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Abstract

The use of small cells has been proposed to increase system capacity by installation of base stations close
to user location. Proximity of the base station with the user equipment also implies lesser power requirement for
transmitting the same information. Thus one may expect improvement in energy efficiency. But installing a large
number of base stations can also lead to an increase in the total energy consumption of the system. To combat
this, mechanisms have been proposed to switch OFF these base stations at times of low load. In this report, we
consider the problem of finding the fraction of base stations that can be switched OFF while maintaining quality
of service (measured in terms of the average waiting time of users), for given load conditions. We also obtain the
optimal switch OFF pattern. We do this in two steps. First, we determine the optimal ON-OFF pattern of base
stations and user-base station association policy for a fixed fraction of base stations to be switched OFF. Then, we
find the maximum fraction of base stations that can be switched OFF for given load conditions.

I. INTRODUCTION

The number of mobile subscriptions in the world is increasing at an exponential rate. From 4.6 billion at
the end of 2009 [1], the number has increased to 6.8 billion at the end of 2012 [2], which is almost 96%
of the world’s population. Newer technologies like small cell networks, are being proposed to take care
of these enormous demands. Alongside, more energy resources are being consumed to meet the increased
demands. Today, Information and Communication Technology (ICT) sector is responsible for 2% of the
world’s total carbon emissions [3]. The GeSI SMART 2020 report [4] indicates that improvements in ICT
could reduce the projected greenhouse gas emission of 2020 by 16.5%. Thus, we need to focus on new
ways of meeting the increasing demands of cellular users and simultaneously making the system more
energy efficient.

Energy efficiency of a cellular network can be enhanced at various levels - hardware components,
system design and protocol level. A breakdown of the power consumption of a wireless network indicates
that base stations consume about 80% of the total energy [5]. Though the energy consumption of the
base station varies with the load, its fixed power consumption is quite high [6]. Thus, a base station
consumes significant energy once it is ON. Hence, mechanisms have been proposed in which base stations
are switched OFF or put in a ‘sleep’ mode during low load/traffic hours [5]–[12]. Typically there is a
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conservative deployment of the base stations to cater to the peak load, nevertheless, via these mechanisms
the energy consumption can be controlled.

To meet the growing demands, the Third Generation Partnership Project (3GPP) standards have intro-
duced the possibility of a heterogeneous network [13]. In this report, we focus on heterogeneous networks
with cells of different sizes together covering an area. In these networks, in addition to the already existing
macrocells, we would also have micro, pico or femto cells. As the number of users in any area varies
significantly during the day [11], these small cells become redundant at some times. Since now the same
area is covered by possibly two types of base stations (e.g., macro and a femto base station), one can use
both the base stations during peak loads while one (mostly macro base station) is sufficient for low load
periods. Thus, the sleep wake mechanisms become important in the context of small cell/heterogeneous
networks.

A. Previous Works
In the recent years, a number of sleep-wake up mechanisms have been proposed. Sleep wake up

algorithms in a homogeneous network setting i.e. a network consisting of only macro-cells are described
in [6], [7], [8], [11]. Networks with both 2G and 3G users are studied in [12].

There are also some proposals for small cell based heterogeneous networks. In [9], the authors study
wake up mechanisms with the focus on hardware of a small cell. In [14], the authors propose an offline
optimized controller and elaborate on practical issues like activation time and ping-pong effect which are
encountered while deploying sleep-wake up mechanisms.

In [5], a Markov Decision Process (MDP) based framework is used to study a network with femto
and macro base stations. The optimal sleep-wake up policy based on the traffic and user localization
is formulated as a solution to the MDP and can be evaluated using numerical methods. In this paper,
the situations with complete, partial and delayed traffic information are considered separately. The above
scheme provides a general solution which needs to be numerically computed, while in our work we
obtain directly the optimal policy for a commonly encountered scenario. Further, we have derived a class
of optimal policies, parametrized by the load/traffic conditions.

In [10], a system having linearly placed base stations with unidirectional antenna has been considered.
They derive the optimal ON-OFF base station policy in two contexts: a) for a fixed fraction of base
stations to be switched OFF, or b) for each base station to be switched OFF for atleast a given fraction of
time. The optimal policy has been obtained using the tools of multimodularity - the counterpart of convex
functions over integer sets.

In this work, we considerably build up on the above work. We extend it to a heterogeneous setting
containing picocells and a macrocell and obtain again the optimal ON-OFF policy for a given switch-OFF
ratio. Further and more importantly we study the finer structural properties of the optimal (bracket) policy
and using this study we obtain the optimal fraction to be switched OFF given the load conditions. In
totality, given the load conditions and the QoS constraints, we obtain the optimal operational policies.
Also, we consider the use of bidirectional antennas. Using the structural properties so obtained, we have
a closed form expression for the average waiting time with bracket (optimal) ON-OFF policy.

Any cellular network aims at providing good quality of service (QoS) to the users. For ensuring good
service, for example, it might want to maintain the average waiting time of customers or the call blocking
probability below a certain limit. Typically the QoS measures depend both upon the load factor (which
depends upon the arrival rate and average work size) of the users as well as the number of available
base stations to serve them. As the network also aims to minimize the energy consumption, depending on
the traffic, we can operate a variable number of base stations which would meet the QoS requirements
and consume only the minimum required amount of energy. In other words, one can switch OFF base
stations when the traffic is low and we precisely take up this task: a) we first consider the design of
optimal ON-OFF and user-base station association policies for the series of PBSs in such a heterogeneous
network, given that a fraction η of them need to be switched OFF; b) and then, we evaluate the optimal
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Fig. 1. Heterogeneous Network

η to meet the QoS requirements. Towards this, we compute an expression for the desired QoS parameter
both in terms of the load factor and the number of active servers (base stations), using queuing theoretic
analysis.

We have considered an area with a major street, carrying significant traffic. Pico base stations (PBSs)
have been installed along this street to meet the demands of the users. We have formulated a joint
optimization problem to minimize the average waiting time and derived an optimal ON-OFF policy1 and
a user-base station association strategy. In this case, the optimal ON-OFF pattern is given by a bracket
sequence which has a very simple form and can be easily computed. Further, we determined a closed form
expression for minimum average waiting time, given the fraction of OFF PBSs. Using this, we obtained
the optimal switch OFF fraction for any given load condition and QoS requirement.

B. Organization of the report
The remainder of the report is organized as follows. We describe the system model in Section II

and then understand the performance of the system in section III. In section IV, we present the optimal
control policies i.e. the ON-OFF pattern for PBSs and the user-base station association policy for a given
switch OFF ratio. In section V, we find the maximum fraction of PBSs that can be switched OFF while
preserving the QoS of the users. We conclude our work in Section VI. (Appendix A contains a brief
review of concepts in multimodularity and proofs of theorems and lemmas are presented in Appendix B
and Appendix C.)

II. SYSTEM DESCRIPTION

When a cellular network has to be designed in a particular area, major infrastructural layout of the area
is often known. Using this knowledge a better network can be designed. We consider one such scenario,
where a busy road passes through a macro cell ( Figure 1). Heavy traffic is usually generated on such
roads, which can burden the macro base station (MBS). This is a good example, where a heterogeneous
network can be deployed: the load of the MBS can be shared by a series of PBSs placed along the road.
A similar situation will arise when a metro line passes through a macro cell. Base stations will need to be
installed at various intermediate points along the metro line to cater to the demands of the large number
of users who are traveling in the metro.

In our system model, PBSs are placed uniformly (at points 0, d, 2d, · · · ) along the street/metro line
(which lies in the area covered by the macro cell). 2 The street/line can have curvatures, bends etc as in
Figure 1. But this can be transformed into a straight line via a homomorphism, as in most of the cases
the street is straight locally. Thus, further analysis is done assuming the street to be a straight line.

1The terms ON-OFF policy, activation policy and sleep-wake up mechanism have been used interchangeably in this report.
2Throughout the below text, ’street’ would refer to both metro line and a busy street.
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1) Pico Base Stations: The system supports a finite choice of transmission rates (determined by
modulation scheme, channel coding, etc). We assume here, that a PBS serves any user in its own cell
(covering a distance d/2 on either side) with a fixed rate. This rate, θ0, is determined by the distance d
(the farthest user in its cell is located d/2 away) and fading parameters of the region. If a PBS is OFF
and if one of its immediate neighbors is ON, the neighboring PBS serves the users at a smaller rate θ1.
The distance of the farthest user from this PBS (3d/2) along with fading and shadowing determine the
choice of θ1, however we can assume θ1 < θ0. Similarly, we can define θi as the rate that the ith PBS
from the user’s location would provide. Then, we would have

θ0 > θ1 > · · · > θi > θi+1 > · · · .

As the users in one cell (e.g. [−d/2, d/2]) are served with one rate, we refer them as belonging
to the midpoint (i.e. 0 in this case). To be more precise: All users arriving anywhere in the interval
[i+ (2k−1)d/2, i+ (2k+ 1)d/2] are modeled to have arrived at point i+kd. This representation divides
all the users on the line at uniformly spaced points (0, d, 2d, · · ·Nd) for some N < ∞. Each of these
points represent all the users within d/2 distance from it. Thus, we can view the system as queues of
users at points 0, d, 2d, · · · .

We assume that users are arriving independently. Also, the rate of arrivals is uniform throughout the
line as can be expected on a highway or a metro line. As discussed above, in our representation, arrivals
at one point are actually marked by arrivals in length d. Thus, the distribution of arrivals at the points
(0, d, 2d, · · ·Nd) are identical and are independent of each other. Also, the arrivals into each queue follow
a Poisson process with rate λ.

2) Macro Base Station: We assume that the macro base station employs power control to ensure that
the received rate is same for all users. Thus, we assume that the MBS serves any user on the street with
the rate (θM ), irrespective of its exact location. The analysis would also hold if MBS employs different
rates of transmission and if all the possible rates are such that they lie between θJ and θJ+1 for some
J . We believe that this analysis would go through even if MBS serves the users from amongst a finite
set of transmission rates, depending upon the fading and shadowing as long as the fading and shadowing
characteristics remain same throughout the street (which is a reasonable assumption given that the MBS
is far away from the street). In this case, the queue of users being served by the MBS would be modelled
by an M/G/1 queue.

A. Control Policies
We first aim to determine the configuration which has minimum average waiting time that can be

achieved by the users when a fraction η of the base station need to be switched OFF.
There are two control policies relevant to this purpose: a) The PBS activation policy which determines

which PBSs are OFF b) Given an activation policy, a user-base station association policy which specifies
the base station to which a user should connect to.

User-Base Station Association Policy: Each user can connect to any PBS which is ON or the MBS. If
the PBS of its own cell is ON, the user obtains service at best rate (θ0) from its PBS. When this PBS is
OFF, an association decision has to be made.

Among all active BSs, a user gets connected to the one from which the received signal strength is the
maximum. With high probability, this is the nearest ON PBS or an MBS if all the ‘significant’ neighboring
PBSs are OFF. Thus we make the following natural choice of parametrized association policies referred
to as J-association policy: Connect to the MBS if all the J neighbouring PBSs are OFF and if one or
more of the J neighbours are ON, then connect to the nearest ON PBS.

To be more precise, we fix a number J and define the association order of the user among the base
stations as - PBS at its own position > the two PBSs at distance d > the two PBSs at distance 2d · · · >
the two PBSs at distance Jd > macro base station. The user connects to the first active (ON) base station
based on this order and all users in a queue get served by the same base station.
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Also, a PBS can be serving multiple queues of users simultaneously. We assume that the resources
(like channel bandwidth) of the OFF PBSs are appropriately reallocated among the ON PBSs. Thus, if
a PBS is serving multiple queues, its capacity increases proportionately so that the rates of the users are
not affected by the fact that the PBS is also serving other queues. As the power consumption of the PBS
does not vary significantly with load [6], we assume that the power consumption does not change much
with this increase in the number of users it it serving.

III. SYSTEM PERFORMANCE

Let the activation vector a ∈ {0, 1}N represent the status of the base stations - ai = 1 if the PBS at
position i is OFF and it is 0 if the PBS is ON. We assume that the PBS at 0 is always ON. With large3

N , this restriction does not alter the performance. In this report, bold letters like a represent an N length
sequence while a partial sequence is defined by ak

j := [aj, aj+1, · · · , ak].
Performance at n-th point: When the system uses activation vector a and J-association policy, then

the transfer rate i.e. the rate at which the user at the point nd (user in the nth queue) is offered service,
θn(a, J) (for n > 0) is,

θn(a, J) =

{
θM if ak = 1 ∀ k : |n− k| ≤ J
θsn otherwise

where, sn = inf
k:|n−k|≤J

{|n− k| : ak = 0} .

For technical purposes , we define θn(a, J) = θ0 for n ≤ 0. Note that the system performance can be
controlled only via {θn(., .)}n≥1 (as the system consists of PBSs starting from location 0 and the PBS at
0 is always ON).

The queue at each point among (0, d, 2d, · · ·Nd) is served by a BS (PBS or MBS depending upon
(a, J)) independent of other points. Thus, we can model each point as an independent queue with Poisson
arrivals at rate λ. We assume that the amount of information S each user has to transmit is exponentially
distributed with mean s. Given the activation vector a and J-association policy, a user who arrives at
point nd, is served at rate θn(a, J). Thus, the user occupies the server of the serving BS for a random
time, S/θn(a, J). Hence, for any given pair of policies (a, J), the service time is exponentially distributed
with mean s/θn(a, J). Thus, at point nd we have an M/M/1 queue with average waiting time given by
( [15]):

Wn(a, J) = w(θn(a, J)) with w(θ) :=
λ

θ

s

(
θ

s
− λ
) . (1)

Here w(θ) represents the average waiting time of a user in an M/M/1 queue with parameters λ and
s/θ and hence the average of all users in the system when each of them is being served at the rate θ.
The average waiting time of a typical user is obtained by first conditioning on its position of arrival and
then taking average over the arrival position. By our assumption, a user is equally likely to arrive at any
point nd. Thus, the average waiting time of a typical user equals :

1

N

N∑
n=0

Wn(a, J).

We are considering a long street and hence assume that N is sufficiently large. Thus, the average waiting
time of a typical user is well approximated by the limit4:

W (a, J) = lim sup
N→∞

1

N

N∑
n=1

Wn(a, J).

3The major streets or metro lines run over kilometers and the pico cells are usually separated by few hundreds of meters and hence N
can be large.

4As the limit may not exist for every activation vector a, we take an upper bound given by the limit superior. We will show that the
optimal sequence is periodic, which in turn makes the optimal {Wn} periodic and then the limit superior equals the limit.
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(Note W0(., .) = w(θ0) is fixed)
The first aim of this report is to determine the pair (a, J)5 which minimizes W (a, J) while switching

OFF an appropriate fraction of PBSs, i.e.,

min
a,J

lim sup
N→∞

1

N

N∑
n=1

Wn(a, J)

subject to lim inf
N→∞

1

N

N∑
n=1

an = η. (2)

Let J̄ represent the distance of the farthest PBS from which the transfer rate is better than that provided
by the MBS, i.e.

J̄ := max
k

{
k : θk > θM

}
.

We will show that J̄-association policy is the optimal one.

IV. OPTIMAL POLICIES GIVEN SWITCH OFF RATIO η

A. Optimal On-Off Policy
We begin with the derivation of the optimal activation policy given the J-association policy and the

condition that η fraction of the PBSs needs to be switched OFF. Towards this, we first consider the
following optimization for any fixed J ≤ J̄ :

min
a

lim sup
N→∞

1

N

N∑
n=1

Wn(a, J)

subject to lim inf
N→∞

1

N

N∑
n=1

an ≥ η, (3)

and show that the optimizer satisfies the constraint with equality.
The solution to this problem is obtained, using concepts of multimodularity. A brief overview of

multimodular functions has been presented in Appendix A and we obtain the proof of the following
theorem in Appendix B.

Theorem 1. For J ≤ J̄ , the solution of (3) is given by a bracket sequence a∗ for some β ∈ [0, 1) where
a∗ := {an}n≥1 ; an = bnη + βc − b(n− 1)η + βc. �

In this text, b.c and d.e represent the floor and ceil functions respectively.
Every β defines an optimal policy. Without loss of generality, we consider the policy with β = 0 for

all further discussions.
The bracket sequence a∗ in fact, satisfies (3) with an equality (Lemma 5.1 in [16]). Thus, the bracket

policy is also optimal if the inequality in (3) is replaced by an equality.
It is easy to see that if η is rational (η = k1/k2), then the bracket sequence is periodic with period k2.

Since rational numbers are dense in R, we indeed assume a rational η in all our discussions below. Thus,
when the optimal policy is used the ON-OFF pattern of the PBSs will be periodic.

Further, it should be noted that this optimal bracket policy depends only upon η and is not influenced
by other factors, like J, θ0, θM etc. This policy also has a very simple and regular form which permits
easy calculation.

5With N → ∞, a now is in {0, 1}∞.
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B. Optimal user-base station association policy
As seen in the previous section for any J ≤ J̄ , once the switch OFF ratio η is fixed, the optimal

activation policy is independent of J . We now obtain the optimal J with the following theorem (proof
can be found in Appendix B).

Theorem 2. (a∗, J̄) is the solution for the optimization problem (2) i.e. W (a, J) ≥ W (a∗, J̄) ∀ J and
for all activation vectors a in which the fraction of base stations that are switched OFF is η. �

Thus given η, the fraction of PBSs to be switched OFF, the policies minimizing the average waiting
time are a∗ and J̄ . That is, via the above the theorem we prove our intuitions are correct: for any η it is
optimal to connect to the PBSs as long as the signal from them is better than that from MBS (with high
probability). In the next section, we find the maximum η (among rational numbers) which satisfies the
QoS requirement for any given traffic/load conditions (λ and s). The load conditions are reflected via
the term w(θ) of (1).

V. OPTIMAL SWITCH OFF RATIO η

A network is usually designed to maintain certain desired QoS level throughout the day, irrespective of
the time varying load conditions. We assume that the average waiting time needs to be maintained below
WQoS . For any load, there exists a range of switch OFF ratios (η), which meet this QoS requirement. On
the other hand, higher η implies higher fraction of PBSs which are switched OFF and thus, lower energy
consumption. Hence, we consider the following optimization problem -

sup
a,J

η subject to (4)

W (a, J) ≤ WQoS and lim inf
N→∞

1

N

N∑
n=1

an ≥ η.

From the previous sections, for a given η, the minimum waiting time is given by W (a∗, J̄). Let W
∗
(η) :=

W (a∗, J̄) represent this optimal value for a given η. Note here, a∗ depends only upon η. We obtain solution
to (4) in two steps: a) we obtain an explicit expression for W

∗
(η) in terms of η and show that it is monotone

in η; b) we show that the η′, that satisfies the equation W
∗
(η′) = WQoS , is the required solution.

A. Explicit expression for W
∗
(η)

We study finer structural properties of the bracket policies which help us obtain the expression for
W
∗
(η).
W
∗
(η) depends on two factors - the rates at which users are being served in different queues and the

frequency of each such rate. As we deal with rational η, we take η = k1/k2 for integers k1 and k2. We
know that the sequence a∗ is periodic with period k2. Thus for any i,

lim sup
N→∞

1

N

N∑
n=1

Wn(a∗, J̄) =
1

k2

i+k2−1∑
n=i

Wn(a∗, J̄). (5)

We thus consider a block of k2 queues. Users in each of these k2 queues are served with a common
rate from among the set

{
θ0, θ1, · · · θJ̄ , θM

}
.

In the activation vector a∗, the fraction of OFF PBSs is exactly equal to η and hence in a block of k2

PBSs, the number of OFF PBSs will be η × k2 = k1.
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1) Analysis of the bracket policy: Let us analyze the activation vector a∗ which is expressed as a∗n =
{bηnc − bη(n− 1)c}n≥1. Consider a block of k2 consecutive PBSs from n0 = mk2 to (m+ 1)k2 − 1 for
any integer m. We have,

an0 = bηn0c − bη(n0 − 1)c

= bmk1c − bmk1 −
k1

k2

c

= mk1 − (mk1 − 1)

= 1.

To find the next OFF PBS, we need to find the smallest integer s > 0 such that an0+s = 1 i.e. such that

bη(n0 + s)c − bη(n0 + s− 1)c = 1.

For any integer s > 0, we have bη(n0 + s− 1)c ≥ mk1. Thus, the required s is the smallest integer s
with

bη(n0 + s)c = mk1 + 1 and bη(n0 + s− 1)c = mk1.

But ⌊
η(n0 + s)

⌋
=
⌊k1

k2

(mk2 + s)
⌋

= mk1 +
⌊
s
k1

k2

⌋
.

So, we need the smallest s such that,
⌊
s
k1

k2

⌋
= 1 and we obtain the following:

Lemma 1.
⌈
p
k2

k1

⌉
is the smallest s such that

⌊
s
k1

k2

⌋
= p. �

(Proof in Appendix C)
Thus, position of the next OFF PBS after n0, is given by n0 + dk2

k1
e.

Proceeding in the same manner, the pth next OFF PBS can be found out by solving for the smallest s
such that b(mk2 + s)k1

k2
c = mk1 + p and b(mk2 + s− 1)k1

k2
c = mk1 + p − 1. Using Lemma 1 again, we

get s = dpk2
k1
e. Thus,

Lemma 2. For n0 = mk2, where m is an integer and η = k1
k2

,

an0+i = 1 if i =
⌈p
η

⌉
for some p ∈ {1, 2 · · · }

= 0 otherwise.

�

We call a queue to be of type j if users in that queue are being served with the rate θj by a PBS. Let
the total number of types of queues which are being served by PBSs in the block be l(η). The rest, if any
left, are served by MBS. It is easy to see that if there exists a queue of type j, then there will exist queues
of types i whenever 0 ≤ i ≤ j. Thus, l(η) = i would mean that the set of possible rates being delivered
by the PBSs is {θ0, θ1, · · · , θi−1} and for every rate in this set, there will exist at least one queue being
served at that rate. We have the following result -

Lemma 3. l(η) = r + 1 for h(r − 1) < η ≤ h(r) where r is an integer and h(r) :=
2r

1 + 2r
. �

This is obtained by proving the following steps:
1) {η : l(η) = r + 1} ⊂ {η ≤ h(r)}
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2) {η ≤ h(r)} ⊂ {η : l(η) ≤ r + 1}

3) {h(r − 1) < η ≤ h(r)} = {η : l(η) = r + 1}.

The detailed proof of each step can be found in Appendix C.

Determining frequency of each type of queue
Having found the different types of possible queues for a given η, we need to determine the number of

each type of queue in the k2 block. We obtain these frequencies and then the final expression for W̄ ∗(η)
in the following:

Theorem 3. When η = k1/k2 and when h(r − 1) < η ≤ h(r) for some r, with γ := min{r − 1, J̄} we
have the following in a block of k2 consecutive PBSs:
1. (1− η) fraction of the PBSs are ON.
2. 2(1− η) fraction of PBSs are of type θi for each 1 ≤ i ≤ γ.
3. Remaining are either of type r (if r − 1 < J̄) or are connected to the MBS.
The expression for the minimum average waiting time is given by (6)

W
∗
(η) = w(θx)− (1− η)

min(r−1,J̄)∑
k=0

w(θk)br,k + w(θx)
(
1 + 2 min(r − 1, J̄)

) with (6)

x =

{
r if r − 1 < J̄ ,
M if r − 1 ≥ J̄

, br,k =

{ − 1 if k = 0,
−2 if 1 ≤ k ≤ min(r − 1, J̄)

when h(r − 1) < η ≤ h(r) with h(r) = 2r
1+2r

.
�

Here we present a brief sketch of the proof while the details are in Appendix C. We first show that
the minimum distance between any two consecutive ON PBSs is 2r− 1. Let Si be the set containing i-th
ON PBS and its r − 1 neighbors on each side (which are OFF). Each such set will contain a queue at
the ON PBS location being served at the rate θ0 and two queues being served at θi, ∀ 1 ≤ i ≤ γ. Rest
of the PBSs (excluding ∪iSi), if any, are either connected to the MBS or are of type r. Using this, we
get equation (6) as the expression for minimum waiting time when η fraction of the PBSs have to be
switched OFF.

B. Solution of (4)
By the above analysis, we derived an expression for the minimum average waiting time possible for a

given η.
As seen from (6), W

∗
(η) is piecewise continuous and linearly increasing function of η. The continuity

at interval boundaries (at h(r) for any r) can be seen by calculating the left and right limits of the
waiting time at the boundary (Lemma 5 and Lemma 6 in Appendix C). Thus, W

∗
(η) is a continuous

non-decreasing function of η.
The average waiting time will be the least, i.e. w(θ0), when all the PBSs are ON. It will be the

maximum, i.e. w(θM), when all the PBSs are OFF and all the queues are being served by the MBS. Thus,
average waiting time always takes values between w(θ0) and w(θM). Hence, if WQoS ≥ w(θM), then all
PBSs can be switched OFF. If WQoS < w(θ0), then it is not possible to meet the QoS requirement with
the given system parameters.

When w(θ0) ≤ WQoS ≤ w(θM), the fraction η′ which satisfies W
∗
(η′) = WQoS, is given by:
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η′ = 1− w(θx)−WQoS

w(θx)
(
1 + 2 min(r′ − 1, J̄

)
+

min(r′−1,J̄)∑
k=0

w(θk)br′,k

where r′ is such that W
∗
(h(r′ − 1)) < WQoS ≤ W

∗
(h(r′)).

Theorem 4. η′ is the solution to the optimization problem (4).

The proof of the above theorem can be found in Appendix C.
Thus, η′ is the maximum fraction of PBSs that can be switched OFF for the given load conditions

(reflected through η′s dependence on w(θ)) while meeting the QoS constraint.

VI. CONCLUSIONS

We considered a heterogeneous network containing a macro cell and a series of pico cells placed along
a major street and obtained the system performance, the average waiting time. Two control policies were
relevant in this context: 1) activation policy indicating the ON-OFF status of pico base stations; 2) user
base station association policy for a given activation policy. Using multi-modularity tools, for any given
switch OFF ratio we showed that a periodic sequence (called bracket sequence) is an optimal activation
policy while ‘connect to that ON base station, which maximizes the transfer rate’ is shown to be the
optimal user base station association policy. This pair of policies jointly minimize the average waiting
time. We also showed that the optimal activation policy depends only upon the switch OFF ratio and is
independent of transfer rates and other system parameters. Further, we have an explicit expression for
this policy which can easily be evaluated. One of the important contributions of this work is that, we
obtained the explicit expression for the average waiting time under the optimal policies, i.e., the optimal
average waiting time. We did this by obtaining the finer structural properties of the bracket policies. Using
this expression, we obtained the optimal switch OFF ratio (among rational numbers) for any given load
conditions (specified in terms of arrival rates and average amount of information to be transferred) which
meets the QoS requirements.

As future work, we intend to understand the system performance when fading is considered in the
signals of the PBSs and the MBS. We would also like to relax the assumption of users arriving uniformly.
In this case, it would be more appropriate to consider decentralized policies where every PBS will switch
ON-OFF depending on the traffic load and probably the number of waiting users at its own queue.
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APPENDIX A: REVIEW OF MULTI-MODULARITY
(This section has been reproduced from [10] for a brief summary of concepts in multi-modularity. More

details can be found in [17])
Definition 1: A function f : {0, 1}n → R is Multimodular if

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v)

for all a ∈ {0, 1}n and for all u, v ∈ F (the Multimodular base) with u 6= v and such that a + u, a +
v, a + u + v ∈ {0, 1}n .
The Multimodular base F contains the vectors −e1, s2, s3, · · · , sn, en, where

−e1 = (-1 0 0 0 0 · · · 0 0), s2 = (1 -1 0 0 0 · · · 0 0)

s3 = (0 1 -1 0 0 · · · 0 0), s4 = (0 0 1 -1 0 · · · 0 0)
...

sN = (0 0 0 0 0 · · · 1 -1) and eN = (0 0 0 0 0 · · · 0 1).

Definition 2: The bracket sequence a∗(η, β) := {an(η, β)} with rate η ∈ [0, 1) and initial phase β ∈ [0, 1)
is defined as

an(η, β) = bnη + βc − b(n− 1)η + βc
Theorem 5. A bracket sequence a(η, β) for any β ∈ [0, 1) minimizes the cost

lim sup
N→∞

1
N

∑N
n=1 fn(a1, · · · , an)

over all the sequences that satisfy

lim inf
N→∞

1
N

∑N
n=1 an ≥ η

where η ∈ [0, 1), under the following assumptions:
1) fn is multimodular ∀ n.
2) fn(a1, · · · , an) ≥ fn−1(a2, · · · , an) ∀ n > 1
3) ∀ sequence{an} ,∃ a sequence{bn} ∀ n,m with n > m, such that

fn(b1, · · · , bn−m, a1, · · · , am) = fm(a1, · · · , am)

4) ∀ n, the functionsfn(a1, · · · , an) are increasing in ai∀ i. �



12

APPENDIX B: OPTIMALITY OF BRACKET SEQUENCE
Theorem 6. For J ≤ J̄ , the function fn(an

1 ) := Wn−J(a, J) is multimodular for every n.

Proof. All the sequences in this proof are n length vectors and also J is fixed. Hence, we use the shorthand
notation a in place of an

1 for all the vectors and θn(a) in place of θn(a, J).
We need to prove

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v) (7)

∀ a ∈ {0, 1}n and ∀ u, v ∈ F (the multimodular base) with u 6= v and such that a + u, a +
v, a + u + v ∈ {0, 1}n .
Let us define s1 = −e1 and sn+1 = en.
Let v = sj and u = sl where j, l ∈ {1, n+ 1} and l 6= j. Without loss of generality, we assume that l > j.
Consider j ∈ {2, n}. Since we can only consider such v for which a + v ∈ {0, 1}n, the sequence a should
have aj−1 = 0 and aj = 1. Also, we will have

(a+ v)j−1 = 1, (a+ v)j = 0,
ai = (a+ v)i ∀ i 6= j, j − 1.

Therefore, adding v to a implies that the PBS located at position j− 1 which was ON is turned OFF and
the PBS at position j is turned ON.

When v = s1 = −e1, we would have

a1 = 1, (a+ v)1 = 0 and ai = (a+ v)i ∀ i 6= 1.

Note that the PBS at position 0 is always switched ON. Thus, a0 = 0 ∀ a.
Similarly, when v = sn+1 = en, we would have

an = 0, (a+ v)n = 1 and ai = (a+ v)i ∀ i 6= n.

Thus, addition of −e1 switches ON the first base station and addition of en switches OFF the last base
station.
All the above will also hold when v is replaced by u and j by l.

Note that l cannot be equal to j+ 1 i.e. l > j+ 1 since u = sl implies al−1 = 0 i.e. aj = 0 if l = j+ 1.
But, v = sj implies aj = 1. Hence, we have an inconsistency if l = j + 1.
Thus, we only need to consider j ∈ [1, n], l ∈ [2, n+ 1] ∀ l > j + 1.

Let the closest active PBS on the left of the (n− J)th user and the closest active PBS on the right of
(n− J)th user be at positions KL(a) and KR(a) respectively i.e.

KL(a) = max
0≤k≤n−J

{ak = 0}

KR(a) =

{
n+ 1 if ai = 1 ∀ n− J ≤ i ≤ n

min
k≥n−J

{ak = 0} otherwise

KR(a) is assigned value n + 1 when none of the J PBSs to the right of the user are ON. This signifies
that the user will be connected either to KL(a) or the MBS.

Let B(a) represent the base station to which the (n − J)th user is connected. B(a) is either KL(a)
or KR(a) or the MBS. Unless there is a change in the base station to which the user is connected, his
average waiting time will not change.

If n ≤ J , we will have n− J ≤ 0. By definition, θn−J(b) = θ0 for any activation vector b. Thus,

θn−J(a) = θn−J(a + u) = θn−J(a + v) = θn−J(a + u + v).

∴ fn(a + v) = fn(a + u) = fn(a) = fn(a + u + v) = w(θ0)
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and (7) is satisfied. Now, we focus on n > J . If

j − 1 < l − 1 < KL(a) or KR(a) < j − 1 < l − 1 or

j − 1 < KL(a) and (l − 1) > KR(a),

then even after adding u or v or u+v to a, the nearest ON PBS to the (n − J)th user on both its sides
remain unchanged. Therefore,

fn(a + v) = fn(a + u) = fn(a) = fn(a + u + v).

Thus, (7) is satisfied. Now, let us divide the rest of the possibilities into three scenarios -
1) j − 1 < KL(a), l − 1 = KL(a) or l − 1 = KR(a)

2) j − 1 = KL(a) or j − 1 = KR(a), l − 1 > KR(a)

3) j − 1 = KL(a), l − 1 = KR(a)

Considering each of them one-by-one,

Case 1: j − 1 < KL(a), l − 1 = KL(a) or l − 1 = KR(a)

As j − 1 < KL(a) switching OFF the PBS at j − 1 and switching ON the PBS at j or only switching
on the PBS at position 1 (when j = 1) will not affect the (n − J)th user. (j 6= KL(a) as aj = 1 and
aKL(a) = 0.) Thus, B(a) = B(a + v). Hence,

fn(a + v) = fn(a) and similarly, fn(a + u + v) = fn(a + u).

Therefore, (7) is satisfied for all possible values of v and u when j−1 < KL(a), l−1 = KL(a) or l−1 =
KR(a).

Case 2: j − 1 = KL(a) or j − 1 = KR(a), l − 1 > KR(a)

Similar to the previous case, we will now have,

fn(a + u) = fn(a) and fn(a + v + u) = fn(a + v).

Therefore, (7) is satisfied for all possible values of v and u when j − 1 < KL(a), l − 1 = KL(a).
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Case 3: j − 1 = KL(a), l − 1 = KR(a)

(The arguments given below are applicable ∀ j, l)
As l ≤ n+ 1, we have KR(a) ≤ n.

∴ KR(a)− (n− J) ≤ n− (n− J) (8)

i.e. the distance between the (n−J)th user and KR(a) is less than or equal to J which implies (n−J)th
user is connected to either the PBS at KL(a) or the PBS at KR(a) . Thus, the user would not be connected
to the MBS with this activation vector a. As KR(a) = KR(a + v), the same arguments hold when the
activation vector is a + v. Thus, even with this activation vector , the user would not be connected to the
MBS.

We know that KL(a) ≤ n − J . If KL(a) = n − J then by definition, KR(a) = n − J. Then, l − 1 =
n− J = j − 1. This is an inconsistency as l > j + 1.

Clearly, KL(a + v) = 1 + KL(a). Thus, when j − 1 = KL(a) < n − J , addition of v switches ON a
PBS closer to the user. Therefore, the transfer rate of the user cannot decrease. Thus,

θn−J(a + v) ≥ θn−J(a).

⇒ fn(a + v) ≤ fn(a).

(Waiting time monotonically decreases with the rate θ.) Using the same arguments we get,

fn(a + u + v) ≤ fn(a + u). (9)

Now, consider the following sub-cases -
1) KR(a)− (n− J) < (n− J)−KL(a)

Here, B(a) = KR(a). Also, KL(a + v) = 1 +KL(a) and KR(a + v) = KR(a). Thus,

KR(a + v)− (n− J) ≤ (n− J)−KL(a + v).

⇒ B(a + v) = KR(a + v) = KR(a) = B(a).

∴ fn(a + v) = fn(a). (10)

Adding (9) and (10), we get
fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v).

2) KR(a)− (n− J) ≥ (n− J)−KL(a)
Here, B(a) = KL(a). Clearly, KL(a) = KL(a + u) and KR(a + u) ≥ KR(a). So we have,

KR(a+u)− (n− J) ≥ (n− J)−KL(a+u).

⇒ B(a + u) = KL(a + u) = KL(a) = B(a).

∴ fn(a + u) = fn(a). (11)

Now, let us consider the situation when the activation vector is a + v. As KR(a) = KR(a + v), from
(8), we have

KR(a + v)− (n− J) ≤ n− (n− J).
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Thus, even when the activation vector is a + v the user would not be connected to the MBS but
would be connected to either KR(a + v) or KL(a + v).
Using the hypothesis,

KR(a + v)− (n− J) ≥ (n− J)−KL(a + v).

Hence, the user is connected to KL(a + v). (In the case of equality in the above, user can be
connected either to KL(a + v) or KR(a + v) but this does not make a difference to fn(a + v) as
both of them are equidistant from the user. ) Therefore,

fn(a + v + u) = fn(a + v) (12)

Adding (11) and (12), we get
fn(a + v) + fn(a + u) = fn(a) + fn(a + u + v).

Thus, for KL(a) = j − 1 and KR(a) = l − 1 , (7) is satisfied. Therefore, for all u, v ∈ F and u 6= v, we
have proved that

fn(a + v) + fn(a + u) ≥ fn(a) + fn(a + u + v).

Hence, we conclude that fn(a) = Wn−J(a) is multimodular.

Proof of Theorem 1. As J remains constant throughout the proof, we will use a shorthand notation of
Wn(a), θn(a) instead of Wn(a, J), θn(a, J) respectively. Define

fn(an
1 ) = Wn−J(a, J).

This proof is obtained using Theorem 5. We will verify the validity of its assumptions.
1) fn(an

1 ) = Wn−J(a) is multimodular from Theorem 6.

2) For assumption 2, we need to prove ∀ n > 1 that

fn(a1, · · · , an) ≥ fn−1(a2, · · · , an).

It is sufficient to show

Wn−J(a1, · · · , an, · · · ) ≥ W(n−1)−J(a2, · · · , an, · · · ).
(or) θn−J(a1, · · · , an, · · · ) ≤ θ(n−1)−J(a2, · · · , an, · · · ).

If (n− J) ≤ 0, then the assumption is true because

θn−J(a1, · · · , an, · · · ) = θ(n−1)−J(a2, · · · , an, · · · ) = θ0.

Now, let us consider (n− J) > 0. Define activation vector

c = (c1, c2, · · · , cn−1) := (a2, · · · , an).

By our assumption PBS at 0 is ON, or equivalently c0 = a0 = 0. Recall that θn−J is the rate at n − J
point while θ(n−1)−J is the rate at its left neighbor. With the changes in activation vectors, we have c0

where a1 was originally present. If a1 = 0, then no user would have been connected to PBS at position
0. On removing a1, we have c0 where a1 was originally present. Thus, there will be no change in user’s
transfer rate. If a1 = 1, then by replacing it with c0, we are switching ON a PBS which was previously
OFF. This cannot result in a decrease in the transfer rate of any user. Therefore, ∀ n > 1

θn−J(a1, · · · , an, · · · ) ≤ θ(n−1)−J(a2, · · · , an, · · · ).

3) We have a0 = 0. As on adding b, bn−m takes the position of a0, we take b such that bn−m = 0. With
such a choice clearly,

fn(b1, · · · , bn−m, a1, · · · , am) = fm(a1, · · · , am).
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4) Switching ON a PBS cannot decrease a user’s transfer rate i.e. θn−J(a1, · · · , ai−1, 0, ai+1, · · · , an, ·) ≥
θn−J(a1, · · · , ai−1, 1, ai+1, · · · , an, ·) ∀ i.
As fn(an

1 ) = Wn−J(a) is a decreasing function of θn−J(a), Wn−J(a) will be increasing in ai ∀ i. Thus,
all the assumptions of Theorem 5 hold . Now,

lim sup
N→∞

1

N

N∑
n=1

fn(a1, · · · , an)=lim sup
N→∞

1

N

N∑
n=1

Wn−J(a, J)

= lim sup
N→∞

1

N

(
0∑

n=1−J

W0(a, J) +
N−J∑
n=1

Wn(a, J)

)

= lim sup
N→∞

1

N

N∑
n=1

Wn(a, J).

(For n− J ≤ 0,Wn−J(a) = w(θ0). )
Thus, using Theorem 5, the optimization problem (3) has the solution as the bracket policy sequence
a∗.

Proof of Theorem 2. When the J-association policy is being used, the user being served in the nth queue
can be associated to 0th, 1st, · · · J th nearest PBS or the MBS. (In the following discussion, by ‘user’,
we mean the user being served in the nth queue).
Thus, we have the following cases-
1) User is being served by a PBS:
Let the distance of this PBS from the user be l i.e.

l(a, J) := min
0≤k≤J

{an+k = 0 or an−k = 0} .

Clearly, l(a, J) = l(a, J + 1). Therefore,

θn(a, J + 1) = θn(a, J).

2) User is being served by the the MBS i.e. θn(a, J) = θM :
θn(a, J + 1) = θM1 {an+J+1 = an−J−1 = 1}

+ θJ+11 {an+J+1an−J−1 = 0}

where 1(.) represents the indicator function. Thus,

θn(a, J + 1) ≥ θn(a, J) if J < J̄ and
θn(a, J + 1) ≤ θn(a, J) if J ≥ J̄ .

From the two cases above,
θn(a, 1) ≤ θn(a, 2) ≤ · · · θn(a, J̄) and

θn(a, J̄) ≥ θn(a, J̄ + 1) ≥ θn(a, J̄ + 2) ≥ · · · .

∴ θn(a, J) ≤ θn(a, J̄) ∀ a, J.

But Wn(a, J) is a monotonically decreasing function of θn(a, J). Thus,

Wn(a, J) ≥ Wn(a, J̄) ∀ a, J.

Averaging over all n′s, we get W (a, J) ≥ W (a, J̄) ∀ a, J.

From Theorem 1, W (a, J̄) ≥ W (a∗, J̄) for all a in which the fraction of base stations switched OFF is
equal to η. Thus, we have, W (a, J) ≥ W (a∗, J̄) ∀ J and for all a satisfying the above condition.
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APPENDIX C: PROOFS RELATED TO WAITING TIME ANALYSIS
Proof of Lemma 1. Let us check if s = dpk2

k1
e − 1 satisfies the equality. We have,(

p
k2

k1

− 1

)
k1

k2

≤
(⌈
p
k2

k1

⌉
− 1

)
k1

k2

<

(
p
k2

k1

)
k1

k2

.

∴ p− 1 ≤
(⌈
p
k2

k1

⌉
− 1

)
k1

k2

< p.

Hence,
⌊(⌈

p
k2

k1

⌉
− 1

)
k1

k2

⌋
= p−1. As

⌊
s
k1

k2

⌋
is non-decreasing in s, it is less than p for all s ≤

⌈
p
k2

k1

⌉
−1.

Now, consider s =
⌈
p
k2

k1

⌉
. We have,

p
k2

k1

k1

k2

≤
⌈
p
k2

k1

⌉k1

k2

<

(
1 + p

k2

k1

)
k1

k2

.

∴ p ≤
⌈
p
k2

k1

⌉k1

k2

< p+
k1

k2

.

Hence,
⌊⌈
p
k2

k1

⌉k1

k2

⌋
= p.

Proof of Lemma 3. We want to find an expression for l(η) in terms of η. Towards this, we proceed by
proving the following:

1) {η : l(η) = r + 1} ⊂ {η ≤ h(r)}

2) {η ≤ h(r)} ⊂ {η : l(η) ≤ r + 1}

3) {h(r − 1) < η ≤ h(r)} = {η : l(η) = r + 1}

Step 1: {η : l(η) = r + 1} ⊂ {η ≤ h(r)}
We first determine the permissible η for l(η) = i ∀ i. Define

dn(1) = inf
j>0

{
a∗n+j = 1

}
and

dn(k) = inf
j>dn(k−1)

{
a∗n+j = 1

}
.

Note that, dn(k) represents the distance of the kth next OFF PBS from the nth PBS. Clearly, dn(k) ≥ k.

Let us consider the various possible values of l(η).
1) l(η) = 1 means all users are being served at the rate θ0. This is possible only when all the PBSs

are ON. This can happen only when η = 0.

2) l(η) = r + 1 - This means that the rates of each queue in the k2 block is one of θ0, θ1, · · · , θr and
no queue is served at rate θr+1 or lesser. This will happen when the number of consecutive PBSs
which are OFF is at most 2r. This means for any OFF PBS at position n, dn(2r) > 2r. In particular,
this is true for n = n0 (recall that n0 = mk2 and an0 = 1 i.e. the PBS located at n0 is OFF). Thus,
from Lemma 2 ∀ p > 2r (

n0 +
⌈
p
k2

k1

⌉)
−
(
n0 +

⌈
(p− 2r)

k2

k1

⌉)
> 2r.

∴
⌈p
η

⌉
−
⌈p− 2r

η

⌉
> 2r. (13)
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If possible let η > h(r). Then,

−(2r + 1) < −2

η
r < −2r.

∴
⌈
− 2

η
r
⌉

= −2r.

Let us take p = nk1 for some integer n. Then,⌈p
η

⌉
−
⌈p− 2r

η

⌉
= nk2 − (nk2 +

⌈
− 2r

η

⌉
) = 2r.

Thus, we have found a value of integer p for which equation (13) is not satisfied. Therefore, l(η)
cannot be r + 1 for η > h(r). Hence,

l(η) = r + 1 =⇒ η ≤ h(r). (14)

Step 2: {η ≤ h(r)} ⊂ {η : l(η) ≤ r + 1}

Now, let us consider the case when η ≤ 2r

1 + 2r
and check if it is possible to have l(η) > r + 1.

Assume, l(η) ≥ r + 2. This implies that there exists two ON PBSs such that there are atleast 2r + 1
consecutive OFF PBSs between them. Thus, for some q,

aq = 0, aq+1 = 1, aq+2 = 1, · · · aq+2r+1 = 1.

From Lemma 2, location of each OFF PBS can be written in the form n0 +
⌈z
η

⌉
for some integer z. Thus,

there exists a z such that,

q + 1 = n0 +
⌈z
η

⌉
, q + 2 = n0 +

⌈z + 1

η

⌉
, · · · ,

q + 2r + 1 = n0 +
⌈z + 2r

η

⌉
.

Using the first and last equation, we get ⌈z
η

⌉
+ 2r =

⌈z + 2r

η

⌉
.

As ceiling of a number is strictly less than one more than the number,⌈z + 2r

η

⌉
<
z

η
+ 2r + 1.

⇒ z + 2r

η
<
z

η
+ 2r + 1.

⇒ 2r

η
< 2r + 1.

⇒ η >
2r

1 + 2r
.

This is a contradiction. Thus, l(η) ≤ r + 1 for η < h(r).
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Step 3: {h(r − 1) < η ≤ h(r)} = {η : l(η) = r + 1}
Now consider h(r − 1) < η ≤ h(r).
We know that l(η) ≤ r + 1. We want to find out the exact value of l(η).
Assume l(η) ≤ r = (r − 1) + 1. But from equation (14), l(η) ≤ (r − 1) + 1 implies η ≤ h(r − 1). This
is a contradiction.
Thus, for h(r − 1) < η ≤ h(r), the only possible value of l(η) is r + 1.

Lemma 4. If bqηc = b(q − 1)ηc = s and b(q + p)ηc = b(q + p− 1)ηc = s+ o, then o ≤ p− 1.

Proof.

(q + p− 1)η = qη + (p− 1)η.

< qη + (p− 1).

∴ b(q + p− 1)ηc ≤ bqη + p− 1c.
= bqηc+ p− 1.

∴ s+ o ≤ s+ (p− 1).

o ≤ p− 1.

Lemma 5. W ∗
(η) is a non-decreasing function of η.

Proof. Consider h(r − 1) < η ≤ h(r) for some r. We examine the derivative of η in this interval.
Let us start with the case when r − 1 < J̄ .

dW
∗
(η)

dη
=

r∑
k=0

w(θk)br,k + w(θr−1(1 + 2(r − 1)))

= −w(θ0)− 2w(θ1)− 2w(θ2) · · ·
2w(θr−1) + (2r − 1)w(θr)

≥ −w(θ0)− 2w(θr)− 2w(θr) · · ·
2w(θr) + (2r − 1)w(θr)

= −(2(r − 1) + 1)w(θr) + (2r − 1)w(θr)

= 0.

Thus, the derivative is non-negative. Hence, W
∗
(η) is non-decreasing function of η in the interval h(r−

1) < η ≤ h(r),∀ r . As W
∗
(η) is continuous at the interval boundaries i.e. at η = h(r), we conclude that

W
∗
(η) is non-decreasing function of η, η ∈ [0, 1]. With similar arguments, even when r− 1 ≥ J̄ , we can

show that W
∗
(η) has a non-negative derivative.

Proof of Theorem 3. Consider two consecutive ON PBSs. Let their positions be q and q + p, where p is
the distance between the two PBSs. Thus, we have, aq = aq+p = 0.
Let h(r − 1) < η ≤ h(r) for some r. Thus, l(η) = r + 1.
Let bqηc = b(q − 1)ηc = s and b(q + p)ηc = b(q + p− 1)ηc = s+ o. Using Lemma 4, we get o ≤ p− 1.
We have s ≤ qη − η and (q + p)η < s+ o+ 1.

⇒ (q + p)η < qη − η + o+ 1.

⇒ η <
o+ 1

1 + p
.

⇒ η <
p

1 + p
(from Lemma 4).
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It is easy to see that i
i+1

is an increasing function of i. We also know that h(r− 1) = 2(r−1)
1+2(r−1)

< η. Thus,
p > 2(r − 1) i.e. p ≥ 2r − 1. Thus, the minimum distance between two consecutive ON PBSs is 2r − 1.
This means that there are atleast 2r − 2 consecutive OFF PBSs between any two ON PBSs. Thus, if we
define Si to be the set containing the ith ON PBS and its r − 1 neighbors on each side, then the sets
Sis will be disjoint. Further, each set will contain one queue being served at the rate θ0 (the queue at
the ON PBS) and two queues being served at the rate θi, 1 ≤ i ≤ r − 1. Thus, number of θi queues for
1 ≤ i ≤ r − 1 is twice the number of θ0 queues i.e. twice the number of ON PBSs.
In the activation vector a∗, the fraction of OFF PBSs is exactly equal to η and hence in a block of k2

PBSs, the number of OFF PBSs will be η × k2 = k1. Hence, the number of ON PBSs = k2 − k1. Thus
if r − 1 < J̄ , number of θi queues will be 2(k2 − k1) for 1 ≤ i ≤ r − 1. Hence, number of θr queues is
k2 − (1 + 2(r − 1))(k2 − k1) = k1(2r − 1)− 2k2(r − 1).
Therefore,

W
∗
(η) =

1

k2

(
(k2 − k1)w(θ0) + 2 (k2 − k1)w(θ1)+

2 (k2 − k1)w(θ2) + · · ·+ 2 (k2 − k1)w(θr−1)+

w(θr) (k1(2r − 1)− 2k2(r − 1)))

= (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+
2 (1− η)w(θr−1) + w(θr) (η(2r − 1)− 2(r − 1)) .

Similarly, when r − 1 ≥ J̄ , then number of θi queues will be 2(k2 − k1) for 1 ≤ i ≤ J̄ . Rest of the
queues i.e. k1(2J̄ + 1) − 2k2J̄ queues will be connected to the MBS. Combining these two cases, we
get equation (6) as the expression for minimum waiting time when η fraction of the PBSs have to be
switched OFF.

Proof of Theorem 4. If possible, assume there exist η̃ and policies (a, J) such that

η̃ = lim inf
N→∞

1

N

N∑
n=1

an and satisfying W (a, J) ≤ WQoS,

and such that η̃ ≥ η′. Let a∗(η̃) be used to represent the bracket sequence with switch OFF ratio η̃. By
optimality of policies (a∗(η̃), J̄), we have

W
∗
(η̃) = W (a∗(η̃), J̄) ≤ W (a, J) ≤ WQoS.

On the other hand, by monotonicity of W
∗
(.) (see [18]) we have, W

∗
(η̃) > W

∗
(η′) = WQoS. This is a

contradiction. Thus, η′ is the optimal value in (4) and a′ := a∗(η′) and J = J̄ are the optimal pair of
policies solving the optimization problem (4).

Lemma 6. Waiting time is a continuous function of η.

Proof. We know that if h(r − 1) < η ≤ h(r), then
1)If r − 1 < J̄ ,

W
∗
(η) = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+

2 (1− η)w(θJ) + w(θr) (η(2r − 1)− 2(r − 1)) . (15)

2) If r − 1 ≥ J̄ ,

W
∗
(η) = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+

2 (1− η)w(θr−1) + w(θM)
(
η(2J̄ + 1)− 2J̄

)
. (16)

We need to check if the waiting time is continuous at the boundaries i.e. for η = h(r). For this value of
η, we will find the right and left limits (W r,W l). W l will be evaluated based on the expression of W
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in the region h(r − 1) < η ≤ h(r) whereas W r will be evaluated based on the expression of W in the
region h(r) < η ≤ h(r + 1).
We can have 3 cases depending on relation between r and J̄ :

1) r < J̄
In this case, we will use equation (15) for evaluating both Wl and Wr (because r − 1 < J̄ and
r < J̄).

W l = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+
2 (1− η)w(θr−1) + w(θr) (η(2r − 1)− 2(r − 1))

= X + w(θr) (η(2r − 1)− 2(r − 1))

= X +
2

1 + 2r
w(θr)

where, X = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+ 2 (1− η)w(θr−1).

W r = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+
2 (1− η)w(θr−1) + w(θr) (η(2r − 1)− 2(r − 1)) +

w(θr+1) (η(2(r + 1)− 1)− 2(r))

= X + w(θr) (η(2r − 1)− 2(r − 1)) +

w(θr+1) (η(2(r + 1)− 1)− 2(r))

= X +
2

1 + 2r
w(θr) + w(θr+1)× 0

= W l.

Thus, in this case W
∗
(η) is continuous at the boundaries.

2) r = J̄
In this case, we will use (15) for evaluating Wl and (16) for evaluating Wr (because r− 1 < J̄ and
r ≥ J̄). As derived previously,

W l = X +
2

1 + 2r
w(θr).

W r = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+
2 (1− η)w(θJ) + w(θM)

(
η(2J̄ + 1)− 2J̄

)
Using r = J̄ ,

= X + 2 (1− η)w(θr)+

w(θM)
(
η(2J̄ + 1)− 2J̄

)
= X +

2

1 + 2r
w(θr) + w(θM)× 0

= W l.

Thus, in this case also W
∗
(η) is continuous at the boundaries.

3) r > J̄
In this case, we will use (16) for evaluating both Wl and Wr (because r− 1 ≥ J̄ and r ≥ J̄). From
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(16),

W
∗
(η) = (1− η)w(θ0) + 2 (1− η)w(θ1) + · · ·+

2 (1− η)w(θJ) + w(θM)
(
η(2J̄ + 1)− 2J̄

)
.

Clearly, this expression does not depend on r. Thus value of W
∗
(η) will be same using the

expressions for h(r − 1) < η ≤ h(r) and h(r) < η ≤ h(r + 1). Hence, it will be continuous
at the boundary i.e. when η = h(r) for any integer r.

Therefore, in all three cases, we obtain continuity of waiting time at the boundaries. The continuity of
waiting times at points other than the boundaries can be easily seen from the two expressions of W

∗
(η).

Thus, the waiting time is continuous for all η.


