since {Xk} is

a linear dynamical process depending upon the parameter

Z, condition B.3c can be verified using Proposition 10 in

Chapter 2, page 270 of [1] (The exact details are given in

[4]).

The condition B.4 is trivially met as for any n > M+L−1,

the expectation does not depend upon the initial condition X
but is bounded based on the compact set Q and because

of the Gaussian random variable N and discrete random

variable S.

We have shown in [4] (Lemma 1 and Lemma 2) that the

solution of the equalizer ODE (5) is bounded for any finite

time T . Thus for any finite time T, one can choose appro-

priate Q1, Q2 and δ0 such that condition (12) is satisfied.

Thus all the conditions in Theorem 3 are met verifying the

ODE approximation for the equalizer and the AR process of

Section III.

REFERENCES

[1] A. Benveniste, M. Mietivier, P. Priouret, ”Adaptive Algorithms and
Stochastic Approximation”, Springer-Verlag, April 1990.

[2] M.Hajivandi, W.A. Gardner, ”Measures of Tracking Performance of
the LMS Algorithm”, IEEE Trans. Acoust., Speech, Signal Process-
ing, vol. 38, pp. 1953 1958, Nov. 1990.

[3] S. Haykin, ”Adaptive Filter theory”, Third Edition, Prentice-Hall
International inc, 1996.

[4] V. Kavitha, V. Sharma, ” Tracking performance of an LMS-Linear
Equalizer for fading channels using ODE approach”, Technical report
no:TR-PME-2005-11, DRDO-IISc programme on mathematical engi-
neering, ECE Dept., IISc, Bangalore, October 2005. (downloadable
from http://pal.ece.iisc.ernet.in/PAM/tech rep05.html)

[5] C. Kommininakis, C.Fragouli, A. Sayed, R.Wesel, ”Multiple-input
Multiple-output Fading Channel Tracking and Equalization using
Kalman Estimation”, IEEE Trans. on Signal Process., Vol 50, No.
5, May 2002, pp 1064-1076.

[6] H. Kushner, G. George Yin, ”Stochastic Approximation Algorithms
and Applications”, Springer, 1997.

[7] H. Kushner, J. Yang, ”Analysis of adaptive step-size SA algorithms
for parameter tracking”, IEEE Trans. Automat. Contr., Vol. 40, pp.
1403 1410, Aug. 1995.

[8] L. Lindbom, M. Sternad and A. Ahlen, ”Tracking of Time-Varying
Mobile Radio Channels Part II: A Case Study”, IEEE Trans. Com-
munications, Vol. 50, No. 1, JANUARY 2002.

[9] L.Guo, L. Ljung, G-J Wang, ”Necessary and Sufficient Conditions for
Stability of LMS”, IEEE Trans on Automatic control, Vol. 42, No. 6,
June 1997, pp 761-770.

[10] O. Macchi, E. Eweda, ”Convergence Analysis of Self-Adaptive Equal-
izers”, IEEE Trans on Information Theory, Vol. 30, No. 2, March
1984, pp 161-176.

[11] D. P. Taylor, G.M. Vitetta, B.D. Hart, A. Mammela, ”Wireless channel
equalization”, Eur. Trans. Telecom., Vol. 9,1998, 117-143.

[12] M. Tsatsanis, G. Giannakis, G. Zhou, ”Estimation and Equalization
of Fading Channels with Random Coefficients”, Signal Process., Vol
53, no. 2-3, pp 211-229, Sept 1996.

[13] Wee-Peng Ang, B. Farhang-Boroujeny, ”A New Class of Gradi-
ent Adaptive Step-Size LMS Algorithms”, IEEE Trans. On Signal
Processing, Vol. 49, No. 4, April 2001.

[14] B. Widrow, J. M. McCool, M. G. Larimore, C. R. Johnson, Jr.,
”Stationary and nonstationary learning characteristics of the LMS
adaptive filter”, Proc. IEEE, vol. 64, pp. 1151-1162, Aug. 1976.

WIIG.261

686


	--------------------
	Main Menu
	Foreword
	44 Years of Allerton
	Table of Contents
	List of Authors
	--------------------

