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Abstract— We consider a stochastic game with partial, asym-
metric and non-classical information, where the agents are
trying to acquire as many available opportunities/locks as
possible. Agents have access only to local information, the
information updates are asynchronous and our aim is to obtain
relevant equilibrium policies. Our approach is to consider
optimal open-loop control until the information update, which
allows managing the belief updates in a structured manner.
The agents continuously control the rates of their Poisson
search clocks to acquire the locks, and they get rewards at
every successful acquisition; an acquisition is successful if all
the previous stages are successful and if the agent is the first
one to complete. However, none of them have access to the
acquisition status of the other agents, leading to an asymmetric
information game. Using standard tools of optimal control
theory and Markov decision process (MDP) we solved a bi-
level control problem; every stage of the dynamic programming
equation of the MDP is solved using optimal control tools. We
finally reduced the game with an infinite number of states and
infinite-dimensional actions to a finite state game with one-
dimensional actions. We provided closed-form expressions for
Nash Equilibrium in some special cases and derived asymptotic
expressions for some more.

I. INTRODUCTION

We consider non-classical information games (as described
in [1]) inspired by the full information games considered
in [2]. In [2], agents attempt to acquire M available des-
tinations; each agent controls its rate of acquisition (adver-
tisement through a Social network) to increase its chances
of winning the destinations, while trading off the cost for
acquisition. They considered full information games, wherein
the agents at any time know the number of destinations avail-
able (not acquired by some agent); they also considered no-
information games, where the agents would not even know
the number of destinations/locks acquired by themselves.

It is more realistic to assume that the agents have access
only to local information; they might know the number of
locks acquired by themselves, but not the numbers acquired
by others. This leads to partial, asymmetric and non-classical
information games; Basar et. al in [1] describe a game to be
of non-classical information type, and we describe the same
in our words: if the state of agent i depends upon the actions
of agent j, and if agent j has some information which is
not available to agent i we have a non-classical information
game. These kind of games are typically hard to solve ([1]);
when one attempts to find best response against a strategy
profile of others, one would require belief of others states,
belief about the belief of others, and so on.

We have some initial results related to this asymmetric
information game in [4], where we solved the problem for
the case with two destinations and two agents. We also

considered that the locks (represent destinations) have to be
acquired in a given order and only the agent that first wins all
the locks would receive a (single) prize. We now consider a
significant generalization of the game: a) we consider general
number of locks and agents; b) the agent that wins all the
first k locks before the others would receive prize ck and
this is true for any lock.

Our approach to this problem can be summarized as “open
loop control till information update” (as in [4]). With no-
information, one has to resort to open loop policies (action
changes with time, but, oblivious to the state). This is the
best when one has no access to information updates. With
full information one can have closed loop policies (actions
can depend on state). Further, in full information controlled
Markov jump processes, every agent is informed immediately
of the jump in the state and can change its action based on the
change. In our case we have access to partial information,
the agents can observe only some jumps and not all; thus
we need policies that are open loop type till an information
update. At every information update, one can choose a new
open loop control depending upon the new information.

The agents have no access to the information of others,
however upon contacting a lock they would know if they
are the first to contact. Any strategy profile in our game
is described by one open loop policy for each state, each
state is primarily described by the time of acquisition of
the previous lock; thus we have an infinite dimensional
(strategy space is polish space) game. We used the tools of
optimal control theory (Hamiltonian Jacobi equations) and
Markov decision process to reduce this infinite dimensional
game to a one dimensional game; we showed that the best
response against any strategy profile of others includes a
time threshold policy (acquisition attempts to be made with
full intensity till a threshold of time, after which there
would be no attempts); more importantly we showed that
these thresholds can be specified by a single constant (for
each lock), irrespective of the time of acquisition of the
previous lock. We finally showed that the reduced game is
a strict concave game, proved the existence of unique Nash
equilibrium and provided a simple algorithm to compute the
same. Our results matched with those in [4], for all the cases
considered there. We have closed form expressions (some are
asymptotic) for the Nash equilibrium for some cases.

Our models can capture a variety of applications, e.g.,
social network problem as in [2] with one destination or
a block chain problem as in [4]. For general M , we solve
problem of winning a project (unaware of others success)
with multiple completion phases.



II. PROBLEM STATEMENT

There are n agents competing to win a project. The project
is to acquire M locks before the deadline T . The locks
are ordered, i.e, all the agents will compete for the first
lock in the beginning, after which they will compete for the
second lock and so on. The agent that contacts all the locks
successfully wins the project and gets a terminal reward.
Further we say k-th contact (of k-th lock) is successful if
this contact happens before time T and if the agent was the
first one to contact all the previous (k−1) locks and the k-th
lock; the agent gets some reward at every successful contact.
The acquisition/contact process of each agent is modelled by
independent (possibly non-homogeneous) Poisson Processes;
they can choose the rate of their (Poisson) contact process
as a function of time t ∈ [0, T ]. A higher rate of contact will
increase the chances of success but will also incur higher
cost. The aim of the agent is to maximize its expected reward.
Information structure: The agents have partial/asymmetric
information about the number of locks acquired by various
agents and would use the available information to design
their rate functions optimally. Any agent would know at all
the times information related to its contact attempts, however
has limited access to that of the others. When it contacts a
lock, it would know if it is successful; if not, it gets to know
that it is not the first one to contact. So, agent gets some
partial information about the state of others.
Decision epochs: As already mentioned, an agent has access
only to partial information. There is a (major) change in the
available information at the lock-contact epochs1; it would
know successful/unsuccessful status of the lock immediately
after contact, and based on this information the agent can
choose an optimal action. Hence contact epochs form the
natural decision epochs. Further, these epochs will be ex-
ponentially distributed random variables with the parameters
chosen by the agents, so it is clear that the decision epochs
of different agents will not be synchronous.

State: The state of any agent at any time t ∈ [0, T ] is
the information available to it at that time. The information
available to the agent i after contacting (k−1)-th lock, zik, has
two components: i) a flag lik represents whether the contact
was successful (lik = 1) or unsuccessful (lik = 0); and ii)
the time of (k − 1)-th contact denoted by τ ik−1. Thus zik =

(lik, τ
i
k−1) is the state of agent i at decision epoch k. The

state remains the same in the time interval [τ ik−1, τ
i
k). The

initial state zi1 = (li1, τ
i
0) is simply set to (1,0); the process

starts at 0 and li1 is set as 1 for convenience.
Actions: The agents choose the rate functions (defined

till T ) at their respective decision epochs based on their
states; these functions are open loop policies, wherein the
dynamic action is independent of the state of the system;
the agents change their rate function only at next decision
epoch. Such an approach is called “Open loop policy till
information update” as in [4]. The rate of contact, for agent
i, at any time can take values in the interval [0, βi] and
the rate function is measurable. To be precise, agent i at

1By convention, the start of the process commences with 0-th contact.

decision epoch k, i.e., at time instance τ ik−1, chooses an
action aik ∈ L∞[τ ik−1, T ], as the acceleration process to be
used till the next acquisition. Here L∞[τ ik−1, T ] is the space
of all measurable functions that are uniformly bounded by the
given constant; the bounds (βi for agent i) can be different
for different agents, nevertheless we avoid notation i for
simpler representation. These form a closed subset of Polish
space2 of essentially bounded functions, i.e., the space of
functions with finite essential supremum norm:

∣∣ a∣∣∞ ∶= inf{β ∶ ∣a(t)∣ ≤ β for almost all t ∈ [τ ik−1, T ]}.

Strategy: The strategy of player i is a collection of open
loop policies, one for each state and lock, as given below:
πi = { aik(⋅ ; zik) ∈ L∞; for all zik and all k ∈ {1,⋯,M}} , (1)

where ai1(⋅; z
i
1) represents the open loop policy/rate function

used at start, while aik(⋅ ; zik) represents the same to be
used after (k − 1)-th contact; this choice depends upon the
available information zik. At times, notation zik is dropped
and we use L∞ in place of L∞[τ ik−1, T ], to simplify the
explanations.

Our work majorly analyses best response (BR) of players,
hence we introduce the following notations. Without loss of
generality we consider BR of agent i. Let N ∶= {1,2,⋯, n}
be the set of players and πj be the policies of all other
players represented by j ∶= −i ∶= N − {i}.

Rewards/Costs: The reward of agent i is cik, if it
contacts all the first k locks successfully (before time T
and before other agents), while the terminal reward is ciM .
This implies, an agent unsuccessful with first contact, has
no incentive to attempt for further locks; so it would remain
silent henceforth.

Recall that T ∧ τ ik represents the time instance3 till which
the k-th lock is attempted. Then the cost spent on accelera-
tion for the k-th contact equals,

āik(T ∧ τ ik), with āik(t) ∶= ∫
t

τ i
k−1

aik(s)ds. (2)

Thus the expected (immediate) utility for stage k equals:

rik(z
i
k, a

i
k;πj) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

cikP
i
k(z

i
k;aik;πj) if lik = 1 and

−νE [āik(T ∧ τ ik)∣z
i
k] τ ik−1 < T,

0 else,
(3)

where P ik represents the probability of successfully contact-
ing k-th lock, conditioned on zik = (1, τ ik−1), i.e., conditioned
that (k−1)-th lock is acquired successfully at τ ik−1; and ν > 0
is the trade-off factor between the reward and the cost.

When k = 1 the probability of success P ik also depends
upon the failure of other agents, i.e., depends upon πj ∶= π−i:

P i1(z
i
1, a

i
1;πj) = ∫

T

0
ηi1(s;π

j
)e−ā

i
1(s)ai1(s)ds,

where the probability of failure of other agents before time
t equals (X is the indicator and see (2) for definition of ā):

ηik(t;π
j
) = X{k>1} +X{k=1}e

−∑m≠i ām1 (t). (4)

2Complete and separable space.
3The contact clocks {τ ik} are free running Poisson clocks, however we

would be interested only in those contacts that occurred before deadline T .



In the above, the indicators are introduced to have unified
notation; for k > 1, the probability of success P ik conditioned
on success till (k − 1)-th lock (now there is no opposition),
equals:

P ik(z
i
k, a

i
k;πj) = ∫

T

τ i
k−1

ηik(s;π
j
)e−ā

i
k(s)aik(s)ds. (5)

It is easy to observe that for any given aik(⋅) ∈ L
∞, the

expected cost equals (see (2) and with τ i0 ∶= 0):

E[āik(T ∧ τ ik)∣zik] = āik(T )e−ā
i
k(T ) +∫

T

τi
k−1

āik(s)e−ā
i
k(s)aik(s)ds. (6)

If an agent fails to contact before the deadline T , it still has
to pay for the entire duration T − τ ik−1 and hence the first
term in the above equation.

Game Formulation: This problem can be modelled as a
strategic/normal form non-cooperative game,

G = ⟨N,S,Φ⟩, with S = {Si}i and Φ = {φi},

where the set of players N = {1,2, . . . , n}, the strategy set
of player i is the class of all possible strategies as in (1), i.e.,
Si = {πi}, and the (overall) utility of agent i is given by

φi(πi, πj) =
M

∑
k=1

E[rik( z
i
k, a

i
k; πj)∣zi1 = (1,0)]. (7)

Our aim is to find a tuple of strategies (that depend only upon
the available information) that form the Nash equilibrium
(NE). We conclude this section by mentioning some of the
main results of the paper.

A. Important results

We solved this problem for M locks and n players; the
problem is converted to a much simplified and reduced
strategic form game, such that the (unique) Nash equilibrium
of the reduced game is also the Nash equilibrium of the
original game. We found the reduced game with the help of
following results. Before stating the results, we require the
following definitions.

Threshold Policy: A threshold policy is an open loop
policy, which takes value β (maximum possible value) in
the interval [s, θ] (if s ≤ θ) and value zero in the remaining
interval, where s is the starting point of the control and
0 ≤ θ ≤ T . Threshold policies are represented by Γθ;s, where
(for any s ≤ t ≤ T ),

Γθ;s(t) =

⎧⎪⎪
⎨
⎪⎪⎩

β if t ≤ θ,
0 else.

The rate function is 0 for all t, if the starting point s > θ.
Threshold (T) strategy: is a strategy made up of threshold

policies. A typical T-strategy is defined by threshold func-
tions {θk(⋅)}k and is defined as below:

π = {θ1(⋅) . . . , θM(⋅)},
= {ak(⋅ ; zk);ak(⋅ ; zk) = Γθk(s);s(⋅) when zk = (1, s) and

ak(⋅ ; zk) = Γ0;s when zk = (0, s), for any k}.

Basically when the state of player i is zik = (lik, τ
i
k−1) with

τ ik−1 = s and lik = 1, then starting from time s player i uses
threshold policy with threshold equal to θk(s) as the open
loop rate function; when lik = 0, we equate the thresholds

to 0, i.e., the player stops trying any further. Many a times
the starting point is obvious and hence the corresponding
notation is dropped from the subscript.
M-Thresholds (MT) Strategy: This is a special type of T-
strategy in which the thresholds for any given lock remain the
same irrespective of the time of acquisition of the previous
lock. A typical MT-strategy is defined by M -thresholds:
π = {θ1 . . . , θM},

= {ak( ⋅ ; zk); ak( ⋅ ; zk) = Γθk(⋅) for any zk and k}.

In other words, MT-strategy is completely represented by
M -thresholds {θk}k≤M , one for each k: a) here θk represents
the time threshold till which agent can attempt to acquire
k−th lock; b) threshold θk is independent of τk−1, the time of
acquisition of the (k−1)-th lock; and c) if τk−1 is bigger than
θk (i.e., if the (k − 1)-th lock is acquired after the threshold
for the k-th lock) then the agent would no longer attempt to
acquire the k-th lock under the given MT-strategy.

To summarize, the strategy of any player is made up
of open loop policies, one for every (possible) state and
for each decision epoch. Thus we have infinite dimensional
actions, however the following structural results about the
best response strategies reduce the complexity of the game
significantly:

Theorem 1: [Threshold Strategy] There exists a (thresh-
old) T -strategy that is a best response strategy of any given
player, against any given strategy profile of opponents. ∎

Theorem 2: [M -thresholds strategy] There exists an
MT-strategy that is a best response strategy of any given
player, against any given strategy profile of opponents. ∎

The proofs of both the Theorems are in the next section,
section III. By virtue of the above Theorems, there exists
a best response strategy represented completely using M
thresholds, which is optimal among (uncountable) state de-
pendent strategies with infinite dimensional strategy space.
We will thus have a reduced game in RM which is further
analyzed in section IV; we find NE of the original game
among these MT strategies. The unique NE of the reduced
game is characterized by Theorems 6 and 7 of section IV.

III. BEST RESPONSES

Our aim is to derive Nash equilibrium (NE) for this partial
and asymmetric information stochastic game. We begin with
deriving the best response (BR) of player i against any given
strategy profile πj of the opponents.
Dynamic programming equations The BR is obtained by
maximizing the objective function (7) with respect to the
strategies πi ∈ Si. It is easy to observe that this optimization
is an example of a Markov decision process which can be
solved using (M -stage) dynamic programming (DP) equa-
tions given below (see [6, Theorem 4.5.1 and Remarks after]
which covers the results for Polish spaces):
vik(zik;πj) = 0 if k >M or if τ ik−1 > T or if zik = (0, τ ik−1),

and other wise the value function equals,

vik(zik;πj) = sup
ai
k
∈L∞

{rik(zik, aik;πj) +E[vik+1(zik+1;πj)∣zik, aik]} .

(8)



Observe that ([6] and see equation (7))

vi1(z
i
1;πj) = sup

πi∈Si
φi(πi;πj),

and thus the BR is obtained by solving the DP equations.
The k-th stage DP equation can be re-written as below:

vik(z
i
k;πj) = sup

ai
k
∈L∞

J ik(z
i
k, a

i
k;πj), (9)

where the cost J ik is defined by (see equations (3)-(6)):

J ik(zik, aik;πj) =∫
T

τi
k−1

(hik(t) − νāik(t))aik(t)e−ā
i
k(t)dt

−νāik(T )e−ā
i
k(T ), with

hik(s) ∶= (cik + vik+1((1, s);πj))ηik(s;πj). (10)

Optimal control: From the structure of the optimization
problem (9) defining the k-th stage DP equation, it is clear
that one can solve it using an appropriate optimal control
problem. One can write this optimization problem as:

vik(z
i
k;πj) = u(τ,0); when zik = (1, τ),

where u(s, x) (defined for any s ∈ [τ, T ] and any x) is the
value function of the optimal control problem with details:

u(s, x) ∶= sup
a∈L∞[s,T ]

J(s, x, a), where the objective function, (11)

J(s, x, a) ∶=∫
T

s
(hik(s′) − νx(s′))a(s′)e−x(s

′)ds′ + g(x(T )),

with state process of the optimal control problem given by
(for any s′ ∈ [s, T ])

⋅

x (s′) = a(s′), with x(s) = x and thus x(s′) = x+∫
s′

s
a(s̃)ds̃

and with terminal cost g(x) = −νxe−x.

We need to solve this optimal control problem to get
the BR, and the standard technique to solve such problems
is using Hamiltonian Jacobi (HJB) PDEs [3], and the one
corresponding to (11) is given by:

us(s, x) + sup
a∈[0,βi]

a{(hik(s) − νx)e−x + ux(s, x)} = 0, with

u(T,x) = g(x), (12)

where us, ux are partial derivatives of the (optimal control)
value function. Using the standard tools we immediately
obtain the following result (Proof in Appendix):

Theorem 3: [Existence] At any stage k and any state zik,
(i) The optimal-control value function u(⋅, ⋅) is the unique

viscosity solution of the HJB PDE (12). Further, the
value function u(⋅, ⋅) is Lipschitz continuous in (s, x).

(ii) We have a a∗(⋅) that solves the control problem. ∎

Remark: Theorem 3 implies every stage of DP equation
has an optimizer, i.e., for every lock k and state zik, the
player i has a best response policy, call it ai∗k ( ⋅ ; zik). Thus
by [6, Theorem 4.5.1 and the following remarks about Polish
space], πi∗ = {ai∗k ( ⋅ ; zik)}k,zik is a BR strategy of player i
against πj .

We further show that the optimal strategy (in BR) can be
a threshold strategy in the following. We begin with:

Lemma 1: For any k, zik and open loop policy aik(⋅), one
can construct a threshold policy Γθ(⋅) such that the contact
time under threshold policy (denoted by τθ) stochastically

dominates that (τa) under aik(⋅), i.e, τθ
d
≤ τa, i.e., for any

monotone decreasing function f ,

E[f(τa)] ≤ E[f(τ
θ
)].

Further the expected costs (6) under both the policies are
equal. Also, the probability of successful contact P ik given
in (5) is better with the threshold policy, i.e.,

P ik(z
i
k;aik(⋅);π

j
) ≤ P ik(z

i
k; Γθ;π

j
).

Proof is in Appendix. ∎

Thus at any stage k and for any state zik, agent i can
contact the locks faster using threshold policies and the
running costs (3) are better. When the locks are contacted
faster, i.e., when the next stage starts earlier, the “cost to go”
(the value function) till the end is better as shown below:

Lemma 2: For any lock k, the value function with t ≤ τ ,

vik(z
i
k;πj) ≥ vik(z̄

i
k;πj) when zik = (1, t) and z̄ik = (1, τ).

Proof is in Appendix. ∎

A. Completing the proof of Theorem 1

We need to prove that for every lock, there exists a
threshold policy which is in best response against any fixed
strategy of the opponents. From Theorem 3 we have the
existence of the optimal policy (BR policy against any fixed
πj) for every lock. Let’s denote the optimal policy for
acquiring k-th lock by a∗(⋅), and, say it is not a threshold
policy. Let τa∗ denote the contact epoch under policy a∗. If
a∗ is the optimal policy, it must be the optimizer (maximizer)
of the k-th stage DP equation (8) and so,

vik(z
i
k;πj) = rik(z

i
k, a

∗;πj) +E[vik+1((l, τa∗);π
j
)∣zik, a

∗
].

Construct a threshold policy Γθ using a∗ as in proof of
Lemma 1 and then from the same Lemma:

rik(z
i
k, a

∗;πj) ≤ rik(z
i
k,Γθ;π

j
);

from Lemma 2 the value function is a non-increasing func-
tion of time, and hence again using Lemma 1 we have,

E[vik+1((l, τa∗);π
j
)∣zik, a

∗
] ≤ E[vik+1((l, τθ);π

j
)∣zik,Γθ].

This proves that a threshold policy is among BR policies
against πj , using (8). ∎

B. Proof of Theorem 2

We prove the second Theorem in two steps; in the first step
we show that the optimal policies corresponding to search of
k-th lock coincide in all possible time intervals, irrespective
of the start of this search, τ ik−1, in the following sense:

Theorem 4: Let τ ≥ t. The optimal/BR policy to acquire
k-th lock, ai∗k (⋅ ; z) with z = (1, t) coincides with BR policy
ai∗k (⋅ ; z′) with z′ = (1, τ) from τ onwards, i.e.,

ai∗k (s; z) = ai∗k (s; z′) for all τ ≤ s ≤ T.



Proof: The optimal policy to acquire k-th lock, ai∗k (⋅ ; z)
with z = (1, t) is optimizer of the value function given in
equation (11), i.e.,

u(t,0) = sup
a∈L∞[t,T ]

J(t,0, a).

From Dynamic programming principle of optimal control
problems [3, Theorem 5.12], we have:

u(t,0) = sup
a∈L∞[t,τ]

{∫
τ

t
(hik(s) − νx(s))a(s)e−x(s)ds

+u(τ, x(τ))} for any t ≤ τ ≤ T. (13)

As in [3, Lemma 4.2] one needs to find the optimizer for
the time interval [t, τ), considering that the optimal control
from τ onwards will be the same as the one that obtains,
the optimal u(τ, x(τ)), where x(τ) is the state at τ . And if
both the problems have optimal policy (the existence for our
case is established as in Theorem 3), then the optimal policy
for the entire interval is given by (as in [3, Page 10]):

ai∗k (s) = {
a∗1(s) for all s < τ,
a∗2(s) for all s > τ, (14)

where a∗2(s) is the optimal policy attaining u(τ, x∗(τ)),
x∗(τ) is state at τ when a∗1 is used in interval [t, τ] and
where a∗1 is the optimizer of (13). The optimal control from
τ onwards in general depend on state x(τ) at time τ , but in
our case, by Lemma 3 given in Appendix, (13) modifies to:

u(t,0) = sup
ai
k
∈L∞[t,τ]

{∫

τ

t
(hik(s) − νx(s))a

i
k(s)e

−x(s)ds

+e−x(τ)[u(τ,0) − νx(τ)]}.

By Lemma 3, the optimal control from τ onwards is inde-
pendent of the state at τ , i.e., the optimal control policies
defining u(τ, x(τ)) and u(τ,0) are the same, and the com-
mon one forms a part of ai∗k (see (14)); this completes the
proof. ∎

Thus it suffices to optimize for every lock with zk = (1,0)
(i.e., with τk = 0) and the rest of the optimal policies (with
different starting time instances) can be constructed using
this zero-starting optimal policies, which immediately leads
to the following corollary:

Corollary 5: The optimal (BR) strategy can be completely
specified by a finite (M ) collection of control policies,
πi∗0 (πj) ∶= {ai∗0k(⋅)}, one for each lock and each of them
starting at time zero and spanning till time T , and such that:

πi∗(πj) = { ai∗k (⋅ ; zk), for all zk}, where
ai∗1 (s; z1) = ai∗01

(s), and, for any k > 1

ai∗k (s; zk) = ai∗0k(s) for all s ≥ τk−1 when zk = (1, τk−1),

ai∗k (s; zk) = 0 for all s when zk = (0, τk−1). ∎

By further using Theorem 1, the (zero-starting) BR policies
ai∗0k(⋅) can be chosen to be threshold policies; in other words
any best response strategy can be described completely using
M -thresholds, say call them θi∗1 ,⋯, θ

i∗
M . This implies the

existence of an MT-strategy (θi∗1 ,⋯, θ
i∗
M) among the BR

strategies against any given strategy profile of opponents,
which completes the proof of Theorem 2. ∎

IV. REDUCED GAME G

By Theorem 1 any best response includes a threshold or
T-strategy and further by Theorem 2 at least one of the
best response strategies is an MT-strategy. By virtue of these
results, one can find a NE (if it exists) in a much reduced
game; the space of strategies in the original game is infinite
dimensional while that in the reduced game would be RM .
We would show that there indeed exists a unique NE in
the reduced game and analyze it by further reducing the
dimension of the game to one.

We can reduce the problem to the following game, G =

⟨N,S,Φ⟩, where N is the set of players as before, S the set
of strategies of each player is simplified to a bounded set of
M dimensional vectors (basically the set of MT-strategies):

Si = {θi = (θi1, θ
i
2, . . . θ

i
M); θik ∈ [0, T ] ∀k},

and the utilities Φ = {φi} are now redefined by the following:

φi(θi; θj) = φi(θi; θj1) =
M

∑
k=1

E[rik(z
i
k, θ

i
k; θj1)] where

θj ∶= {θm}m≠i and θj1 ∶= {θm1 }m≠i;

the above objective function depends only upon the first
thresholds of the opponents (θj1) because: a) once the player
gets the first lock successfully, the opponents have no in-
centives to try for the further locks, as (and after) their first
contact is unsuccessful; b) the success of any agent for first
lock depends upon the failure of other agents for the same
lock and hence on θj1; c) the redefined terms (e.g., rik, φi

etc) depend only upon the MT-strategies, the thresholds of
which are defined using zero-starting optimal policies, {ai∗0k}
of Corollary 5; and d) thus the thresholds do not depend upon
τ i1, the contact time of the first lock.

The simplified expressions under these special strategies
are provided below. Recall the k-th component of the vector
(i.e., θik) represents time threshold till which one should
attempt to contact k-th lock with full intensity βi, if the
previous contact is before θik; otherwise one would not
attempt for the next lock. Hence the cost under MT strategies
simplifies to (as in (10) and by rewriting the last term as an
appropriate integral in equality ‘a’):

rik(z
i
k, θ

i
k; θj1) = 0 if τ ik−1 ≥ θ

i
k, else it equals

rik(z
i
k, θ

i
k; θj1)=−νβ(θ

i
k − τ

i
k−1)e

−βi(θik−τ
i
k−1)

+∫

θik

τ i
k−1

(cikη
i
k(s) − νβ

i
(s − τ ik−1))β

ie−β
i(s−τ ik−1)ds

a
=∫

θik

τ i
k−1

(cikη
i
k(s) − ν)β

ie−β
i(s−τ ik−1)ds, with

ηik(s) = X{k=1}e
−∑m≠i βm(s∧θm1 )

+X{k>1}.

Once again we start with BR analysis, and BR (of agent
i) will be the maximizer of the following objective function

Υi∗
1 (z1; θj1) = max

θi
φi(θi; θj1) = max

{θi
1
,⋯,θi

M
}
∑
k≥1

E[rik(zik, θik; θj1)].



By applying Theorem 2 for finding best response against
MT-strategies of the opponents (πj ∶= {θm}m≠i)) we have:

sup
πi={a1(z1)}⋯,{aM (zM )}

φi(ak⋯, ak; z1;πj) = max
θ′1⋯,θ′M

φi(θi; θj),

because the optimal strategies can be chosen to be MT-
strategies. Now we apply DP equations to obtain the fol-
lowing, which is further simplified (in the second equation)
by choosing an MT-strategy as the optimal strategy for Υi∗

2

(once again by Theorem 2):

Υi∗
1 (zi1; θj1) = max

θi
1

γi(θi1; θj1) where, (15)

γi(θi1; θj1) ∶=∫
θi1

0
((ci1 +Υi∗

2 (t1))ηi1(t1) − ν)βie−β
it1dt1 with

Υi∗
2 (t) ∶= max

{θi
2
,⋯,θi

M
}
∑
k≥2

E[rik(zik, θik)∣zi2 = (1, t)]. (16)

We now proceed with analysing the above BR and then
the reduced game, as a first step, we obtain the structural
properties of Υi∗

2 (t) (proof is in Appendix R):
Theorem 6: Define the following backward recursively:

θi∗M = TX{ci
M
>ν} and

Ῡi∗
M(t) = (ciM − ν) (1 − e−β

i(T−t))X{ci
M
>ν},

and for any 2 ≤ k <M (with ∅ - null set)

θi∗k ∶= inf{t ≥ 0 ∶ cik + Ῡi∗
k+1(t) ≤ ν}, inf ∅ ∶= T, (17)

Ῡi∗
k (t) = X{t<θi∗

k
} ∫

θi∗k

t
(cik + Ῡi∗

k+1(s) − ν)βie−β
i(s−t)ds.

Then, i) For any k, the function Ῡi∗
k is strictly decreasing

with t for all t < θi∗k , after which it remains at 0. Further the
co-efficients in (17) are uniquely defined.
ii) The function Υi∗

2 (⋅) defined in (16) equals Ῡi∗
2 (⋅), the

former is optimized by unique optimizers {θi∗k }k≥2 (defined
in (17)) and is strictly decreasing/remains at 0 as in (i). ∎

In the view of the above discussions, the game breaks into
two problems. a) an optimization problem to find the optimal
thresholds from the second lock onwards, which is analysed
in Theorem 6; b) a further reduced one dimensional game
with utilities given by {γi} of (15), where each player (say
player i) has to choose threshold (θi1), used for searching the
first-lock keeping in view of Υi∗

2 and the strategies of the
opponents.

It is easy to observe that in the further reduced game, the
utilities given in equation (15) depend upon one dimensional
strategy θi1 and one dimensional strategies of the opponents
θj1. For any θj1 fixed, the partial derivative of γi with respect
to θi1 is given by:

((ci1 +Υi∗
2 (θi1))η

i
1(θ

i
1) − ν)β

ie−β
iθi1 , (18)

which is strictly decreasing by Theorem 6, by the definition
of ηi1 and because e−βθ

i
1 is strictly decreasing. Thus the utility

function is strictly concave in θi1. Observe that the utility
function is also continuous in θj1, therefore, we have a n-
player concave game. Further by strict monotonicity of the
derivative (18), the reduced game satisfies strict diagonal
concavity given by [5, equation (3.10)]. Thus by [5, Theorem

2], we have unique NE for the reduced game. It is easy to
verify further details of the following Theorem:

Theorem 7: The unique NE is given by the sequence of
thresholds (for second lock onwards) as given in Theorem 6
(one sequence for each player) and the first lock thresholds
that simultaneously satisfy the following (for all 1 ≤ i ≤ n):
θi∗1 = inf {t ∶ (Υi∗

2 (t) + ci1)e−∑m≠i β
m(t∧θm∗

1 ) ≤ ν} ∧ T. ∎ (19)

Some examples

Symmetric case with large T : When M = 2 and consider
the case with large T . All symmetric agents. By symmetry
and uniqueness, θi∗k = θ∗k for all i ≤ n. As T →∞, we have
that

Υ∗
2(t) = (c2−ν)(1−e

−β(T−t)
)X{c2>ν} ≈ (c2−ν)

+ for t≪ T.

All the functions defining inifimum in (19) are continuous
and hence infimum is achieved and hence,

θ∗2 = TX{c2>ν} and

θ∗1 ≈ max{0,−
1

(n − 1)β
log(

ν

(c2 − ν)+ + c1
)}

In fact when you substitute the approximate Υ∗
M(t) in

Υ∗
M−1(t), we obtain (again with approximation as θ∗M =

TX{cM>ν}):
θ∗M−1 = TX{(cM−ν)++cM−1−ν>0},

Υ∗
M−1(t) = ((cM − ν)+ + cM−1 − ν)(1 − e−β(T−t))

≈ ((cM − ν)+ + cM−1 − ν)+ for t≪ T.

Progressing this way for all k > 1, define c̄kl ∶= ∑
k
l′=l cl′ .

θ∗k = TX
{c̄
Mo
k+1

k
≥(Mo

k+1
−k+1)ν}

where Mo
M =M −X{cM<ν},

Mo
k ∶= Mo

k+1X
{c̄
Mo
k+1

k
≥(Mo

k+1
−k+1)ν}

+ (k − 1)X
{c̄
Mo
k+1

k
<(Mo

k+1
−k+1)ν}

and
Υ∗
k(t) ≈ (c̄M

o
k+1

k − (Mo
k+1 − k + 1)ν)

+
for t≪ T,

and then

θ∗1 ≈ max

⎧⎪⎪⎨⎪⎪⎩
0,− 1

(n − 1)β
log

⎛
⎝

ν

c̄
Mo

2
1 − (Mo

2 − 1)ν

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
.

Monotone case with large T : We consider an asymmetric
case, in which the costs are monotone, i.e., without loss of
generality assume cik ≥ c

i+1
k for each i, and that cnM ≥ Mν.

Also assume βi = β for all i. We would derive the results
that would be accurate for large T and verify the same using
numerical results.

With significantly large T , it is easy to observe (for all i):
Υi∗
M = (ciM − ν)(1 − e−β(T−t)) ≈ (ciM − ν) ∀t≪ T and θi∗M = T.

By substituting this approximation in Υ∗
M−1(t) (θi∗M−1 = T ):

Υi∗
M−1(t) ≈

M

∑
k=M−1

(cik − ν)(1 − e−β(T−t)) ≈
M

∑
k=M−1

(cik − ν) for t≪ T.

Progressing similarly for all k > 1, (with c̄ik ∶= ∑
M
l=k c

i
l):

θ∗k ≈ T, and Υi∗
k (t) ≈ (c̄ik − (M − k + 1)ν) for t≪ T,

Since the rewards of the players are monotone, we con-
jecture the corresponding θi∗1 defining the NE (19) are also



decreasing with i. We will derive the solution of fixed point
equations given in (19), which eventually verifies the above
conjecture. Further since the functions defining inifimum in
(19) are continuous (and strictly monotone), the infimum is
achieved and hence,

θn∗1 = − 1

(n − 1)β
log ( ν

c̄n1 − (M − 1)ν
), if θn∗1 ≤ θi∗1 for all i.

Now consider the player n−1, repeating the same logic and
substituting θn∗1 derived in previous step we have:

θ
(n−1)∗
1 = − 1

(n − 2)β
log

⎛
⎝

ν

(c̄n−1
1 − (M − 1)ν)e−βθn∗1

⎞
⎠

= − 1

(n − 2)β
log

⎛
⎝

ν

(c̄n−1
1 − (M − 1)ν)

⎞
⎠
− θn∗1

n − 2
.

As c̄n−1
1 > c̄n1 , it is indeed true that θ

(n−1)∗
1 ≥ θn∗1 .

Progressing in exactly similar way, and verifying at every
step the required monotonicity of {θj∗1 }, we obtain:

θ
(n−i)∗
1 =

− log ( ν

c̄n−i
1

−(M−1)ν ) − β∑
n
j=n−i+1 θ

j∗
1

(n − i − 1)β
. (20)

Remarks: This solution is exact when M = 1, thus we solved
the problem completely for this case (solution matches with
that in [4] when n = 2); here the agents attempt to acquire
the lock/destination without knowing if it already taken by
others. For other cases it is an approximation, the accuracy
is verified in the next section.

V. NUMERICAL EXAMPLES

We consider some numerical examples with an aim to
reinforce the theoretical results. We also demonstrate that
the approximation (20) is good even for moderate T . The
first example considers symmetric case with moderate T = 8
and the results are in Figure 1. The other details are: M = 5,
n = 4, β = 1, c1 = 1, c2 = 3, c3 = 3, c4 = 3, and c5 = 3.
We plot the NE for varying values of ν. Theoretical results
imply θ∗k = T (for all k > 1) and we observe the same, and,
thus we plot only θ∗1 . We computed the NE by solving the
fixed point equation (19), using fixed point iterates, we also
plot the theoretical approximation (20), and the two curves
are indistinguishable (see Figure 1).
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Fig. 1. Theoretical and numerical
θ∗1 against ν (for large T )
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Fig. 2. The NE thresholds against
ν (for small T )

Further, to analyse the NE with small T = 5, we consider
a second case with M = 4 and n = 2 in Figure 2; we also
set β = 1, c1 = 4, c2 = 3, c3 = 2 and c4 = 1. For large
values of ν, the optimal thresholds are less than T even for
k > 1, thus even after acquiring the first (or a consecutive)

lock the agent will not continue further if any of latter locks
are not acquired before the corresponding thresholds. Also
observe that, as the ν increases, the optimal threshold for k =
4 becomes zero, while others are positive implying the agents
will only attempt for three locks. As ν increases further, the
optimal threshold for k = 3 also becomes zero, while others
are positive implying the agents will only attempt for two
locks.
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Fig. 3. The NE thresholds for
different vlaues of ν when c1 =
1, c2 = 2, c3 = 3, c4 = 4
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Fig. 4. The NE thresholds for
different vlaues of ν when c1 =
4, c2 = 2, c3 = 2, c4 = 4

Further, to analyse the NE with small T = 5, we consider
more examples with M = 4 and n = 2 and β = 1. In Figure
3 we set c1 = 1, c2 = 2, c3 = 3, c4 = 4 and we see, when
ν approaches 2.5, θ∗1 = 0, which implies the agents won’t
attempt the locks even though other thresholds are positive.
In Figure 4 we took the rewards associated with locks to
be c1 = 4, c2 = 2, c3 = 2, c4 = 4. In all the examples,
we observe that the optimal threshols are decreasing (non-
increasing) with ν.

CONCLUSIONS

We considered acquisition games with partial, asymmetric
information. Agents attempt to acquire M destinations, the
first one to contact a destination acquires it; destinations can
be acquired only in a given order. When an agent acquires
a destination and if it has also acquired all the previous
ones, it gets some reward. The agents are not aware of
the acquisition status of others. It is possible that an agent
continues its acquisition attempts, while the destination is
already acquired by another agent. Thus we have a partial and
asymmetric information game. The agents control the rate
of their Poisson clocks to contact the destinations; they also
incur a cost proportional to their rates of contact. We found
NE of this asymmetric game by reducing it to a much simpler
game such that the NE of the reduced game would also
the NE of the original game; the original game has infinite
number of state and has infinite dimensional actions. We
proved that a tuple of time-threshold policies form the unique
NE of the reduced game. We also provided an algorithm to
compute this NE. We further have approximate closed form
expressions for the NE.
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APPENDIX

Proof of Theorem 3: The PDE for any k can be rewritten as:

u(s, x)= sup
a(.)

{∫
T

s
Lk(s′, x(s′), a(s′))ds′ + g(x(T ))} with

Lk(s′, x, a)= (cik + vik+1((1, s′);πj))ηik(s′;πj) − νx)ae−x,

ηik(s′, πj)= e−∑m≠i ā
m(s′)X{k=1} +X{k>1}.

It is easy to solve (8) with k =M , because viM+1 is defined
to be 0 (details in [4], also discussed in Theorem 6):

viM(1, s) = (ciM − ν) (1 − e−β
i(T−s)

)X{ci
M
>ν}.

Observe that viM(1, s) is a differentiable function of s, hence
clearly LM−1 is Lipschitz continuous on [t, T )×R× [0, β].
It is also bounded. Further clearly the RHS of the ODE and
the terminal cost g are all bounded and Lipschitz continuous.
Thus by [3, Theorem 10.1 and the following Remark 10.1]
the value function u(⋅, ⋅) is unique viscosity solution which
is Lipschitz continuous when k = M − 1. This implies
viM−1(1, s) is Lipschitz continuous in s, further it is also
bounded. This implies LM−2 is also Lipschitz continuous
and bounded which proves the same for viM−2(1, s). By
backward induction on k, the part (ii) is true.

For part (iii) we apply the results of [7]. Towards this the
optimal control problem can be converted into Mayer-type
(finite horizon problem with only terminal cost) by usual
technique of augmenting a new component to state which
represents

y(s′) ∶= ∫
s′

s
Lk(s̃, x(s̃), a(s̃))ds̃

and equivalently maximizing y(T ) + g(x(T )). By part (ii)
all the required assumptions [7, Assumptions (i) to (vii)] are
satisfied, with compact control space U = [0, β], compact
state space X̂ = [0, βT ] (it is easy to verify that the
state variable could be confined to this range); assumptions
(i)-(ii) are trivially satisfied; assumption (iii) follows by
part (i); for assumption (iv) one can actually bound by a
constant independent of (s′, (x, y)); easy to verify convexity
requirement of (vii), because for any given (s′, (x, y)) the
set in mention is an interval.

This proves part (iii). ∎

Proof of Lemma 1: For any lock k, given any state zik,
consider the open loop policy aik(⋅), we denote it as a(⋅)
for the ease of notation. If a(⋅) is already a threshold type,

we will have nothing to prove. If not, choose two intervals
[t1, t1 + δ1] and [t2, t2 + δ2] with t2 ≥ t1 + δ1 such that

∫

t1+δ1

t1
a(t)dt < βδ1 and ∫

t2+δ2

t2
a(t)dt > 0.

One can further ensure (by choosing appropriate end points)
that

∫

t1+δ1

t1
a(t)dt + ∫

t2+δ2

t2
a(t)dt = βδ1.

Now we construct another policy, a′(t) such that,

∫

t1+δ1

t1
a′(t)dt = βδ1 and ∫

t2+δ2

t2
a′(t)dt = 0,

and on rest of the intervals the policy a′(⋅) matches com-
pletely with policy a(⋅). This new policy is basically con-
structed by shifting the mass from a later interval [t2, t2+δ2]
to a former interval [t1, t1+δ1] in policy a(⋅), note that if one
can’t find such intervals, it implies that the policy a(⋅) itself
is a Threshold policy and we will have nothing to prove.

Observe that for all t < t1 we have,

a(t) = a′(t) and hence ā(t) = ∫
t

τk−1
a(s)ds = ā′(t)

similarly for all t1 < t < t2, ā(t) < ā′(t) and for all t2 < t <
t2 + δ we have ā(t) ≤ ā′(t) and for all t > t2 + δ we have
ā(t) = ā′(t).

This implies, the time to contact the k-th lock with policy
a(⋅) denoted as τa is stochastically dominated by that with
policy a′(⋅) denoted as τa′ as explained below; consider the
CDFs with both the policies; i) for any x < t1,

Fa(x) = Prob(τa ≤ x) = 1 − e−ā(x) = 1 − e−ā
′(x)

= Fa′(x),

ii) for any x ∈ (t1, t1 + δ1), we have ā(t) < ā′(t) and so

Fa(x) = 1 − e−ā(x) < 1 − e−ā
′(x)

= Fa′(x),

iii) for any x ∈ (t2, t2 + δ2), we have ā(t) ≤ ā′(t)

Fa(x) = 1 − e−ā(x) ≤ 1 − e−ā
′(x)

= Fa′(x),

and iv) for any x ∈ [t2 + δ2, T ], we have ā(t) = ā′(t)

Fa(x) = 1 − e−ā(x) = 1 − e−ā
′(x)

= Fa′(x).

This proves the required stochastic dominance, τa
d
≤ τa′ .

Now, let τ j = minm≠i τ
m where τm denotes the contact

epoch of m-th agnet, and observe

{ω ∶ τa(ω) ≤ τ
j
(ω)} ⊂ {ω ∶ τa′(ω) ≤ τ

j
(ω)},

which is same as saying,

{success with policy a} ⊂ {success with policy a′}

and hence,
P ik(z

i
k;a;πj) ≤ P ik(z

i
k;a′;πj) for any k, zk.

Further observe that the expected cost with policy a(⋅) (by
change of variables)



E[ā(τa); τa < T ] + ā(T )e−ā(T )

= ∫

T

0
ā(t)e−ā(t)a(t)dt + ā(T )e−ā(T )

= ∫

ā(T )

0
xe−xdx + ā(T )e−ā(T )

= 1 − e−ā(T ),

which is the same as that using a′ because ā(T ) = ā′(T ).

E[ā(τa); τa < T ] + ā(T )e−ā(T )
= 1 − e−ā(T ),

which is the same as that using a′ because ā(T ) = ā′(T ).
One can keep on improving the policy until it becomes a

threshold policy. This completes the proof. ∎

Proof of Lemma 2: For any lock k, given any state zik,
the k-th stage DP equation can be re-written as the following
optimal control problem (see equation (11))

u(t,0) = sup
a(⋅)∈L∞

{∫
T

s
(hik(s′) − νx(s′))a(s′)e−x(s

′)ds′ + g(x(T ))}.

From the Dynamic programming principle [3, Theorem 5.1],
we can rewrite it as follows;

u(t,0) = sup
ai
k
∈L∞[t,τ]

⎧⎪⎪⎨⎪⎪⎩
∫

τ

t
(hik(s) − νx(s))aik(s)e−x(s)ds

+u(τ, x(τ))
⎫⎪⎪⎬⎪⎪⎭
, where,

u(τ, x(τ)) = sup
ai
k
∈L∞[τ,T ]

J(τ, x(τ), aik).

Observe that the function J(τ, x(τ), aik) (see equation (11))
has same structure as function Jh(t, x, a) in Lemma 3 with
h = hik, t = τ , x = x(τ) and a = aik and continuity follows
by Theorem 3. Hence we have,

u(τ, x(τ)) = e−x(τ) [u(τ,0) − νx(τ)] , and so

u(t,0) = sup
ai
k
∈L∞[t,τ]

⎧⎪⎪⎨⎪⎪⎩
∫

τ

t
(hik(s) − νx(s))aike−x(s)ds

+e−x(τ)[u(τ,0) − νx(τ)]
⎫⎪⎪⎬⎪⎪⎭
.

In the above equation if we consider zero policy, i.e., if we
consider policy aik([t, τ]) ≡ 0 (basically aik(s) = 0 for all
s ∈ [t, τ]), then clearly x(τ) = 0, the first term (integral) in
the above supremum is zero and hence:

u(t,0) ≥ u(τ,0).

This implies, vik(z
i
k;πj) ≥ vik(z̄

i
k;πj), as u(τ,0) is the value

function of optimal control problem when the control starts
in the state z̄ik. ∎

Lemma 3: Let Jh(t, x, a) be a function of the form

Jh(t, x, a) = ∫
T

t
(h(s) − νx(s))a(s)e−x(s)ds − νx(T )e−x(T ),

defined using continuous function h(⋅) and state process
⋅

x (s) = a(s), with initial condition, x(t) = x.

Define u(t, x) ∶= sup a∈L∞ Jh(t, x, a), then we have:

(i) Jh(t, x, a) = e−x[Jh(t,0, a) − νx]
(ii) u(t, x) = e−x[u(t,0) − νx]

(iii) The optimal policy a∗(⋅) is independent of x.
Proof: By change of variables x(s) = x + x̃(s),

⋅

x̃ (s) = a(s), i.e., x̃(s) = ∫
s

t
a(s̃)ds̃, and x̃(t) = 0,

we get,

Jh(t, x, a) = ∫
T

t
(h(s) − ν(x + x̃(s)))a(s)e−(x+x̃(s))ds

− ν(x + x̃(T ))e−x−x̃(T )

= e−x
⎛
⎝∫

T

t
(h(s) − ν(x + x̃(s)))a(s)e−x̃(s)ds

− ν(x + x̃(T ))e−x̃(T )⎞
⎠

= e−x
⎛
⎝∫

T

t
(h(s) − νx̃(s))a(s)e−x̃(s)ds − νx̃(T )e−x̃(T )

− νx∫
T

t
a(s)e−x̃(s)ds − νxe−x̃(T )⎞

⎠
= e−x (Jh(t,0, a) − νx) .

The last equality follows because the sum of two terms
(probabilities) is 1. This completes part (i). For part (ii), from
the above equation we have,

u(t, x) = sup
a∈L∞

Jh(t, x, a) = sup
a∈L∞

e−x [Jh(t,0, a) − νx]

and hence we have, u(t, x) = e−x[u(t,0)− νx]. This proves
part (ii). Further it is clear from above that the optimal policy
a∗(⋅) remains the same for all initial conditions x and this
proves part (iii). ∎

APPENDIX R: REDUCED GAME

Proof of Theorem 6: Define the following, for any 2 ≤

l ≤M and any MT-strategy π = (θl . . . θM) (see (1)):

γl(θl⋯, θM ; t) ∶=
M

∑
k=l
E[rik( z

i
k, θk)∣z

i
l = (1, t)].

Note these objective functions (with l ≥ 2) do not depend
upon the strategies of opponents. Define

Υ∗
l (t) ∶= sup

θl,⋯,θM
γl(θl⋯, θM ; t),

and observe that

Υi∗
2 (t) = Υ∗

2(t) = sup
θ2,⋯,θM

γ2(θ2⋯, θM ; t).

Further, by definition, for any given (θk−1,⋯, θM) we have:

γk−1(θk−1⋯, θM ; t) (21)

= ∫
θk

t
(cik−1 − ν + γk(θk⋯, θM ; s))βie−β

i(s−t)ds

≤ ∫
θk

t

⎛
⎝
cik−1 − ν + sup

θ′
k
⋯,θ′

M

γk(θ′k⋯, θ′M ; s)
⎞
⎠
βie−β

i(s−t)ds,

with γM+1 ≡ 0. Observe that supθ′
k
⋯,θ′

M
γk(θ

′
k⋯, θ

′
M ; s)

is the problem of finding the best response against silent
opponent (i.e., when none of the opponents are attempting)



with M − k locks. By applying Theorem 2 one can choose
the MT-strategy as a best response, i.e.,

sup
π={ak(zk)}⋯,{aM (zM )}

γk(ak⋯, ak; s) = max
θ′
k
⋯,θ′

k

γk(θ
′
k⋯, θ

′
M ; s),

also optimal (θ∗k⋯, θ
∗
M) do not depend upon s, i.e.,

Υ∗
k(s) ∶= max

θ′
k
⋯,θ′

M

γk(θ′k⋯, θ′M ; s) = γk(θ∗k⋯, θ∗M ; s) for all s. (22)

And hence we have,

γk−1(θk−1⋯, θM ; t)

≤ ∫

θk−1

t
(cik−1 − ν +Υ∗

k(s))β
ie−β

i(s−t)ds.

≤ sup
θ′
k−1

∫

θk−1

t
(cik−1 − ν +Υ∗

k(s))β
ie−β

i(s−t)ds. (23)

Consider the case with k =M . In this case clearly

Υ∗
M(s) ∶= max

θ′
M

γM(θ′M ; s)

= max
θ′
M

∫

θ′M

t
(ciM − ν)βie−β

i(s−t)ds.

The integrand is a strictly decreasing function, which implies
the integral is strictly concave and hence has a unique
maxima θ∗M , as given below along with optimal Υ∗

M :

Υ∗
M(s) = γM(θ∗M) with θ∗M = TX{cM>ν}

= (ciM − ν) (1 − e−β
i(T−s)

)X{cM>ν} for all s.

Observe that the function Υ∗
M(⋅) is a strictly decreasing for

s < θ∗M or remains at zero for all t if θ∗M = 0 and further the
coefficient θ∗M is unique. In other words, the function is strict
decreasing for all s ≤ θ∗M and remains at 0 after (unique) θ∗M .
Assume the same holds true for all k = M,M − 1 . . . p + 1
(for any p) and then consider k = p. From equation (23)

γp(θ
′
p, . . . θ

′
M ; t)≤ sup

θ′p
∫

θ′p

t
(cip − ν +Υ∗

p+1(s))β
ie−β

i(s−t)ds.

Since Υ∗
p+1(⋅) is non-increasing function, the integrand in the

above inequality is strictly decreasing with s. This implies
the upper bounding integral is strictly concave and hence has
an unique maximizer, in fact the maximizer equals:

θ∗p = inf{t ≥ 0 ∶ cip +Υ∗
p+1(t) ≤ ν} ∧ T, with inf ∅ ∶= 0.

Thus we have for any θ′p, . . . θ
′
M :

γp(θ
′
p, . . . θ

′
M ; t) ≤ γp(θ

∗
p , . . . θ

∗
M ; t) and hence

Υ∗
p(t) = γp(θ

∗
p , . . . θ

∗
M ; t)

= ∫

θ∗p

t
(cip − ν +Υ∗

p+1(s))β
ie−β

i(s−t)ds

From the above it is clear that the function Υ∗
p(t) is strictly

decreasing with t for all t ≤ θ∗p and Υ∗
p(t) = 0 for all t > θ∗p .

The proof is complete by backward induction, with Ῡi∗
k = Υ∗

k

and θi∗k = θ∗k for all k. ∎


