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Abstract— Motivated by recent work on improving the effi-
ciency of the IEEE 802.11 protocol at high speeds, we consider
an OFDMA system in which the users make reservations requests
over a collision channel. The controller schedules from only
amongst the successful requests using an alpha-fair scheduler
that balances the network throughput and fairness to nodes. The
first part of this work analyses the performance of the alpha-
fair scheduler when used with an Aloha reservation channel.
In the second part we assume that the network prescribes
reservation rates to active nodes. However, nodes can attempt
reservations more aggressively so as to be scheduled more
frequently (and unfairly). A simple game theoretic analysis of
this interaction between the Aloha reservation channel and the
scheduler shows that in the presence of other cooperative users,
a node attempting at a rate higher than that prescribed indeed
obtains a larger (unfair) throughput. For such a network we
propose a robust alpha-fair scheduler that penalizes aggressive
users. This scheduler along with the prescribed reservation rates
forms a Nash equilibrium. Extensive numerical results illustrate
the scheduling algorithms.

I. INTRODUCTION

Orthogonal frequency division multiple access (OFDMA)
is the transmission technique for most of the current and
emerging high speed networking technologies including IEEE
802.11 WLANs, LTE and WiMax. In OFDMA, the available
spectrum is divided into a number of narrow subbands, or
subchannels. The subbands can be dynamically allocated in
different combinations to different users. This allows networks
to use sophisticated opportunistic allocation mechanisms to
provide high spectral efficiency. In addition to spectral effi-
ciency, there is significant interest in developing scheduling
mechanism to achieve other objectives. Examples of such
objectives are the stabilizing queues (e.g., [1]), minimizing
delays (e.g., [1], [2]), and providing fairness (e.g., [3]).

An OFDMA scheduling algorithm essentially allocates dif-
ferent combinations of resources—subchannels, transmission
rate (by prescribing the modulation scheme) and transmission
power to achieve an objective. A typical scheme works as
follows. Time is divided into frames. At the beginning of each
frame, the active users provide ‘local state’ information like
channel state, queue length and possibly even battery state.
The controller uses this information to perform a resource
allocation to achieve a network objective. The schemes in,
among others, [1]–[3] have this structure. It is easy to see
that such a system can lead to selfish behavior by this nodes

and this has led to the design and analysis of these systems
assuming non cooperative nodes, e.g., [3], [4].

An interesting recent use of OFDMA has been in easing
the PHY inefficiencies of the 802.11 MAC protocol. It is
now well known that CSMA/CA protocol of 802.11 becomes
increasingly inefficient with increasing PHY data rates because
the overheads remain fixed but the data transmission times
shrink with increasing PHY rates. This has led to several
schemes being devised to improve the efficiency. Some of
these reduce the overhead with clever changes to PHY e.g.,
[5], [6] while some amortize the fixed overheads by exploiting
features of OFDMA, e.g., the fine grained channel (FICA)
scheme of [7]. FICA works as follows. Time is divided into
frames and OFDM subcarriers are divided into D groups
called subchannels. A subset of subcarriers of each group,
R per subchannel, are allocated for RTS by the nodes to the
access point (AP). Depending on the channel gains, each node
can choose to transmit in any of the subchannels. For the
chosen subchannel(s), the node randomly selects a subcarrier
to signal an RTS. If more than one subcarrier is successful in
a subchannel the AP performs a collision resolution and allo-
cates the subchannel to one of the nodes using a collision res-
olution mechanism. To summarize, FICA improves efficiency
by stretching the data transmission time (by simultaneously
allocating smaller portions of the bandwidth to a larger number
of users) while keeping the overheads constant.

The FICA scheme, omitting the protocol details, can be
seen to be an OFDMA channel in which the user-to-controller
signaling is through a collision channel. In this paper we take
a cue from this scheme and develop scheduling algorithms for
such a system. In keeping with the terminology of OFDMA
literature, the controller or the access point will be referred
to as the base station (BS) and the user nodes will be called
mobile stations (MS).

The rest of the paper is organized as follows. The notation,
system details and some preliminary results are presented in
the next section. In Section III we develop the game theoretic
description of a system of non cooperative nodes interacting
with an alpha-fair scheduler. In Section IV we describe and an-
alyze the robust scheduler that will lead to a Nash equilibrium
in which the nodes request reservations at the prescribed rate
and the controller performs alpha-fair scheduling. We present
extensive numerical results in Section V and conclude with
a discussion in which we compare our system with related
OFDMA systems and preview some future work.
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II. NOTATION AND SYSTEM PRELIMINARIES

In this section, we first introduce the basic notations used
in the paper. This is followed by a detailed description of
the Aloha reservation channel. We then describe an alpha-fair
scheduler that will be implemented at the base station which
will allocate channel to the mobile stations based on some
fairness criteria. We will also consider the packet arrival model
describing the nature of data packet arrival at the mobiles.

Much like other OFDMA systems in the literature, time
is divided into frames and each frame has two phases—
reservation and data phases. In the reservation phase, the
M mobiles in the system transmit RTS (request to send) to
the BS according to a randomized algorithm over the Aloha
reservation channel. The BS decodes the successful RTS’s and
applies its scheduling algorithm to grant channel access to a
subset of the successful nodes. This schedule is conveyed via
a common CTS (clear to send) signal. The data phase consists
of D, D ≥ 1, parallel data channels and the mobiles that are
scheduled will transmit in these channels.

The following notational convention is used. Lower case
letters will represent flags or state indicators (some of which
are random) while the corresponding bold letters (in lower
case) represent the respective vectors. X{·} will be the indica-
tor of the event in the subscript. The positive part of a variable
is represented by (·)+, i.e., (x)+ = max{x, 0}. Mobiles are
indexed by m and i, data channels by j and frames by t.

The state of channel j for MS m is denoted by hm,j with
hm := [hm,1, · · · , hm,D] denoting the channel state vector for
MS m. The channel states h := [h1, · · · ,hM ] are assumed
to be independent processes across mobiles and across time
frames. Like in other such OFDMA systems, MS m will send
hm to the BS in the RTS.

The indicator that MS m has transmitted an RTS signal in
the frame will be denoted by am with a := [a1, a2, · · · , aM ]

being the corresponding vector. Following conventional game
theoretic notation, a−m := [a1, · · · am−1, am+1, · · · , aM ] ,

i.e., a after excluding the m-th component.

A. The Aloha Reservation Channel

We consider two type of reservation channels which use
Aloha as the MAC.

1) Aggregated Reservation: Each frame has a single reser-
vation phase and MS m will transmit an RTS with probability
pm. If the total number of nodes transmitting an RTS is less
than or equal to R, then all those that transmitted will be
deemed successful. If more than R transmit, then the BS
cannot decode any RTS and a collision is said to occur. Recall
that am is the flag indicating MS m transmitted an RTS. Let
flag bm indicate that the RTS from m was successful. Note
that pm = Pr (am = 1) . In the event of a collision in the
reservation channel, the corresponding data channel is wasted
because it cannot be assigned. The probability of successful
RTS is psucc

m = Pr (bm = 1) , is easy to calculate. For example,
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Fig. 1. Frequency v/s time diagram of a frame with aggregated and
channelised reservation scheme.

with pm = p for all m, this will be the same for all m and is

psucc = p

R−1∑
i=0

(
N − 1

i

)
pi(1− p)N−1−i.

2) Channelized Reservation: In this scheme, each frame
has R Aloha channels either via FDM or via TDM. Mobile
m will transmit in each of these channels with probability
pm independently of the others. If more than one MS choose
the same reservation channel, then there is a collision on the
channel and the BS cannot decode any RTS. Assuming pm = p
for all m, the probability that MS m has a successful RTS in
a frame is

psucc = 1− (1− p(1− p)N−1)R.

For both cases, the psucc for the case of asymmetric RTS
attempt probability can be obtained albeit with messier ex-
pressions. Let p := [pm] be called the reservation rate vector.
Fig. 1 represent the aggregated and channelized reservation
scheme respectively.

B. Scheduler

In each frame, a set of mobiles will have submitted a
reservation request via a successful RTS. The scheduler at
the BS schedules a subset of these mobiles and sends CTS
to the scheduled set. The scheduler could choose an MS
with maximum utility, in which case network efficiency is
maximized; the allocation may not be fair to the mobiles. It
could also choose to allocate such that the minimum utility
of the scheduled nodes is maximized, i.e., use a max-min
fair schedule. The latter is of course not very efficient. An
alpha-fair scheduler helps achieve a desired trade-off between
fairness and network efficiency via a suitable choice of the
tuning parameter α, 0 ≤ α ≤ ∞. Specifically, we define and
use the following alpha-fair scheduler described in, among
others, [8], [10].

Recall that bm := X{successful RTS by m}; Define

ĥm,j := hm,jbm, i.e., ĥm,j is the effective state of channel

j for MS m after accounting for RTS. Define ĥ := [[ĥm,j ]].

Let f(h) be the utility from a channel with channel state h
with f(h) > 0 if h 6= 0 and f(0) = 0. f could, for example,
indicate the number of bits per frame per channel that the
MS can transmit when the channel state is h. The utility that
MS m achieves on being scheduled for transmission in data
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channel j is f(ĥm,j).

A scheduler β maps every channel state ĥ to decisions
[[βm,j ]] where βm,j ∈ [0, 1] is the probability with which MS
m is allocated data channel j. Let

um,j := E
[
f(ĥm,j)βm,j

]
; um :=

∑
j

um,j , (1)

Γα(u) =
u1−α

1− α
X{α6=1} + log(u) X{α=1}. (2)

Define u = [u1, u2, · · · , uM ] . Assume that utilities are
additive, i.e., if MS m is allocated more than one data channel
in a frame, then the total utility is the sum of the utilities from
each data channel. The alpha-fair scheduler will send CTS to
a subset of MS selected according to (see [8], [10])

arg max
β

∑
m

Γα (um) . (3)

The efficient scheduler maximizes the sum throughput and is
obtained by using α = 0 in (3); for this case we have

β0
m,j = X{m=arg maxi f(ĥm,j) ai} for all m, j

= X{m=arg maxi f(hi,j) ai}bm. (4)

The max-min fair scheduler maximizes the minimum of all
the utilities and is obtained with α = ∞ in (3); intermediate
levels of fairness-throughput trade-offs are obtained with α ∈
(0,∞).

Unlike for α = 0, for α > 0 we do not have a closed form
for the scheduler. However, using the concavity of Γα(u) and
the linear dependence of u on the scheduler, we obtain a fixed
point structure for the alpha-fair scheduler as described in the
following theorem, with proof in Appendix.

Theorem 1: Assume the channel states hm,j are indepen-
dent across mobiles m, data channels j, and time frames.
(1) Consider , Λ(·) := [Λm(·)]m, defined component wise by

Λm(u) =
∑
j

E

 f(hm,j)∣∣∣arg maxi
f(ĥi,j)
uαi

∣∣∣X{m∈arg maxi
f(ĥi,j)

uα
i

}
 ,
(5)

with |A| denoting the cardinality of set A. If there exists a fixed
point u∗ of the above function, then an alpha-fair scheduler
maximizing (3) can be defined using this fixed point u∗ :=

[u∗1, · · · , u∗m] as

βαm,j =

X{
m∈arg maxi

f(ĥi,j)

(u∗i )α

}
∣∣∣∣arg maxi

f(ĥi,j)

(u∗i )
α

∣∣∣∣ for all m, j. (6)

(2) Assume for each m and j that hm,j is a continuous
random variable with continuous density gm,j(·), and that f
is integrable, i.e., that E[f(hm,j)] < ∞. Then there exists a

fixed point u∗ of the function (5). �

The theorem says that if a fixed point exists for Λm(u),
then the alpha-fair scheduler is obtained from the fixed point.
This structure will be used in further analysis as well as in
constructing practical policies.

The case with D = 1 and with ideal reservation chan-
nel is considered in [8] where an iterative algorithm that
asymptotically maximizes the alpha-fair utility (3) is proposed.
This algorithm implements the fixed point equation of the
preceding theorem (see [10] for more details). We now define
the following iterative algorithm which obtains the fixed point
of the above theorem for general D and for Aloha reservation
channel. For any time frame t+1, any MS m and for the j-th
data channel, the iteration in the t-th time step is

um,j,t+1 = um,j,t + µ
(
f(hm,j,t+1)βαm,j,t − um,j,t

)
(7)

βαm,j,t := X{m=arg maxi f(ĥi,j,t+1)(ui,t+di)−α} (8)

um,t =

D∑
j=1

um,j,t.

Here the constant µ > 0 is the step size and [di] are small
stabilizing constants.

C. Packet Arrival Model

We consider two packet arrival models—saturated and non
saturated. In the saturated model, all the M MS will always
have data to send. All our theoretical analysis are for this case.
Note that this model is widely used in the analysis of a variety
of network protocols and is not unreasonable.

A more realistic model is to assume that the packets arrive
at each MS according to a random process and that an MS
attempts an RTS in the reservation phase only if it has a non
empty packet queue. This is the non-saturated condition. The
scheduling algorithms developed for the saturated case can be
extended to the non saturated case and numerical results to
indicate the performance will be presented. The analysis for
this case is not presented in this paper.

For the non saturated model, packets arrive at MS m

according to an arrival process of rate λm. Let xm(t) be the
number of bulk arrivals to MS m in frame t. Each arrival
demands S units of data transfer and the buffer at each MS is
considered to be an infinite buffer. Let qm,t be the queue length
at MS m at the beginning of frame t. Let r be the number
of units of data transmitted per unit utility. For modeling
convenience, we will assume that the MS’s attempt reservation
in all the frames with probability pm but the RTS will be
deemed failure if qm,t = 0, i.e., the flag bm is

bm = amX{qm>0} X{RTS did not collide} (9)

Note that the value of X{RTS did not collide} depends on the



4
reservation channel. The queue length updates according to

qm,t+1 =

qm,t − r∑
j

f(hm,j,t)β
α
m,j,t + Sxm(t)

+

Recall that βαm,j,t is the scheduling decision for time frame t
for node m on channel j.

In reality, an MS m will attempt RTS in frame t with proba-
bility pm if and only if qm,t > 0. The collision probability with
this model is lower but this difference reduces with increasing
load.

III. SELFISH MOBILES: TOWARDS A GAME

We begin by showing that an MS has an incentive to be
selfish. It can improve its utility by choosing a higher RTS
reservation rate. This motivates a game theoretic problem
formulation.

The system that we consider has two parts—the Aloha
reservation channel and the data channel scheduled by an
alpha-fair scheduler. While the literature on Aloha is extensive,
a game theoretic understanding is emerging, e.g. [11] for an
early survey, and [10], [12] for some recent work. Also, there
is significant literature on OFDMA scheduling some of which
were pointed out in Section I. Our interest in this paper is to
analyze the interaction between the success probability in the
Aloha channel and the long term average scheduled throughput
obtained on the data channel. More specifically, recall that MS
m obtains a utility

um(p, β) =
∑
j

E [f(hm,j)βm,j ]

=
∑
j

∑
a

E [f(hm,j)βm,j |a]Pr (a) .

Note that this utility is a function of p. The MS attempt RTS
independent of one another and hence the joint probability of
attempting is Pr (a) = ΠmPr (am) . Hence,

um(p, β) =
∑
j

∑
a

E [f(hm,j)βm,j |a]
∏
i

Pr (ai)

= pm
∑
j

∑
a−m

E [f(hm,j)βm,j |a−m, am = 1]
∏
i6=m

Pr (ai) . (10)

The BS derives the scheduling decision in each frame by
maximizing the utility according to (3). Thus following [10],
we can define a natural utility function for the BS to be

uBS(p, β) =
∑
m

Γα(um(p)). (11)

We call uBS as the network utility.

The utility of MS m can be split as um = urm + ubm where

urm := pmΠi 6=m(1− pi)
∑
j

E [f(hm,j)]

ubm := pm
∑

j,a−m 6=(0,··· ,0)

E [f(hm,j)βm,j |a−m, am = 1]Pr (a−m) .

In the above, urm is the utility obtained by MS m, when no
other MS attempts RTS. In such a situation, there is only one
MS contending and hence the MS is always scheduled. Thus
urm is the utility which cannot be changed or controlled by the
scheduler and we call this the private utility of MS m. ubm is
a function of the parameter of the scheduler and we call this
the public utility of mobile m. Note that private utility can
also influence total utility of other mobiles, e.g when an MS
attempts RTS more aggressively than the prescribed rate.

A. The Game

A game theoretic setting is clear from the preceding
discussion—the mobiles can choose pm to maximize indi-
vidual utility while the BS can choose a scheduling scheme
to desirably trade-off the network utility and the achieved
fairness.

Consider a system where the mobiles are assigned reserva-
tion attempt rates, say pref

m for MS m; denote pref :=
[
pref
m

]
.

Clearly, pref determines the long term average utility that each
of MS can obtain. The data channel is only granted to an MS
with a successful RTS. Thus the MS have an incentive to
attempt at a rate pm > pref

m to improve their utility. We thus
have the following non cooperative game that arises naturally.

Players = {1, 2, · · · , M, BS},
Utilities = {u1, u2, · · · , uM , uBS},
Actions = {p1, p2, · · · , pM , β}.

(12)

Observe that (10) suggests that um increases linearly with
the reservation rate pm. Indeed this is true for α = 0 i.e., for
the efficient scheduler of (4) um increases linearly with pm.
One can use continuity arguments to show that this behavior
is true even for small values of α > 0. Using an example
with finite channel states, we will now show that, a mobile
can cheat even at high values of α.

B. An Example

We illustrate the preceding discussions, with the help of
a simple example. Assume D = 1, M = 3. Two mobiles
are far from the BS and have similar random variations in
their channel states. Both can communicate with the BS at
one of two rates 5 and 3 units with probability 0.2 and
0.8 respectively. A third MS is close to the BS and can
communicate with the BS at one of two rates 12 and 10
units with probability 0.8 and 0.2 respectively. Assume that
pref
i = p for all i.
When an efficient scheduler (4) is used at BS, MS 3 obtains

a higher utility than the other two. However as α increases,
higher priority is given to fairness. Maximum fairness is
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obtained when MS 3 is scheduled only when there are no
other MS with successful RTS. If such a fair scheduler exists,
then the three mobiles would obtain the following utilities:

u3 = p(1− p)2(0.8 ∗ 12 + 0.2 ∗ 10) = 11.6p(1− p)2,

u1 = u2 = (p(1− p)2 + p2(1− p))(0.8 ∗ 3 + 0.2 ∗ 5)

+p2(1− p)(0.8 ∗ 0.2 ∗ 5 + 0.2 ∗ 0.2 ∗ 5

2
+ 0.8 ∗ 0.8 ∗ 3

2
)

= 3.4p(1− p)2 + 5.86p2(1− p).

Using part 1 of Theorem 1 (equation (6)), such a scheduling
is implemented by an alpha-fair scheduler maximizing (3) for
all those values of α which satisfy 12/uα3 < 1/uα1 , i.e., when
121/α

(
3.4p(1− p)2 + 5.86p2(1− p)

)
< 11.6p(1 − p)2. The

above inequality is satisfied for all α > 2.63 when the common
RTS reservation rate p = .45. Fig. 2 plots the utility for the
three mobiles as a function of α for different combinations of
p. We see that MS 3 indeed has a nearly constant utility, close
to minimum, for all α > 2.6. Also observe that the utility of
the MS 3 when it increases it’s p = 0.75. Clearly, MS 3 has
a higher utility when it uses a higher p. The remaining two
have reduced, unfair utilities.

We now make the following observations.
• Utility of MS 3 is highest when α = 0 and decreases

monotonically as α→∞; see Fig. 2.
• For α > 2.6, u3 does not change with α; this is the best

that the scheduler can do towards fairness. For α > 2.6,
MS 1 or 2 are scheduled whenever their RTS succeeds.

• Private utility of MS 1, 2 is 3.4p(1−p)2 and is 11.6p(1−
p)2 for MS 3. This cannot be changed by a scheduler.

• MS 3 can increase its utility even at high alpha through
its private utility by using p3 > p. Also, the cooperating
MS receive lower utilities than their fair share. And this
is true even for higher α.

We now focus on constructing robust scheduling policies
that use additional information to penalize aggressive mobiles.
Robustness is shown by arguing that the scheduling policy and
pref form a Nash equilibrium of an equivalent game.

IV. A ROBUST SCHEDULING POLICY

A. Construction of the Robust Policy

The BS can observe bt := {bm,t}, the time sequence of the
RTS success flags and estimate their time average. Since time
average equals the ensemble average, the BS can estimate the
reservation rates {p̂m} using p̂m = b̂m/cm where b̂m is the
time average of the rate of successful RTS from MS m and
cm is obtained below. It can then estimate the extent of any
non-cooperation by observing and penalize when MS m when
(p̂m− pref

m ) > 0. This should force the MS to be cooperative.
For the case of saturated mobiles and aggregated reserva-

tions, we have bm = amX{∑i6=m ai<R}. By independence,

Pr (bm = 1) = pmcm where cm = Pr
(∑

i6=m ai < R
)
.

Similarly for R-channelized reservation (for the special case
with prefm = p for all m):

cm =
1− (1− p(1− p)N−1)R

p
.

With the non saturated packet model, the buffer is occasion-
ally empty. However the factorization considered above is still
possible. For example, in case of the aggregated reservation
channel 1

cm := Pr

∑
i 6=m

X{qi>0}ai < R

∣∣∣∣∣∣ am = 1

 . (13)

We would like to conclude that for most cases the factoriza-
tion Pr (bm = 1) = pmcm is true. The constant cm however
depends on the model and specifically for the non-saturated
packet model computing c := {cm} is difficult. Once cm is
known, one can estimate pm. The estimates, henceforth, are
represented withoutˆ to avoid messy equations.

Robust Scheduler: The robust modification of the iterative
scheduling algorithms (7) is:

pm,t+1 = pm,t + µt (bm,t/cm − pm,t) (14)

um,j,t+1 = um,j,t + µt

(
f(hm,j,t)

1 + ρm,t
βm,j,t − um,j,t

)
(15)

ωm,t = ρm,t + um,t, ρm,t = ∆
(
pm,t − pref

m

)+
βm,j,t = ∩i 6=mX{ f(ĥm,j,t)

(1+ρm,t)(ωm,t)
α≥

f(ĥi,j,t)

(1+ρm,t)(ωi,t)
α

}. (16)

In the above, the BS estimates the actual reservation rates
used by the MS iteratively using (14). It then identifies the
selfish MS as the ones with pm,t > pref

m . It makes robust
scheduling decisions {βm,j,t} by weighing down um for the
selfish MS using a larger punitive term (1 + ρm,t)(ωm,t)

α

instead of the original (um,t)
α as in (8). It further reduces the

instantaneous utilities f(ĥm,j,t) by an extra factor 1 + ρ, to
ensure that the private utilities are also punished (whenever
the MS is non-cooperative).

B. Analysis

We analyze the proposed robust scheduler, using ODE
analysis for the case with saturated packet arrivals. Let Θ :=

[{pm}m, {um,j}m,j ] represent a vector of all the components
related to the robust algorithm. We will show that the trajectory
of the robust scheduler (14)-(16) can be approximated by the

1The constant cm corresponding to the non-saturated case does not have a
closed form expression. However it can be estimated for any given reservation
rate vector pref using numerical methods (e.g., monte-carlo simulations) once
the channel statistics and the arrival rates of all the users are known. For some
specific examples one might also get some good approximations. For e.g., in
non saturated case with load factor close to 1, one can approximate the non-
saturated cm with the one corresponding to the saturated model.
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solution Θ(t) of the following ODE for all m ≤M and j:

�
pm (t) =

Pr (bm = 1)

cm
− pm(t) (17)

�
um,j (t) = E

[
f(hm,j)

1 + ρm(t)
βm,j(t)

]
− um,j(t) (18)

ωm(t) := um(t) + ρm(t), ρm(t) = ∆(pm(t)− pref
m )+

βm,j(t) = Πi6=mX{ f(ĥm,j)

(1+ρm,t)(ωm(t))α
≥

f(ĥi,j)

(1+ρm,t)(ωi(t))α

}.
We consider a slight modification of the non-cooperative game
(12) to show the robustness of the proposed algorithm. We
replace the utilities defined in the game (12) by the asymptotic
time limits of the robust algorithm (14)-(16) and show that the
robust algorithm and the assigned reservation rate vector form
a Nash equilibrium.

ODE Approximation: We begin by discussing the existence
of solutions of the above ODEs. The ODE (17) and (18) have
a unique solution as will be established below:

Lemma 1: The ODE (18) has unique bounded solution for
any initial condition in A with A := [0, 1]M ×RMD

+ and it is
bounded as below where η := supm,j E[|f(hm,j)|].

|um,j(t)| ≤ η − (η − |um,j,0|)e−t for all t.

Proof: One can obtain the following upper bound easily
(with < ., . > representing the inner product):〈

E

[
f(hm,j)

1 + ρm
βm,j

]
− um,j(t), um,j

〉
≤ Bum,j − u2

m,j .

Using this and using the comparison methods of [14, pp. 169-
170] the proof is obtained as is done in Lemma 1 in [9]. �

We now define the limit set of the ODEs (17)-(18) and its
δ-neighborhood:

LODE := lim
t→∞

∪Θ∈A{Θ(s) : s ≥ t and Θ(0) = Θ}.

Bδ(LODE) :=
{

Θ : |Θ− Θ̃| ≤ δ for some Θ̃ ∈ LODE
}
.

The following theorem now establishes that the trajectory
{Θt; t} with Θt := {{pm,t}m, {um,j,t}m,j}, ultimately
spends time in the limit set defined above (Proof in Appendix).

Theorem 2: Assume the following:

• There exists a sequence εk → ∞ with
limk sup0≤l≤εk µk+l/µk = 0.

• The channel state {hk} is an independent and identically
distributed (IID) sequence with finite mean and variance.

• The average rates are bounded by the same constant, i.e.,
|f(hm,j)| ≤ B for all m, j.

• {hk} has continuous and bounded density.

Then for every δ > 0, the fraction of time the tail of the
algorithm {Θτ}τ≥t for any initial condition Θ0 ∈ A spends

in the δ-neighborhood of the limit set Bδ(LODE) tends to one
as t→∞. �

Further analysis is obtained by studying the limit set of the
above ODEs. The first ODE (17) has a unique solution and a
unique attractor:

pm(t) = p∗m − (p∗m − pm,0) e−t, p∗m =
E [bm]

cm
. (19)

That means, the BS via iteration (14) estimates the RTS
reservation rates [pm] used by all the MS’s. And as we will see
below for any MS m, it uses only the excess (w.r.t. the assigned
reservation rate) given by (p∗m − prefm )+ to punish it. When
one MS becomes non cooperative, the cm of the other MS’s
actually should decrease, however the BS uses the larger one
corresponding to all cooperative case. As seen from equation
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(19) this results in a reduced estimate for the reservation rates
of the other MS’s. Since one uses only the positive part of the
excess this would not alter the analysis.

We now study the limit set of the second ODE (18). In
particular we study its equilibrium points. Any equilibrium
point of the ODE (18) satisfies the following fixed point
equation:

u∗m =
∑
j

E

[
f(hm,j)

1 + ρ∗m
βm,j

]
, (20)

ωm := u∗m + ρ∗m, ρ∗m = ∆(p∗m − pref
m )+,

βm,j = ∩i 6=mX{ f(ĥm,j)

(1+ρ∗m)(ωm)α
≥

f(ĥi,j)

(1+ρ∗
i
)(ωi)

α

}. (21)

Existence of a fixed point for the above equation can be
established as in Theorem 1. We further have the following:

Lemma 2: The equation (21) has a unique fixed point i.e.,
the ODE (18) has an unique equilibrium point.
Proof: The proof is in Appendix. �

One still needs to show that the above unique equilibrium
is indeed a limit point. This is given by [8, Theorem 2.2] for
the case with α ≤ 1 and without aloha reservation. The proof
of [8, Theorem 2.2] can easily be imitated for the cooperative
case, i.e., when pm,0 = pref

m for all m. Note that, with pm,0 =

pref
m for all m, from (19) that pm(t) = p∗m = pref

m for all t
and m and hence one can treat ω, ρ like constants and then
[8, Theorem 2.2] can be extended. One need to show that
the unique equilibrium point of Lemma 2 is a limit point for
general case and this is work in progress.

Nash Equilibrium: By Theorem 2, the robust algorithm
converges weakly to the limit set of the ODEs (17)–(18) as
discussed earlier. The analysis of the robust algorithm (14)–
(16) can be obtained by further studying these equilibrium
points and it is easy to verify the following result:

Lemma 3: At any reservation rate vector p =

[p1, · · · , pM ], the unique equilibrium point is upper bounded
for all m by:

u∗m ≤
∑
j E[f(hm,j)

1 + ∆(p∗m − pref
m )+

.

Proof: The proof is immediate from the fixed point
equation (20). �

So, one can chose ∆ large enough such that

u∗m < uref
m for all m with p∗m > pref

m ,

where uref
m is the limit when all the MS are cooperative,

i.e., the fixed point of Lemma 2 with pref . With this ∆, the
algorithm (14)-(16) converges weakly (for any MS m with w
representing weak convergence) to:

lim
t→∞

um,t
w
= u∗m < uref

m when p∗m > pref
m .

Thus any MS (say MS m) obtains a smaller um when it
deviates unilaterally from its designated reservation rate p∗m >
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Fig. 4. Estimated transmission probabilities pm and estimated utility um

pref
m . In other words, any MS obtains a smaller utility if it

attempts more aggressively. Hence the reservation rates pref

and the robust policy β given by (14)-(16) form a Nash
Equilibrium for a game with utilities defined by the weak time
limits:

Utilities

=

{
lim
t→∞

u1,t, · · · , lim
t→∞

uM,t,
∑
m

Γα

(
lim
t→∞

um,t

)}
.

V. NUMERICAL EXAMPLES

We consider few numerical examples to illustrate main
characteristics of different scheduling algorithms, considered
in this work.

Example 1 We begin with the discrete channel example
of Section III-B when the common assigned reservation rate
equals 0.45. We consider the case when MS 3, is selfish and
uses an increased RTS reservation rate p3 = 0.75. We plot
the asymptotic utilities limk um,k as a function of α. These
limits are plotted for the non robust (equation (7)) as well as
the robust scheduler (equation (16)) respectively in figures 2
and 3. Both the figures also show the limits corresponding to
the cooperative case, referred to as cooperative shares.

While the utility of MS 3 increases with increased reser-
vation rate, it however reduces the utility of the other two
MS’s resulting in unfair allocations (see Fig. 2). When the
scheduler is replaced with the proposed robust algorithm, MS
3 is penalized while the utilities of other MS’s are improved.
Note that the utility curves for MS 1 and 2 overlap (due to
identical channel statistics) while MS 3 has almost 0 utility in
Fig. 3 with robust scheduler.

Example 2: We now consider continuous channel states.
Fig. 4 shows the convergence of the scheduling algorithm for
the case with α = 0, M = 3 and with 2 data channels.
The MS’s have asymmetric channel states and the hm,j’s are
truncated Rayleigh distributed with parameter σm (as in [9],
[10]). For this example σ1 = 60, σ2 = 30 and σ3 = 10.
The MS’s are again assigned equal reservation rates, i.e.,
pref
m = 0.45 for all m and µ = 4 × 10−5. MS 1 is a

non-cooperative node and uses an increased reservation rate

p1 = 0.65 > pref1 .
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The first plot in Fig. 4 shows the convergence of estimates

pm,k for the 3 users; p1,k converges to 0.65 while p2,k and
p3,k converge to 0.45. The second part of Fig. 4 shows
the convergence of estimated utilities um,k. In summary, the
trajectories converge to their corresponding limits, even when
started from an unknown initial point different from the limit,
reaffirming the stochastic approximation Theorem 2.

Example 3 : We continue with Example 2. As in Example
1, we compare the two scheduling algorithms (7) with (16)).
The asymptotic limits ({limk um,k}m) are plotted for the non
robust (blue curves) as well as the robust scheduler (black
curves) in Fig. 5. Orange curves represent the cooperative
shares. From Fig. 5 near α = 0, the selfish behavior of MS 1
increases limk u1,k corresponding to non robust scheduler
(continuous blue curve), which is at the cost of the same
for other users (other two blue curves). There is a significant
improvement in MS 1 utility for all the values of α. Such
a behavior is not seen in the corresponding black curves,
wherein the robust algorithm actually penalizes the selfish user.
Note actually that the utility of MS 1 is almost equal to 0.
Further, it improves the utility of the cooperative users.

In all the above examples, we observe that the robust
algorithm not only punishes non-cooperative MS but also
improves the utilities of the cooperative MS (see Fig. 3 and
5). Thus it exhibits anti jamming property, whenever the
noncooperation is within manageable limits.

Non saturated case

We now switch to a non saturated case in Fig. 6. In this
case data arrives at random instants of time, in contrast to
the saturated case, wherein the mobiles always have data to
transmit. We again consider the previous example, but for the
packets to be transmitted. We assume that the packets arrive
according to a Poisson process (with rates λ1, λ2 and λ3) and
each packet demands transfer of S units of information. When
allocated in a slot and in a subchannel, at maximum f(hm,j)

units of information is transmitted. A mobile attempts RTS
only if it has data to be transmitted. When it has data, it
attempts RTS as in the saturated case, with a reservation rate.
As anticipated, we notice from Fig. 6, that the cooperative
shares of this system are close to that of the saturated case.
Note that the vector of cooperative shares of all the mobiles
in saturated case, can represent the maximum load factor each
mobile can accept. For example at α = 0, the saturated
cooperative share of MS1 is approximately 5.5 which further
reduces as α→∞. However it demands λ1 ∗ S = 1.65 ∗ 4 =
6.6 and so its demand is never satisfied. In other words, MS 1
always operates in saturated condition2 and one can read this
even from the figure (both the cooperative shares of MS 1
are almost equal). Similar is the case with MS 2 which again
demands 6.6 units of data transfer per time slot. However,
the case with MS 3 is different. With α = 0, the saturated

2For the case with demand load factor (λ ∗S) greater than the cooperative
share in saturated condition, the buffer length increases with time and
eventually the MS always has data to transmit with probability close to 1.

cooperative share is close to 1.5 and increases to a value
slightly bigger than 3 as α → ∞ (dashed blue curve with
rectangles). MS 3 demands .725∗4 = 2.9 units of data transfer
per time slot, which is not satisfied for small values of α, i.e.,
MS 3 also remains in saturated condition (to be more precise
in time asymptotic saturated condition). But as α → ∞, the
system can support the demand of MS3 and it operates in
non saturated condition, for α > 6.

The non saturated system or the system with packet arrivals
at random instances of time performs close to that of a
saturated or the system which always has data to transmit.
This is true when the demands/load factors are close to the
saturated cooperative shares (as these represent the average
units of information that can be transmitted in one time slot).
Because of this, we expect that this kind of a non saturated
system behaves in a similar way in presence of noncooperative
users. That is, it would fail if the existing schedulers are
used when an MS attempts more rigorously while it would be
robust when the proposed robust scheduler is used. We observe
that this indeed is the case in Fig. 7. When MS 1 becomes
noncooperative and attempts RTS at aggressive rate 0.75 and
when the BS uses the existing α-fair scheduler (7) we notice
that MS 1 is able to gain while the other two loose resulting in
unfairness. However the proposed robust scheduler (equation
(16)) not only punishes MS 1, the utilities of the other two
improve.

VI. DISCUSSION

We have considered and analyzed a combined system with
collision based reservation requests and a scheduler that trades-
off the system efficiency with desired level of fairness. That
the system is prone to noncooperation is established. We have
proposed a scheduling mechanism in which users violating a
prescribed reservation rates are penalized. However we have
not addressed the choice of reservation rates. Two possible
criteria to determine this choice are immediate – (a) choosing a
reservation rate vector that optimizes a network utility and (b)
a reservation rate vector to simultaneously achieve the assigned
utility for each MS. This is part of the future work. While the
initial numerical analysis of the non-saturated packet arrivals
is established, an extensive analysis is being carried out.
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APPENDIX

Proof of Theorem 1: We first prove the second part. We
fix the reservation rates p and neglect them in the rest of the
proof. Consider the function defined component wise by:

Θm(u) :=
∑
j

E

[
f(hm,j)Πi 6=mX{ f(ĥm,j)

uαm
>
f(ĥi,j)

uα
i

}
]

(22)

Under the theorem hypothesis, Θm is continuous in u because:

a) for any sequence u(n) → u, the term inside the expecta-
tion:

Πi 6=mX{ f(ĥm,j)

(u(n)
m )

α>
f(ĥi,j)

(u(n)
i )

α

} → Πi 6=mX{ f(ĥm,j)
(um)α

>
f(ĥi,j)

(ui)
α

}

at all h which are the points of continuity and hence for
almost all h and this true for all j.

b) It is easy to see that,

|Θm(u)| ≤
∑
j

E[f(hm,j)] <∞ for any u. (23)

Thus the expected value Θm(u(n)) → Θm(u) by Domi-
nated Convergence theorem.

c) Sequential continuity implies continuity in a finite dimen-
sion space, hence Θ := [Θ1, · · · ,ΘM ] is continuous in u.

From (23) Θ is bounded and hence by Brouwer’s fixed point
theorem, there exist a fixed point u∗ = [u∗1, · · · , u∗M ] for the
map Θ and hence for Λ proving the second part of the theorem.

Fair scheduler using the fixed point: If there exists a fixed
point of Λ, then define βα by (6) and define,

Gα(β) =
∑
m

Γα(um(β)).

Since Γα is a concave function of u and hence for any β,

Gα(β)−Gα(βα) ≤
∑
m

[um(β)− um(βα)] dΓα(um(βα)).

(24)
Consider the following function:

β 7→
∑
m

um(β)dΓα(um(βα))

= Eh

∑
m

∑
j

f(ĥm, j)dΓα(um(βα))β(m, j)

 . (25)

From (6) for every m, j and channel state h and for any
scheduler β with β(m, j) ∈ [0, 1] and dΓα(u) = 1/uα,

f(ĥm, j)dΓα(um(βα))β(m, j) ≤ f(ĥm, j)dΓα(um(βα))βα(m, j).

Hence βα maximizes the function (25) and so∑
m

[um(β)− um(βα)] dΓα(um(βα)). ≤ 0

Hence from (24) Gα(β)−Gα(βα) ≤ 0. Hence βα maximizes
Gα among all the schedulers and hence is an alpha-fair
scheduler. �

For the ease of explanation the proof is provided using the
above independence assumptions. But the stochastic approxi-
mation result can easily be extended to the stationary case as
in [8].

Proof of Theorem 2: As a first step, we rewrite the
algorithm (14)-(16) as in [13] :

Y pm,k := bm,k/cm − pm,k, pm,k+1 = pm,k + µkY
p
m,k,

Y um,j,k :=
f(hm,j,k)

1 + ρm,k
β∆
m,j,k − um,j,k

um,j,k+1 = um,j,k + µkY
u
m,j,k.

Define

Fk := σ
(
Θτ , {{Y pm,τ−1}m, Y um,j,τ−1}m,j , for all τ ≤ k

)
and let Ek represent the expectation w.r.t. Fk, the filtration.
Under the assumptions A.2 and A.3 clearly the condition
expectation equals (for all m, j, k):

Ek[Y pm,k] = gpm(Θk) := p∗m − pm,k,

Ek[Y um,j,k] = gum,j(Θk) :=
∑
j

Rm,j(Θk)− um,j,k

Rm,j(Θ) = E

[
f(hm,j)

1 + ρm

∩i 6=mX

{
f(ĥm,j)

(1 + ρm) (ωm)
α ≥

f(ĥi,j)

(1 + ρi) (ωi)
α

}]
.
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By assumption A.3, and with µk → 0 monotonically,

um,j,k ≤ Πl≤k(1− µl)um,j,0 +

∑
l≤k

Πn≤lµn

B

≤ Πl≤k(1− µl)um,j,0 +
∑
l≤k

µl0B <∞ for all m, j, k.

Hence the entire trajectory resides inside a bounded set for
any given initial condition. This gives tightness also. The first
trajectory always lies in [0,1], i.e., 0 ≤ pm,k ≤ 1 for all m, k.
Hence we have bounded trajectories and hence {Y Θ

k ; k}, with
Y Θ
k := {{Y pm,k}{Y um,j,k}}, is uniformly integrable, satisfies

assumption A.2.1, pp. 258 [13]. By Assumption A.4 Rm,j
are continuous in Θ as shown in the proof of the first part
of Theorem 1 now by bounded convergence theorem. So, the
assumptions A.2.2 to A.2.7 of pages 258, 259 [13] are satisfied
with gΘ

k = ḡΘ = gΘ and βk = 0 ξk = 0 for all time k.

Then by Theorem 2.3, pp. 259, [13] the trajectory of robust
policy Θk converges weekly to the trajectory of the solution of
the ODE (17)-(18) (in the sense as explained in [13]). Further
by the same theorem of [13], for any δ > 0, the fraction of
time that the tail sequence {Θτ}τ≥k, with initializations in A
spends in the δ-neighborhood of the limit set of the ODEs
(17)-(18), Bδ(LODE), goes to one (in probability) as k →∞.

Proof of Lemma 2: We first consider the cooperative case,
i.e., when p∗m = prefm for all m. If say there exist two distinct
fixed points ū1 = {ū1

m} and ū2 = {ū2
m} and without loss of

generality let

ū1
1 > ū2

1. (26)

From the fixed point equation it is clear that a component
of a fixed point can increase only when some extra pairwise
decisions are in its favor. The scheduler β∆

1,j is inversely
proportional to ū1 and any pair wise decision depends upon
the ratio of two MS’s utilities, as in the example given below:

X
{
f(h1,j) >

(
ū1

1

ū1
m

)α
f(hm,j)

}
.

Hence (26) is possible only if there exists at least one m, say
without loss of generality m = 2 such that

ū1
1

ū1
2

<
ū2

1

ū2
2

(27)

because only then we can have more decisions in favor of
user 1, with fixed point ū1. Inequality in (27) implies (note
ū1

1 − ū2
1 > 0) ū1

2 > ū2
2, which in turn using similar logic

implies there exists third MS, say m = 3 which satisfies:

ū1
2

ū1
3

<
ū2

2

ū2
3

.

Note that this implies ū1
1

ū1
3

<
ū2

1

ū2
3

.

Hence further because u1
3 > u2

3 we would need a fourth MS
(different from the first and the second), say m = 4 such that:

ū1
3

ū1
4

<
ū2

3

ū2
4

,

and this repeats. However when m = M , there are no more
MS’s which can ensure MS M has higher utility with the first
fixed point, (i.e., such that ū1

M > ū2
M ) and hence this leads

to a contradiction. Thus there exists a unique fixed point. It is
easy to see that the proof can be extended to any general p.
�


