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Opportunistic Scheduling in Cellular Systems in the
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Abstract—A central scheduling problem in wireless communica-
tions is that of allocating resources to one of many mobile stations
that have a common radio channel. Much attention has been given
to the design of efficient and fair scheduling schemes that are cen-
trally controlled by a base station (BS) whose decisions depend on
the channel conditions reported by each mobile. The BS is the only
entity taking decisions in this framework. The decisions are based
on the reports of mobiles on their radio channel conditions. In this
paper, we study the scheduling problem from a game-theoretic per-
spective in which some of the mobiles may be noncooperative or
strategic, and may not necessarily report their true channel con-
ditions. We model this situation as a signaling game and study its
equilibria. We demonstrate that the only Perfect Bayesian Equi-
libria (PBE) of the signaling game are of the babbling type: the
noncooperative mobiles send signals independent of their channel
states, the BS simply ignores them, and allocates channels based
only on the prior information on the channel statistics. We then
propose various approaches to enforce truthful signaling of the
radio channel conditions: a pricing approach, an approach based
on some knowledge of the mobiles’ policies, and an approach that
replaces this knowledge by a stochastic approximations approach
that combines estimation and control. We further identify other
equilibria that involve non-truthful signaling.

Index Terms—Cellular networks, game theory, pricing, sched-
uling, signaling games, stochastic approximation.

I. INTRODUCTION

S HORT-TERM fading arises in a mobile wireless radio
communication system in the presence of scatterers,

resulting in time-varying channel gains. Various cellular net-
works have downlink shared data channels that use scheduling
mechanisms to exploit fluctuations in radio conditions (e.g.,
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3GPP HSDPA [2] and CDMA/HDR [8] or 1xEV-DO [1]). The
scheduler design and the obtained gain are predicated on the
mobiles sending information concerning the downlink channel
gains in a truthful fashion. In a frequency-division duplex
system, the base station (BS) has no direct information on the
channel gains, but transmits downlink pilots, and relies on the
mobiles’ reported values of gains on these pilots for scheduling.
A cooperative mobile will truthfully report this information to
the BS. A noncooperative mobile will however send a signal
that is likely to induce the scheduler to behave in a manner
beneficial to the mobile.

For some examples of nonstandard, noncooperative, and ag-
gressive transmission behavior in WLANs, Mare et al. [3] re-
port that certain implementations attempt more frequently than
the specifications in the IEEE 802.11 standard. See also Bianchi
et al. [4]. This is presumably because the particular equipment
provider wants to make its devices more competitive. Such be-
havior may occur in cellular phones with respect to channel re-
ports for similar reasons of competitiveness since compliance
testing for cooperation is over only limited, published, and stan-
dardized scenarios. Both HSDPA and 1xEV-DO use an oppor-
tunistic scheduler in the downlink to profit from multiuser diver-
sity. For instance, a noncooperative mobile can modify their 3G
mobile devices or laptops’ 3G PC cards, either by using Soft-
ware Development Kit (SDK) (see [21]) or the device firmware
[28], in order to usurp time slots at the expense of coopera-
tive mobiles, hence denying network access to cooperative mo-
biles. Users of future devices and software hackers may have
the ability to reprogram their mobile devices to gain scheduling
advantage.

This paper deals with game-theoretic analysis of downlink
scheduling in the presence of noncooperative mobiles. We ini-
tially assume that the identity of players that do not cooperate
is common knowledge. In the later parts of the paper, while dis-
cussing the stochastic approximation based approach, the BS
can detect the noncooperative mobiles and hence will not re-
quire this knowledge. We model this noncooperative downlink
scheduling initially as a signaling game (see Kreps and Sobel
[17]). Mobiles send signals that correspond to reported channel
states and play the role of leaders in the signaling game. The
BS allocates the channel resource and plays the role of a fol-
lower that reacts to the signals. Mobile utilities (throughputs)
are determined by BS’s allocation. For efficient scheduling, BS
optimizes the sum of the utilities of all the mobiles and hence
naturally the sum utility forms its utility in the game formula-
tion. We initially focus on the study of equilibria of this game
and later on concentrate on robustification of the policies of the
BS against noncooperation.

0018-9448/$26.00 © 2011 IEEE
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A. Contribution of the Paper

We begin with the case in which BS does not use any extra
intelligence to deal with noncooperative mobiles (BS makes
scheduling decisions based only the signals from the mobiles).
The only Perfect Bayesian Equilibrium (PBE) of the resulting
signaling game are of the babbling type: the noncooperative
mobiles send signals independent of their channel states, and the
BS simply ignores them to allocate channels based only on prior
channel statistics (Section III). Fortunately, the BS can use more
intelligent strategies to achieve a truth revealing equilibrium
henceforth called as TRE. We present three ways to obtain these
as equilibria of an appropriate form of the game (Section IV).
The first relies on capabilities of the BS to estimate the real down-
link channel quality (perhaps obtained at a later stage based on
the rate at which the actual transmission took place), combined
with a pricing mechanism that creates incentives for truthful sig-
naling. In the second approach, the BS learns mobiles’ signaling
statistics, correlates them with the true channel statistics, and
punishes the deceivers. We next come up with a practical strategy
to achieve a TRE in the form of a variant of the proportional
fair sharing algorithm (PFA) which elicits truthful signals from
mobiles (Section V). Further, in Section VI, we establish the
existence of other equilibria at which the BS improves its utility
in comparison to that obtained at a babbling equilibrium; the
noncooperative mobiles also improve their utilities over their
cooperative shares (their utilities at a TRE).

The set of strategies available to the mobiles and to the BS in
an extended game formalism is indeed huge. Given that inter-
actions are spread over time, in general, mobiles could choose
to switch between cooperative and noncooperative behaviors. In
this case, if the BS is unaware of a mobile’s reputation, it could
try to infer it by observing the reports and by comparing them
with known statistics. It could then adapt its scheduling strategy
appropriately. For simplicity, we do not consider these possibil-
ities in this paper.

Some remarks on the assumption that the BS is aware of the
channel statistics, though not the instantaneous channel gain, are
in order. In frequency division duplex (FDD) systems, average
channel state may be available if the BS is aware of the mobile’s
location. This may be available via BS-assisted positioning al-
gorithms where the BS is involved in the mobile’s localization.
Cell-specific radio propagation simulators may then be able to
provide the average channel condition as well as channel sta-
tistics (see, e.g., [5] for some sophisticated channel models). In
time division duplex (TDD) systems, the BS may make uplink
measurements and apply it to downlink, thanks to uplink-down-
link duality. Keeping these possibilities in mind, we assume, for
simplicity, that the BS has full knowledge of channel statistics.

B. Prior Work

PFA and related algorithms were intensely analyzed as ap-
plied to CDMA/HDR and 3GPP HSDPA systems ([6]–[8], [10],
[11], [20], [26]). Kushner and Whiting [18] showed using sto-
chastic approximation techniques that the asymptotic averaged
throughput can be driven to optimize a certain system utility
function (sum of logarithms of offset-rates). All the above works
assume that the centralized scheduler has true information of
channel states.

However, as seen in the simulations of Kong et al. [16], non-
cooperative mobiles can gain in throughput (by 5%) but cause
a decrease in the overall system throughput (by 20%). Nugge-
halli et al. [22] considered noncooperation by low-priority la-
tency-tolerant mobiles in an 802.11e LAN setting capable of
providing differentiated quality of service. Price and Javidi [25]
consider an uplink version of the problem with mobiles being
the informed parties on valuations of uplinks (queue state infor-
mation is available only at the respective mobiles).

Our problem is closely related to signaling games with cheap
talk, i.e., signals incur no costs [17, Sec. 7], for which it is well
known that babbling equilibria exist. While the above works
[22] and [25] use mechanism design techniques [13] to induce
truth revelation, with pricing implemented via “carrots” on the
opposite link, our problem differs from mechanism design not
only in not having pricing but also in considering the BS as a
player.

We now begin with a precise formulation of the problem be-
fore proceeding to solutions.

II. PROBLEM FORMULATION

Consider the downlink of a wireless network with one BS.
mobiles compete for the downlink data channel. Time is divided
into small intervals or slots. In each slot one of the mobiles
is allocated the channel. Mobile can be in one of the channel
states , where . Fading characteristics are
independent across mobiles. Let be the
vector of channel gains in a particular slot. Its distribution is

, where is the distribution of the
random variable . We assume mobile can estimate per-
fectly using pilots transmitted by the BS. Mobile sends signal

to the BS to indicate its channel gain. Some mobiles (say
those with indices where ) are noncoop-
erative and may signal a different (say good) channel condition
other than their true channel (say bad) in order to be allocated
the channel. Channel statistics and noncooperative mobile iden-
tities are common knowledge to all players. Signal values are
chosen from the channel space itself, i.e., . BS makes
a scheduling decision based on signals .

1) Utilities: Let denote the mobile to which channel is allo-
cated. If , mobile gets a utility given
by which depends only on its own channel state and the
allocation, but not on the signal. Thus

1. An example function is
where is the average received signal-

to-noise ratio (SNR). BS utility is the sum of mobile utilities

Optimizing the BS’s sum utility results in an efficient solution,
our main object of study. Fairness may be incorporated ap-
propriately; see our extensions [14] where utilities are concave
functions of long-term average throughputs.

1This is the case if the BS allocates based on the mobile’s signal when the sig-
naled channel gain is more than or equal to the true channel gain. In the later
sections that develop robust BS policies, we will come across situations when the
BS allocates to provide a utility (say ��) different from the one requested. In these
cases,� �� � � � �� � � ������� ��� ��.
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TABLE I
PARAMETERS AND UTILITIES FOR THE MOTIVATING EXAMPLE

How is achievable when the transmitting BS does not
know the true ? Even if a mobile signals more than its true
value and the BS attempts to transmit at that higher transmitted
rate, the actual rate at which the transmission takes place will
still be . This is reasonable given the following obser-
vations. The reported channel is usually subject to estimation
errors and delays, an aspect that we do not consider explicitly
in this paper. To address this issue, the BS employs a rateless
code, i.e., starts at an aggressive modulation and coding rate,
gets feedback from the mobile after each transmission, and stops
as soon as sufficient number of redundant bits are received to
meet the decoding requirements. This incremental redundancy
technique supported by hybrid ARQ is already implemented in
the aforementioned standards (3GPP HSDPA and 1xEV-DO).
Then a rate close to the true utility may be achieved.

2) A Motivating Example: To illustrate the main concepts,
consider two mobiles in the toy one-shot game with channel
states, probabilities, and achieved throughputs as given in
Table I. The fifth column shows utilities when allocation

(BS always allocates mobile ). The sixth column
shows utilities when mobiles signal truthfully and allocation

is to mobile with the best
channel, yielding the best total utility of for
the BS. If mobile 2 is strategic, noncooperative, and therefore
always signals 10, , an ignorant BS always allocates
to mobile 2 and attains a utility of . Since the
mobile 2 noncooperative utility is 3.75 which is greater than
the 2.50 attained under cooperative signaling, mobile 2 will not
cooperate. If the BS is aware of such noncooperative behavior,
we will soon see that it will always allocate the channel to
mobile 1 (based only on priors) yielding utilities of 8 to mobile
1, 0 to mobile 2, and 8 to BS; the last quantity is less than 8.50
under cooperative signaling. We will also see that 8 and 8.50
are two extremes of what the BS can achieve.

3) Terminology: We define . For a
set let denote the set of probability measures on . As
is usual in games, all players employ randomized strategies.
Hence, in the one-shot model, a policy of mobile is a mapping

, i.e., a random signal is generated
as per the mapped distribution given the channel state . A
policy of the BS is a mapping , i.e., a
random allocation is made based on the signal vector. Let

where when and oth-
erwise, and recall that the mobiles with re-
port the true channel state. As is usual, to exclude mo-
bile , define ,

and

We reuse to denote the instantaneous utility of mobile
when its channel condition is , when the mobiles use strate-
gies , and when the BS uses strategy . More precisely

Similarly, .
4) Strategic Form Game: This noncooperative downlink

game results in a strategic form game with players
, and the BS. The strategy set of the players

are , and , respectively. The payoffs are
, and , respectively, where

the expectations are with respect to . A Nash Equilibrium
(NE) for this game is a strategy-tuple that
satisfies

An -Nash Equilibrium ( -NE) for this game is a strategy-tuple
that satisfies

5) Signaling Game: For the problem under study, the BS
has to act based on the signals sent by the mobiles and hence
this is better modeled by the two stage signaling game. For such
signaling games, a refinement of NE based on the rationale of
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credible posterior beliefs (Kreps and Sobel [17Sec. 5], Sobel
[27]) is the Perfect Bayesian Equilibrium defined below.

Definition 2.1 (Posterior Beliefs): is
the set of posterior beliefs where is the BS’s belief
of the posterior probability that the mobile’s true channel is
given that its signal is .

Definition 2.2 (Perfect Bayesian Equilibrium (PBE)): A
strategy profile and a posterior belief
constitute a PBE if (a) for each signal vector , we have

(1)

(b) for each mobile and , we have (2), shown
at the bottom of the page; (c) for each and ,
the BS updates

(3)

if the denominator in (3) is nonzero, and is any
element in otherwise.

In Definition 2.2, (2) ensures that is a NE of
the subgame of noncooperative mobiles, (1) ensures that is
the Bayes-Nash equilibrium of the subgame with the BS, and
(3) determines a consistent Bayesian approach to determining
posterior beliefs.

In the sequel, we will come across two types of PBE [27]. The
first is the babbling equilibrium where the sender’s (mobile’s)
strategy is independent of the channel state, and the receiver’s
(BS’s) strategy is independent of signals. The second is the de-
sirable separating equilibrium where sender sends signals from
disjoint subsets of the set of available signals for each channel
state. Clearly then, the receiver gets complete information about
the true channel states of the leaders (mobiles). If this equilib-
rium is achieved, the BS can design a scheduling algorithm as
in a fully cooperative environment. Hence, a separating PBE is
a Truth Revealing Equilibrium (TRE).

The question then is what kind of equilibria do we encounter
in the above signaling game. Refinements to handle the more
realistic repeated game over multiple slots and availability of
more information at the BS are handled subsequently.

III. BABBLING EQUILIBRIUM

The following theorem characterizes all the possible PBE of
the signaling game as babbling equilibria.

Theorem 1: The player signaling game has a PBE of
the following type:

where is the set of mobiles with the best expected
throughput among noncooperative mobiles and the conditional
throughput given among cooperative mobiles, i.e.

with

and

Further, any PBE for this game is of the above type.
Proof: See Appendix A.

Theorem 1 shows that if the BS makes scheduling decisions
based only on the signals from the (noncooperative) mobiles: at
any equilibrium for all , i.e., mo-
bile signals do not improve BS’s knowledge of current channel
states. BS allocates based only on prior statistics and signals of
cooperative mobiles. As a consequence, multiuser diversity gain
cannot be exploited and the best possible BS utility under this
situation is

(4)

The key to proving the above theorem is the assumption that
when the channel is allocated to a mobile, its derived utility is
dependent only on the true channel condition and not on the
signaled value. The allocation itself will of course depend on
the signaled values.

To do better than what is obtained in (4), we exploit the fact
that typical connections last several slots enabling the BS to
learn more about mobiles’ strategies, for example the statis-
tics of their signals. We first study two punitive strategies to
elicit truthful signals from mobiles and then go on to study other
equilibria.

IV. SEPARATING EQUILIBRIUM

We showed in the previous section that there exist only
babbling equilibria in the presence of noncooperative mobiles.
In this section we obtain the desired TRE using two different
approaches.

(2)
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A. Penalty for Deviant Reporting

The BS does not have access to the true channel state of the
mobile. But based on the actual throughput seen on the allocated
link, the BS may extract the squared error

after the transmission is over. This error can used to punish
mobiles for deviant reporting.

More precisely, let mobile report when its channel is
and suppose it succeeds in getting the channel. For a

, let us impose a penalty proportional to the squared error
if it exceeds a threshold , as follows:

(5)

where is chosen small enough such that for all

If we now choose such that

(6)

then it is clear that is negative whenever the ac-
tion is , and , i.e., any deviant signaling results in
negative utility to the mobile. This new utility function is closely
related to a pricing mechanism, a powerful tool for achieving a
more socially desirable result. Typically, pricing is used to en-
courage the mobile to use system resource more efficiency and
generate revenue for the system. Usage-based pricing is an ap-
proach commonly encountered in the literature. In usage-based
pricing, the price a mobile pays for using resource is propor-
tional to the amount of resource consumed by the mobile. In our
case, the price corresponds to the cost a mobile pays for deviant
reporting if the error exceeds . Through pricing, we obtain a
separating PBE for the modified game.

Theorem 2: With satisfying (6), the -noncooper-
ative game with the modified utilities has the following sepa-
rating PBE:

and

and

and with , is any probability
measure with support set .

Proof: See Appendix B.

We thus achieve a TRE using this method. However it is im-
portant to note here that one may not be able to estimate the
instantaneous channel error of (5) even after the transmission is
complete. We propose in the following subsection another (im-
practical) method based on signal statistics with the intention of
introducing our ideas on robustification. More practical policies
based on average throughput error will be dealt in the next sec-
tion.

B. “Predicting” the Signal Statistics

Data transmissions are not just one-shot, but occur over sev-
eral slots. This enables the BS to learn the statistics of the signals
sent by mobiles. To explore this idea we begin with the simpli-
fying restriction that mobile strategies are stationary. This en-
ables us to study, yet again, a one-shot game where mobile sig-
naling statistics are known to the BS. This leads to a strategic
form game with mobile actions as before whereas the BS’s ac-
tion depends not only on the signals , but also on the (learned
and therefore assumed perfectly known) statistics of signals,

, i.e., .
(Recall that ). The payoff for the
mobiles and BS are as before.

Consider the following BS policy denoted . Find the set
of mobiles whose signaled statistics equals . The
strategy makes an equiprobable choice among those mobiles
in this subset that have the largest signal amplitudes. If the set
is empty, the BS does not allocate the channel to any of the
mobiles.

Some remarks are in order. First, “ equals ” assumes
knowledge of statistics of the signals. This is not available in
practice, must be estimated, and will therefore have estima-
tion errors. The term “equals” should therefore be interpreted
in practice as “approximately equals” to within a desired level
accuracy. Second, is a punitive strategy in that only those
mobiles whose signaling statistics match the channel’s true sta-
tistics obtain a strictly positive utility. Third, mobiles may de-
ceive and yet obtain a strictly positive utility so long as signaling
statistics match. But inflationary signaling for lower levels have
to be compensated by deflationary signaling at higher levels.

Clearly , for all
and constitute a NE, i.e., a TRE, with BS utility

(7)

the maximum possible. Multiuser diversity gains are thus ob-
tained but under simplifying assumptions.

V. STOCHASTIC APPROXIMATION (SA)

The BS policies of the previous section, though yielding a
TRE, are based on an artificial assumption that the BS has per-
fect knowledge of either the signal statistics or the (delayed)
deviation of the signaled rate from the true rate. The aim there
was to motivate a method to get a TRE. We now develop that
idea and describe a realistic policy based on the technique of
SA. Briefly, the policy works as follows. It continuously (i) es-
timates the average throughput that each mobile gets; (ii) esti-
mates the excess utility that each mobile accumulates beyond its
share when in a cooperative setting; (iii) applies a “correction”
based on the excess utility. The resulting estimates are then used
to make scheduling decisions.

The policy of a BS is now a time-varying function prescribing
its actions at every time point. The action at time depends on
mobile signals up to and including time . Throughout this sec-
tion, is a compact subset of for each . We restrict
attention to stationary and memoryless policies for mobiles, i.e.,



1762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 3, MARCH 2012

maps the current channel state in a deter-
ministic and stationary fashion to for any slot index

. For convenience, we define for the co-
operative mobiles . We make the following additional
assumptions for mathematical tractability.

A.1 The process is an independent and identi-
cally distributed (i.i.d.) sequence for every and is further
independent across mobiles. For each , the distribution
of the random variable has a bounded density. The
range of the function , , is bounded.
A.2 The function is continuously differen-
tiable and invertible. So is .
A.3 The induced random variables have
bounded densities for each .

Instead of A.2 and A.3, the following assumption may be
used.

A.4 The induced random variables , repre-
senting the reported rates, have bounded densities for each

.
We now define the utilities of all the players. Let be

the slot-level utility derived by mobile in slot . Obviously
and if the channel is not

assigned to mobile in slot . Then if the following limits exist,
set

and (8)

In the following we describe a BS policy which along with
truthful signals from the mobiles constitutes a NE, i.e., a TRE,
for the game described by the above utilities.

Under true signaling, the BS achieves its maximum utility
given in (7) while the th mobile gets

With the information available, the BS can calculate
, which we will refer henceforth by cooperative

shares.
The (deterministic) BS policy is defined using the fol-

lowing set of recursive updates. Let be a parameter
and let . Initialize for all and let

where (9)

(10)

(11)

In words, the BS (i) tracks average reported utility via
(see (9)), (ii) computes excess utility relative to
the mobiles’ cooperative shares and subtracts the excess from
the instantaneous signaled utility after magnification by
[see (10)], and (iii) uses updated values to make a current
scheduling decision : the allocation distribution at time
is , a delta function (with probability 1)
that places all its mass on the unique mobile with the largest

reported value ; however BS allocates only the
corrected value to the scheduled mobile. The choice of

determines the proximity of the converged solution to
(as will be seen later).

If BS schedules mobile in slot , the latter gets a utility

(12)

because, if for the selected mobile no transmission is
made, and if transmission is made at a lesser
rate to get a slot-level utility , and if
then the obtained slot-level utility is only (see
Section II-A for justification of this utility). Consequently,

, and the limiting utility for mobile may
be written as with .
Incidentally, satisfies the following recursive update
equation:

(13)

We employ the commonly used ordinary differential equa-
tions (ODE) approximation technique (see [18] or [9]) to ana-
lyze utilities (8) and obtain optimality properties of policy
(9)–(11).

Let , and
. Also let and

. Further define the following for all
:

(14)

(15)

(16)

We will show that the trajectories of given by (9) and
(13), for any finite time, converge to the solution of the system
of ODEs

with

(17)

(18)

By Lemma 1 given below, the ODE system (17) – (18) has a
unique bounded solution for any finite time in-
terval where . Further the system has
a unique global exponentially stable attractor.

Lemma 1: The function is continuously differentiable,
while the function is globally Lipschitz. The ODE system
(17) – (18) thus has a unique solution. Moreover, for any strategy
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profile , the ODE system has a unique global exponentially
stable attractor satisfying

(19)

where is the unique fixed point of the function .
Proof: See Appendix C-A

Let us define

Let represent the solution of the ODE system
(17) – (18) with . We then have the following
ODE approximation theorem.

Theorem 3: Assume A.1-A.3 and . Fix
any , any , any , and let be initialized
to . Let denote the distribution of

with initializations , .
Then, as , we have

(20)

where is any compact set.
Proof: See Appendix C-C.

Theorem 3 approximates the trajectories on (any) bounded
time interval; see (20). However for analyzing the (time) limits
of the trajectories using the attractor of the ODE system,
Theorem 3 is not sufficient. In [14], we study the extension
of the above algorithm for generalized -fairness, and prove
the ODE approximation theorem for infinite time using weak
convergence methods of Kushner et al. [18]. The error between
the tail of the actual trajectory and that of the ODE trajectory
is the object of study there. The algorithms (13) and (9) are
special cases. In fact in [14], the algorithm is studied under
much general conditions, which do not require the i.i.d. condi-
tions. Hence the results described below are applicable under
stationary channel conditions given in [14, Sec. VII].

We thus analyze the utilities (8) corresponding to (13) by re-
placing the limits of the trajectories with the unique attractor of
the ODE (18). Using this, with representing the truth re-
vealing strategy profile ( for all , ), we next
show below that the policy along with truth revealing signals

forms an -NE (see Section II-A-IV) and hence a TRE.
Step 1: When , we claim that ,

in probability. Indeed, the unique attractor of
the ODE (17) is the unique fixed point of function

(Lemma 1) and hence satisfies

where is the upper bound on . It follows that
. Further, the unique attractor

of ODE (18) satisfies for
all . The time limit of the utility converges
weakly to the constant (the weak convergence is
shown in [14]), and therefore in probability. Hence

(21)

where the first convergence is “in probability.”
Step 2: When , it is easy to see that the time limit

equals the cooperative shares in probability, i.e.,
, the th component of that con-

stitutes the unique attractor for the ODE system
, in probability.

Step 3: Under , the optimal allocation strategy for
the BS attains the maximum possible BS utility, in
probability.

The above three steps show that together with
constitutes a TRE.

We conclude this section with an interesting observation. For
large values of , we have

which can be significant but is bounded (independently of )
because of the boundedness of . If any mobile reports much
larger than its true value, i.e., if , and if
in fact it is large enough that

, then

Hence , i.e., that particular mobile’s utility is much
lesser than , its own cooperative share. Hence a mobile that
deviates more loses more (see Fig. 3).

A. Further Robustification of the SA Policy

The policy (9) induces a truth revealing equilibrium. The
robustness in (9) is achieved by reducing the allocation to the
selected mobile, based on its deviation from the cooperative
share. This however does not rule out the possibility of nonro-
bust scheduling decisions which can result in a significant loss
for other truthful mobiles, as can be seen in Fig. 2(d), and in a
significant loss for the BS.

In the following, we propose a better variant of the policy (9)
where robustness is also built into decision making, i.e., we use
decisions given below in place of of (11)

with (22)

(23)
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and the corresponding true utility adaptation (the actual utility
obtained by the user) is given by

(24)

with the initialization .
Using the assumptions A.1-A.3 or A.1 and A.4, and using

Lemma 3 of Appendix C-D, the policy can be analyzed in
exactly the same way as we analyzed . As a first step it is
approximated using the ODE system

(25)

(26)

with the initializations .
However in contrast to the previous section, the question of

uniqueness and stability of the attractor for the new ODE system
remains open. Step 1 of the previous section, but without the
time limiting argument, holds for any (single point) attractor
of the new ODE system. Similarly Step 2 and further remarks
on the properties of the attractors also hold for the new ODE
system. The analysis would be complete if it can be shown that
under truthful strategies, i.e., , the new ODE system has a
global asymptotically stable, and hence unique, attractor. This
would then show that the time limits of the utilities are indeed
given by the components of the attractor. While numerical re-
sults (given in the next subsection) support this on the examples
studied, a proof remains elusive.

B. Examples

We start this section with an example that reinforces our
observation that ODE attractors are good approximations for
time limits of almost all trajectories, under the true utility
adaptations (13) or (24). In Fig. 1, we consider an example
with two statistically identical and cooperative mobiles. Let

represent the density of the
Rayleigh distributed random variable . The channel gains

of the two mobiles are conditional Rayleigh distributed,
i.e., for both , we have

The utilities as before are the achievable rates
. We plot two independent trajectories (sample paths) of the

two mobiles, initialized away from their co-
operative shares; the initial values are set to .
We set . Fig. 1(a) is for the policy (22) while
Fig. 1(b) is for the policy (9). All the trajectories converge
close to the attractors of the ODE thus corroborating theory.

We present another example in Fig. 2 to illustrate the robust-
ness and comparison of both the BS policies. Here too we con-
sider two statistically identical mobiles, but now with

Fig. 1. Time limits. For both policies �� and � , the ODE attractors (coopera-
tive shares in this case) approximate the time limits of the adaptations (13) and
(24). This is demonstrated via two independent set of trajectories (thick lines
form one set while the thin ones form the other set). Each set has two trajec-
tories corresponding to the true utility adaptations ��� � �� � �� � of the
two mobiles. The cooperative shares for both mobiles are equal and the dotted
straight lines in both the figures represent the common cooperative share. (a)
Policy �� . (b) Policy � .

The first mobile can be noncooperative with
. We consider the policy in Fig. 2(a) and (c) and the policy
in Fig. 2(b) and (d). In (a)-(b), we plot trajectories corre-

sponding to cooperative behavior ( ) while the curves in
(c)-(d) are for the case when the first mobile is noncooperative
with and with .

All the cooperative curves [Fig. 2(a) and (b)] converge to-
wards the cooperative share (which is the same for both the mo-
biles because they are statistically identical). The true utility of
the noncooperative mobile (mobile 1) under both the BS poli-
cies converges to a value less than the cooperative share; thus
confirming the theory of the previous sections. However, there
are two important differences in the behavior of the two policies
under noncooperation. 1) The utility of the noncooperative mo-
bile (thin dash lines) under policy [which is close to 0.41 in
Fig. 2(c)] is lesser than that under policy [which is close to
0.45 in Fig. 2(d)]. Of course, both are less than the cooperative
shares. 2) The utility of the cooperative mobile (that of mobile
2, given by thick lines) under policy is closer to its coopera-
tive share, but is close to zero under the policy .

We conclude this section with another example in Fig. 3 to
illustrate further properties of both policies. The settings of this
figure remain same as that in Fig. 1, except that we now use
the Rayleigh random variable for channel amplitude
gain. We see that the more a mobile deviates from cooperative
behavior, the more it loses. This is clearly visible under both
policies, as the limit of the true utility of the noncooperative
mobile deviates most from its cooperative share when .
Further, the policy penalizes the deviant mobile more than
the policy , and hence is more robust.

Simulation results showed that the reported rate trajectories
[see (9)] and (22) tend to the cooperative shares

much faster than the true rate trajectories. They however are not
relevant and are not presented. In Fig. 1, the step sizes are larger
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Fig. 2. Robustness and comparison of SA based BS Policies. True utility adaptations are plotted for two cases. Cooperative case (corresponding to � � �) is given
in (a)-(b), while the case with the first mobile being noncooperative (with � � ����) is given in (c)-(d). The cooperative shares for both the mobiles are equal and
the dotted straight lines in all the figures represent the common cooperative share. (a) Policy �� . (b) Policy � . (c) Policy �� . (d) Policy � .

Fig. 3. More the noncooperation, the more the loss. For both policies �� and
� , the asymptotic true utility is maximum and equal to cooperative share when
the mobile is cooperative (� � �). The utility reduces as the level of noncoop-
eration increases (i.e., as � increases). (a) Policy �� . (b) Policy � .

than those in the other two figures, and hence the curves in the
latter two figures are smoother. Convergence, on the other hand,
is faster in Fig. 1 as one would expect.

VI. EXISTENCE OF OTHER NASH EQUILIBRIA

Thus far we obtained two types of NE. Under the first type
(babbling equilibrium of Theorem 1) BS schedules using only
the signals from cooperative mobiles and channel statistics of
noncooperative mobiles. The BS utility is minimum among all
the possible equilibrium utilities and equals given in (4).
The second type (equilibria of Sections IV and V) constitutes
truth revealing equilibria (TRE). BS achieved these equilibria
by using ITR (incentives for truth revealing) policies. When in a
TRE, the BS achieves the maximum possible equilibrium utility

given in (7).
Clearly . This raises a natural question on

the existence of other NE with BS’s equilibrium utility taking
values in the interval . In this section we further
study “predictive” policies, , of Section IV-B and
prove the existence of other NE (in Theorem 4).
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A. Motivating Example Continued

We first return to the motivating example of Section II to de-
scribe the main ideas.

Optimal Policy for Mobile 2: The mobile uses the policy
described as follows. It declares to be in state yielding utility
10 when in the same state, i.e., and in addition
declares with probability to be in whenever in state ,
i.e., . Finally .
Choose such that the best response of BS to this policy is to
allocate to mobile 2 whenever state is declared. For this to
hold, should be such that the utility of the BS is at least

obtained by always allocating to the cooperative mobile 1. For
such , the utility of BS and mobile 2 are given by

and

The that maximizes the utility of mobile 2 and yet keeps the BS
utility above (i.e., which satisfies constraint )
is . The probability that mobile 2 declares that its channel
is in state is . Thus with the above
policy for mobile 2, BS’s best response among the simple
policies is to select mobile 2 whenever it declares a . Denote
it by . The couple is not an equilibrium because mo-
bile 2’s best response against is simply to declare always.
Thus the BS should allocate channel to mobile 2 upon hearing
the signal , only if it is guaranteed a utility of 8 or more. This
can be done in a way similar to that in Section IV-B by allocating
the channel to mobile 2 after further verifying that the mobile
2 declares to be in for not more than of time. More pre-
cisely, the BS chooses the following “signal predictive” policy2

: whenever mobile 2 declares allocate channel to mobile 2
with probability where

One can verify that is an equilibrium that guarantees a
rate of (respectively, ) to mobile 2 (respectively, 1) and
a rate of 8 to the BS.

Infinitely Many Equilibria in Feedback Policies: In the se-
quel, we show that there exists a continuum of NE where the BS
gets a utility greater than 8. We use the same type of policy
for mobile 2, but we choose . Then the probability that
mobile 2 declares that it is in state 10 is .
Consider the BS policy : BS selects mobile 2 with probability

whenever the mobile declares that it in state where

Thus the utilities of BS and mobile 2 are
and , respectively. It is easy to show that the couple

is a NE for each . In Fig. 4, we plot the utility
of BS, mobile 1 and mobile 2 at equilibrium as function of .

2This policy knows a priori the signal probabilities of mobile 2 and uses it for
decision making.

Fig. 4. Infinitely many NE. The utility of the BS, mobile 1, and mobile 2 at
equilibrium as function of �.

B. Main Result : A Generalization

In this subsection we generalize the example of the previous
subsection to an arbitrary number of players and states. We
assume that signal statistics of all the mobiles is known
to the BS. Hence the BS’s policy is given by as in
Section IV-B.

Let represent the conditional expectation of
the mobile’s utility conditioned on the signal when mobile

uses strategy , i.e., for every

With representing the expectation w.r.t. , the payoff for
mobile is

(27)

Given a signal probability -tuple , let (or more appropri-
ately ) represent what we shall call best mobile strategy
that satisfies

for every and for all
Construction of : Consider mobile 1 without loss of gen-

erality. Let and assume
. In the following few lines we omit sub-

script 1 to improve readability, i.e., , etc. are represented
by , , etc. Strategy is defined in a iterative way as follows.

We first define , i.e., the conditional
probability that mobile 1 declares that it is in its best state
when it is actually in state . Find the minimum index
such that the probability that the channel is in one of the top
states is greater than or equal to , i.e., let
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Declare state whenever the true channel is one among the
top states, i.e., for all with , set

. When , signal the best state for a fraction
of time, where the fraction is chosen so that the overall proba-
bility of the signal equals , i.e.

Set whenever . Now we define
. Let

The definitions below are for ; if not, one can appropri-
ately modify the definitions. Define

and

With the above

Continue in the same way to obtain

(28)

For , we set . These
strategies are called “best” because mobile gets the best
payoff for masquerading a signal probability . More pre-
cisely, if mobile 1 uses any other strategy that results in the
same signal probability of while all other mobiles use
their “best” strategy, and the BS uses the policy

then by Lemma 2 given below, we have .

Lemma 2: Fix signal probabilities at , consider the best
mobile policies associated with , and the BS
policy given by (30) and (31) below. Amongst all strate-
gies that preserve the signaling probabilities, mobile 1’s best
response to and is .

Proof: See Appendix D.

With the help of the best strategies we obtain the existence of
other NE.

Theorem 4: For every signal probability vector with the
associated best strategies , we have

(29)

with

The ordered pair is a NE at which the BS obtains the
right-hand side of (29) as its utility, where the feedback policy

of the BS is given by the following.
Let be any signaling policy of the mo-

biles and let be the signaling probabili-
ties resulting from . Define

for all , and for all . For define
. For any given signal vector , define

the best among all the mobiles, and

the best among the cooperative mobiles. Then define
for all , and finally

(30)

(31)

Proof: If all the noncooperative mobiles are fixed with sig-
naling policy then the signaling probabilities will be given
by and we have, for all and for
all . Hence . From (27), the
total payoff of the BS with signal probabilities fixed at , when
it uses some arbitrary channel allocation say , is given by

Clearly, the BS achieves the maximum with .
Assume now that the BS uses the policy . Without loss of

generality assume mobile 1 unilaterally deviates from strategy
and signals instead using such that the signal probabil-

ities remain the same. Then by the Lemma 2 mobile 1 gets
lesser utility than before. If now is such that even the signal
probabilities are different from then the payoff of the mo-
bile 1 is further reduced as is seen from (30) and (31), as now
it is possible that for some values (note that

fraction of the time channel is allocated to a
cooperative mobile) and the remaining steps are as in the proof
of Lemma 2 given in the Appendix D.

Remarks: The above theorem establishes the existence of
NE, other than TRE, at which a noncooperative mobile’s utility
can be greater than that at a TRE while the utility of the BS
though less than that at a TRE, is greater than under non-
cooperation.
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VII. CONCLUDING REMARKS

We studied centralized downlink transmissions in a cellular
network in the presence of noncooperative mobiles. We mod-
eled this as a signaling game with several players serving as
leaders that send signals and with the BS serving as a follower.
In the absence of extra intelligence, only the babbling equi-
librium is obtained where both the BS and the noncooperative
players make no use of the signaling opportunities. We then pro-
posed three approaches to obtain an efficient equilibrium (TRE),
all of which required extra intelligence from the BS but resulted
in the mobiles signaling truthfully. We further showed the ex-
istence of other inefficient equilibria at which a noncooperative
mobile achieves a better utility than at a TRE; the BS achieves
better utility than that at a babbling equilibrium but a lower value
than that at a TRE.

We see several avenues open for further research on sched-
uling under noncooperation. We recall that we assumed that
a player is either cooperative or not. What if the player can
choose? Preliminary research show that there is no clear answer:
it depends on the channel statistics of the player as well as that
of others. Another related question is, what if the BS does not
know whether a mobile cooperates or not?

The objective of throughput maximization used by BS favor
a few strong users with “relatively best” channel, thereby
resulting in unfair resource allocation. In [18], Kushner and
Whiting studied a stochastic approximation based algorithm
that achieves generalized alpha fairness. In [14], we show that
this algorithm is not robust to noncooperation. We further pro-
posed a modification of the corrective SA algorithm to make it
robust once again to noncooperation and yet be fair to all users.

APPENDIX A
PROOF OF THEOREM 1

By definition, at any PBE, for any , and for any
, (see the first equation at the bottom of the page). Given ,

the mobile utility does not depend on ,
and so (32) at the bottom of the page holds, with being
independent of . Thus for some proba-
bility distribution on , for all and , i.e., the
optimal signaling policy does not depend upon . However

can depend on as need not be identical across
mobiles.

With the above, for any and for any
with , Definition 2.2 yields

When , the denominator is zero, but we may set
for such . This implies that in

equilibrium the posterior beliefs cannot be improved.
For any , the first optimization in the defi-

nition of PBE becomes

The above optimization is independent of and
hence the optimization reduces to maximizing

justifying the definition of in the statement of the
theorem.

Since for all , the opti-
mization in (32) can be rewritten as shown in the last equation
at the bottom of the page, where the last inequality follows be-
cause the term within square brackets does not depend on
and . The objective function is thus a constant
over the variable of optimization , and therefore
can be any fixed . This concludes the proof.

(32)
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APPENDIX B
PROOF OF THEOREM 2

Let and be as specified in the theorem statement for
every . Then,

Thus is any probability measure with support set
as specified in the theorem statement.

Fix , . With , as given in the theorem statement,
we have (33) at the bottom of the page. By the choice of
and as in (6), for any , we have the last equation shown at
the bottom of the page. Hence the maximum in (33) is achieved
by the choice of given in theorem statement. This completes
the proof.

APPENDIX C
PROOFS OF RESULTS ON STOCHASTIC APPROXIMATION

BASED POLICIES

A) Proof of Lemma 1: Define
. After substitution of (14) and (15)

in (17), and after using the independence of across mobiles,
we get

(34)

Similarly, starting from (18), we get

The definitions of and in (10) and (16), respectively,
indicate that these are continuous and piecewise linear functions
of . The maximum magnitude of the slope is . It follows
that the terms that depend on inside the expectations above
have the following property:

Since this is true for each , the global Lipschitz property of
and is an immediate consequence.

Observe next that are almost
surely differentiable, thanks to assumption A.2. Moreover,
assumption A.3. is that the distribution of the induced random
variable has bounded density. These two observa-
tions and the dominated convergence theorem imply that the
expectation in the right-hand side of (34) is differentiable. Thus

is differentiable.
We next address the global exponential stability property of

the solution to the ODE system. Fix . It is easy to see that
for any , the function depends on only through .
Furthermore, it is nonincreasing in because each of the func-
tions and are nonincreasing in
for each . Consequently,

(33)
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for any and , and therefore

(35)

for any and .
We claim that the function is bounded. To see this, con-

sider (17). From the definition of in (15), we have
that is bounded below by 0. We now
show an upper bound. The cooperative share is easily seen to
be bounded between 0 and the bound on . Furthermore, the it-
eration in (9) is such that the iterates are always nonnegative, and
therefore may be restricted to nonnegative values. It follows
that in (14) is upper bounded by twice the bound
on . The same bounds hold for its expectation, yielding that

is bounded.
Since is continuous and bounded, the Brouwer fixed point

theorem3 yields that has a fixed point in the positive
Orthant. This may of course depend on the strategy profile .

Define the error (with ).
Then, we can write , where

From (35), we get

A standard argument (see [24, pp. 169–170]) then shows that
for all , i.e.,

(36)

We shall have occasion to use this argument a few times in the
sequel. It follows from (36) that is the unique fixed point for

, and is a global exponentially stable attractor for the ODE
(17).

Let us turn to the actual rate trajectory . Define the error
for the actual rate trajectory as for
all , and the actual rate error vector as .
Then

Using the Cauchy-Schwarz inequality, the global Lipschitz
property of , with say the Lipschitz constant , and the
upper bound (36), we obtain

By the standard argument in [24, pp. 169–170], we have
, where is the solution of the ODE

3Brouwer fixed point theorem: Every continuous function � from a closed
ball of a Euclidean space to itself has a fixed point, i.e., an � that satisfies
� � ��� �.

with the initial condition . It is easy to verify that
the solution to the above ODE is

Thus

and hence is the unique global asymptotically stable
attractor of the ODE (18). This concludes the proof. .

B) The ODE Approximation Theorem: Benveniste et al.
obtain the ODE approximation [9, Th. 9, p. 232] for the system

(37)

We reproduce the result here in a form suitable for use in this
paper.

Let take values in an open subset of . We make the
following assumptions:

B.0 is a decreasing sequence with and
for some .

B.1 There exists a family of transition probabilities
such that, for any Borel set

where . Thus
forms a Markov chain.
B.2 For any compact , there exist such that

uniformly for all .
B.3 There exists a function on , and for each a
function such that the following hold:

a) is locally Lipschitz on .
b) where

.
c) For all compact subsets of , there exist constants

and , such that for all

,
.

B.4 For any compact set in and for any ,
there exists a , such that for all , and

(with representing the expectation taken with
),

Define and

Let represent a solution of

with initial condition . Let and be any two
compact subsets, such that and such that we can
choose a and a satisfying

(38)
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for all and all . Let denote the distri-
bution of with . We then
have the following theorem.

Theorem 5: Assume B.0–B.4. Pick , , and sat-
isfying (38). Then for all , for any and when

is initialized with ,

uniformly for all .
C) Proof of Theorem 3: Results of Benveniste et al. [9]

(see Appendix C-B) are used in this proof.
Let . Then (9) and (13)

can be rewritten in the format of Benveniste et al. ([9]; see
Appendix C-B) as follows. Let us define

Then

(39)

(40)

We obtain the proof using Theorem 5 of Appendix C-B
and towards this, we first verify the assumptions B.0 – B.4
of Appendix C-B. Let, and .
By assumption A.1, is a i.i.d. sequence and hence

, with the probability distribution of
for all and all initial conditions . Thus assumption B.1

is satisfied. By boundedness of function , variables , are
also bounded and hence the assumption B.2 is satisfied. For
assumption B.3, we define the following four quantities, which
readily satisfy assumption B.3(b):

By Lemma 1, the functions satisfy assumption
B.3(a). Assumption B.3(c).(i) is satisfied by boundedness while
the assumption B.3(c).(ii) is satisfied because and

. Assumption B.4 is satisfied again by boundedness.
By Lemma 1, the two ODE system have bounded solution for

any finite time. Hence, for any compact set and any finite
, we can find a compact that satisfies assumption (38) of

Appendix C-B for all and all . Thus the theorem
follows from Theorem 5 of Appendix C-B.

D) The Modified SA Policy Analysis: The following
Lemma establishes the properties needed to show that the ODE
system (25) – (26) has a unique solution.

Lemma 3: The function in (25) is continuously dif-

ferentiable, and the function in (26) is locally Lipschitz.

Consequently, the ODE system (25) – (26) has a unique solu-
tion for any finite time. Furthermore, the solution is bounded
uniformly for any finite time.

Proof: The initial part of the proof proceeds as in proof of
Lemma 1 in Appendix C-A, with some modifications. Define
the set

By independence of across the mobiles

The first part of the lemma follows from the bounded
convergence theorem if we show that the functions

and

are, almost surely, continuously differentiable (with respect to
) with uniformly bounded derivatives, for almost all . This

is immediately evident for by assumptions A.2 –

A.3. The same holds for by assumptions
A.2 – A.3 because

(41)

for , where is the (bounded) density of signal
. In the above the continuous derivative will also

be uniformly bounded for all coming from a compact set, be-
cause of the boundedness of . It is easy to see that one can
achieve the result instead using assumption A.4 instead of A.2
– A.3. Since

with representing the upper bound on , we have

Let be any compact set. Let represent the common upper
bound on density for all , and let represent the
upper bound (which is independent of ) on for all .
From (41), it follows that there is a constant such that

and hence is locally Lipschitz. From standard results in
ODE systems [24, pp. 169–170], it follows that the system of
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ODEs has a unique solution for any finite time. Furthermore,
the solution is bounded for any finite time. Indeed, one has

with being the upper bound on function , and hence

This concludes the proof of the lemma.

APPENDIX D
PROOF OF LEMMA 2

Under the given hypothesis, the BS’s policy from (30) and
(31) would be . From (27), the payoff for mobile 1
under policy is

Define the probability measure

for all possible resulting from and . Also
define

By independence, we are interested in the constrained optimiza-
tion problem:

If with ,
then clearly by definition of the best strategies , we have

(42)

Define . One can rewrite the objective
function in the above optimization problem as

(43)

From (42), we have

Hence, the maximum of the objective function in (43) is
achieved under the required constraints by first maximizing
the term (the constraints on this alone will be less strict)

subject to

to obtain , and then maximizing the term (while
ensuring that these variables and the optimal variables from the
previous step jointly satisfy the required constraints)

subject to

for all , and so on. Assuming condition , it
is easily seen that (see the first equation at the top of the page).
Further (see the second equation at the top of the page). The
above defines the joint distribution with prescribed
marginals. It is now straightforward to see that the conditional
distribution is indeed . This
completes the proof.
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