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Abstract. Cooperative game theory aims to study complex systems in
which players have an interest to play together instead of selfishly in an
interactive context. This interest may not always be true in an adversar-
ial setting. We consider in this paper that several players have a choice to
participate or not in a coalition in order to maximize their utility against
an adversarial player. We observe that participating in a coalition is not
always the best decision; indeed selfishness can lead to better individual
utility. However this is true under rare yet interesting scenarios. This
result is quite surprising as in standard cooperative games; coalitions
are formed if and only if it is profitable for players. We illustrate our
results with two important resource-sharing problems: resource alloca-
tion in communication networks and visibility maximization in online
social networks. We also discuss fair sharing using Shapley values, when
cooperation is beneficial.
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1 Introduction

Resource allocation problem is a well-known generic problem that involves com-
plex optimal solutions. This type of problem is well-known in networking context.
One of the most studied models is the proportional framework [13]. Several users
share a common resource and each one gets a part of it proportionally to his/her
action. In fact, this mechanism induced a utility function which is linear with
respect to user’s action. This model has lead to the well-known proportional
fair solution concept which has been applied with success in numerous resource
allocation problems in networking and in security [9]. In another communica-
tion domain, social networking, such linear utility function is useful to model
user preferences [15]. Indeed, such type of function has been proved to efficiently
model mean number of messages on a timeline that belong to a particular source.
This mean number is proportional to the ratio of the sending rate of that message
over the total rate of all messages. When one is interested in relative visibility,
which is defined as the ratio of expected copies of a message currently alive in
a social network to the total number of expected copies of all such competing
messages, it results in an exponential cost (e.g., [7]). Such message propagation
processes are modeled predominantly using branching processes. We consider
linear as well as exponential cost functions.

A problem closely related to our first linear model problem is considered in
[8]. However, the utility of the adversary is different from that considered in [8]:



2 Ranbir Dhounchak, Veeraruna Kavitha and !Yezekael Hayel

in our case the adversary can be optimizing its own utility like any other player,
but this will have adversarial influence on the rest. Assuming a mechanism to
identify the adversary by the rest of the other players, this type of game is well
adapted to formulate a security game with several defenders as in [10]. Further,
this player is not interested in participating in cooperation with any other player.
The main theme of this paper is to study the possible improvement obtained by
the rest of the players, in presence of such an ‘adversarial’ player. In regular
coalition formation games, like the ones of [11], there is no adversarial context.
In a wireless communication context, a coalition formation game against multiple
attackers has been studied in [12] and the authors have shown an increase of the
average secrecy rate per user up to 25%. We also consider coalition game against
(one) adversary, our study is theoretical and also deals with the fairness of the
Shapley value mechanism.

Two main features are considered in our study which build our contributions
to Resource sharing games:

– Adversarial context : We consider that players are in an adversarial environ-
ment. Particularly, one specific player’s objective is to minimize the total
utility of all the other players, the social welfare of other players.

– Cooperation is possible: To improve the utility at equilibrium, the players can
participate into a coalition and merge their efforts to defeat the adversary.

When, players decide to form a coalition, it leads to a non-cooperative game
between a coalition (group of players) and one adversary. We show that, to form
a coalition is not always the best choice in an adversarial resource sharing games.
But this is the case only for some rare scenarios. Another interesting result is,
when coalition is beneficial for players, all but one of them should remain silent
(their actions at equilibrium are to be inactive/zeros). It is this silencing which
not only helps the coalition, but also the opponents (or non-participants), and
eventually leads to situations where grand coalition may not be the best. In
such cases, the Shapley values fail to divide the gains fairly. All these results are
deeply investigated in two resource sharing games: a linear model which describe
Kelly’s fairness mechanism and visibility competition; and an exponential model
that describes the visibility via propagation of messages in social networks.

The paper is organized as follows. In section 2 we study an adversarial re-
source sharing game in which individual’s utility are linear with its action. We
first describe the fully non-cooperative scenario in which all individuals play self-
ishly. Second, we consider the cooperative setting in which players form coalitions
in order to enhance, if possible, their individual utilities. Section 5 is devoted
to another scenario inspired by social networks. Players aim is to maximize the
visibility of their contents. This visibility is measured in terms of expected num-
ber of time-lines reached through the process of re-posting or forwarding. This
utility function is exponential in the player’s preference parameters.

2 Linear model

Consider a system with many players competing against each other, for shared
resources. In such scenarios, it might be beneficial for the players to cooperate
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with each other. Further, assume there exists an adversary whose aim is to harm
the rest of the players. Alternatively the adversary might be aiming for its own
benefit, but its actions adversely influence the utilities of the rest of the players.
Possibly the adversary is the player that is not interested in participating in
any sort of cooperation. We refer the rest of the players, willing to explore
cooperation benefits, as C-players. We study the gain of the C-players, with
and without participating into cooperation, in an interaction with an adversary.
We deal with two possible scenarios: a) Non-cooperative scenario (NCS): This
is a complete non-cooperative game between all the players (C-players and the
adversary); b) Cooperative scenario (CS): C-players participate into a common
coalition and we are faced with a two-player non cooperative game, one of them
being the aggregate player formed by the C-players and second player is the
adversary.

We also derive a transferable utility (TU) game, that defines worth for each
sub-coalition of C-players (in the presence of adversary), to share fairly the
benefits derived by cooperation (when beneficial) using well known cooperative
solution concepts, e.g., Shapley value.

2.1 Fully Non-Cooperative scenario

The resource sharing game involves C-players and the adversary in a standard
non-cooperative game. Let n (with n ≥ 2) represent the number of C-players.
The utility of C-players is given by (with {λi} the influence factors, γ the cost
factor):

Ui(a) =
λiai∑n
j=0 λjaj

− γai,a := (a0, a1, · · · , an) for any 1 ≤ i ≤ n, (1)

where the action of player i, ai ∈ [0, ā], for some ā <∞. The utility function of
the adversarial player, denoted by U0, is given by (with a0 ∈ [0, ā]):

U0(a) = −
∑n
i=1 λiai∑n
j=0 λjaj

− γa0, or equivalently, U0(a) =
λ0a0∑n
j=0 λjaj

− γa0.

Let U := (U0, U1, · · · , Un), represent the utility functions of all players. Thus
we have an (n + 1)-player non-cooperative strategic form game given by tuple〈
{0, 1, · · · ,n}, [0, ā]n+1, U

〉
. We analyze this game using the well known solu-

tion concept, the Nash Equilibrium (NE). This game setting is an adversarial
extension of the well-known Kelly’s problem about optimal resource allocation,
particularly studied in communication networks [13]. This utility function rep-
resents a compromise between proportional share of a global resource for each
user and a cost which depends on the action taken.

We first derive the NE when it lies in the interior of the strategy space,
for each player. Throughout we consider the actions in a bounded domain with
ā > n/γ. A generalization could be of future interest.

Lemma 1. (Positive NE) Define s :=
∑n
j=0 1/λj. Assume s > n/λj for all

j. Then there exists unique NE a∗ = (a∗0, · · · , a∗n) which lies in the interior, i.e.,
a∗ ∈ (0, ā)n+1. The NE and the corresponding utilities are given by (for any j):
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a∗j =
n
(
s− n

λj

)
γλjs2

and U∗j =

(
s− n

λj

s

)2

. (2)

Proof. The proof is given in Appendix A. 2

We now consider the situation for which the conditions of the above Lemma are
not satisfied, i.e., when s ≤ n/λj for some j. In this case one can expect that at
least one of the players would be silent in the NE, i.e., we meant a∗j = 0 for at least
one j. Towards investigating this, we first claim that there exists a unique subset
of players J ⊂ {0, 1, · · · ,n} with sJ :=

∑
i∈J 1/λi such that

sJ >
|J | − 1

λj
for all j ∈ J and sJ ≤

|J | − 1

λj
for all j ∈ J c. (3)

When the above happens, one can expect a NE with non-zero components for
only players in J (as in Lemma 1). We will show that such a J indeed exists, and
then show that the game has unique NE with the said zero/non-zero components.
Towards this, consider the permutation π on the set of players {0, 1, · · · ,n} such
that λπ(0) ≥ λπ(1) ≥ · · · ≥ λπ(n). Let λ′i := λπ(i) and λ′n+1 = any value.

Theorem 1. i) There exists a unique 1 ≤ k∗ ≤ n such that (1 is indicator):

1{k∗<n}

(
k∗ + 1

λ′k∗+1

−
k∗+1∑
j=1

1

λ′j

)−1

≤ λ′0 <

(
k∗

λ′k∗
−

k∗∑
j=1

1

λ′j

)−1

.

The unique set satisfying (3) is given by, J ∗ := {π(0), π(1), · · · , π(k∗)}, and
further, J ∗ ⊂ {j : s > n/λj}.
ii)There exists unique NE, (a∗0, · · · , a∗n), with non-zero components only in J∗:

a∗j =
(|J ∗| − 1)

(
sJ ∗ − |J

∗|−1
λj

)
γλjs2

J ∗
1{j∈J ∗} and U∗j =

sJ ∗ − |J
∗|−1
λj

sJ ∗

2

1{j∈J ∗},

is the optimal utility for any 0 ≤ j ≤ n at NE, where sJ :=
∑
j∈J 1/λj.

Proof is in Appendix A. 2
If hypotheses of Lemma 1 are satisfied, it is clear that k∗ = n and all the

players have non-zero utility at NE. It is beneficial for the weaker agents (given
by (J ∗)c) to remain silent and the players forced to remain silent is determined
by relative values of the inverses {1/λi}i.

2.2 Cooperative scenario (CS)

In cooperative scenario, C-players explore the cooperative opportunities, if any,
whereas recall that the adversary does not take part in any coalition. The ad-
versary remains a particular player. Each player among the C-players, seeks to
form appropriate coalition with the other C-players, such that they have the
best share in presence of the adversary. We first study the grand coalition of all
C-players.
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Towards this consider a two-player non-cooperative game: the adversary is
one player and the C-players join together to form one aggregate player. The
utility of the aggregate player equals the sum of the utilities of all C- players,
i.e., Uag =

∑
j≥1 Uj , while that of the adversary equals Uad = U0. The strategy

set of the aggregate player equals the product strategy set [0, ā]n again with
ā > n/γ. We study the NE of this two player game, with the aim to study
the maximum improvement possible by ‘grand coalition’ of C-players. We call
the corresponding NE as Cooperative NE (CNE), to distinguish it from the
NE of the previous sub-section. Thus the strategic form game to study the
cooperative scenario is described as

〈
{ad,ag}, [0, ā]n+1, {Uad(.), Uag(.)}

〉
with

ag := (a1, · · · , an) and ad := a0 and the utilities of aggregate and adversary are

Uag(ag, ad) =

∑n
j=1 λjaj∑n
j=0 λjaj

− γ
∑
i≥1

ai, Uad(ad,ag) =
λ0a0∑n
j=0 λjaj

− γa0.

Without loss of generality, we assume λ1 ≥ λ2 ≥ · · · ≥ λn, throughout the
paper. The CNE is given by (proof is in Appendix A):

Lemma 2. i) When λ1 > maxj≥2 λj , the CNE is

a∗1 = a∗0 =
λ1λ0

γ
(
λ1 + λ0

)2 , and a∗j = 0 for all j > 1.

The utilities are U∗ag =
(

λ1
λ1+λ0

)2

and U∗ad =
(

λ0
λ1+λ0

)2

. (4)

ii) When |Jm| > 1, with Jm := arg maxj≥1 λj, we have infinitely many CNE:{
(a∗0, a

∗
1, · · · , a∗n) :

∑
j∈Jm

a∗j = a∗0, a
∗
j = 0 ∀j /∈ Jm

}
and a∗0 = λ1λ0

γ
(
λ1+λ0

)2 .
But the utilities at any CNE remains the same and equals that given in (4). 2

Remarks: 1) A close look at the CNE reveals that (all) the weaker C-players
are silenced, i.e., a∗j = 0 for j ≥ 2. Thus the benefit of cooperation (if any) is
obtained by the weaker players agreeing to remain silent. Observe that (all) these
players may not remain silent in non-cooperative scenario.
2) The proof (provided in Appendix A) basically shows that the utility (and thus
the best response) of the aggregate player, at any action profile and against any
a0, is dominated by the utility (respectively the best response) at an appropriate
action profile with non-zero value only for player 1. The rest of the proof is
obtained by solving the extremely simplified reduced game (the aggregate player
uses only one component action). This result is readily applicable for any sub-
coalition (with more than one players), even when it includes adversary (as would
be required for completely defining the TU game).
3) When some C-players are of equal influence, say if λ1 = λ2, then one can have
multiple CNE, but the aggregate utility at any CNE remains the same.

3 Benefit of Cooperation

In the previous sections, we studied the utilities derived by C-players in non coop-
erative and cooperative frameworks. The natural question then arises, “whether
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forming a grand coalition among C-players ameliorates the total utility driven
by the said players as obtained in non cooperative framework.” Towards this,
let U∗T :=

∑n
j=1 U

∗
j be the total/aggregate utility in non cooperative scenario,

where {U∗j }j are the utilities of C-players under the Nash Equilibrium (Theorem
1), and recall U∗ag is the utility of the aggregate player under the CNE (given
by Lemma 2). We define an appropriate indicator, which we refer as ‘Benefit of
Cooperation’ (BoC) Ψ for measuring the normalized advantage (if any) obtained
by forming coalition:

Ψ =
U∗ag − U∗T
U∗ag + U∗T

× 200.

If the C-players are better without cooperation, i.e., if their utilities under
the NE are better than those under CNE, Ψ will be negative. Otherwise we
have positive BoC, Ψ . We study the influence of adversary player on BoC. In
particular, we analyze the variations in Ψ , as λ0 increases from zero to a large
value, much larger than λ1.

From Theorem 1, the total utility of C-players in non cooperative scenario is

U∗T =
∑
j≥1

U∗j = |J ∗| − 2(|J ∗| − 1)

∑
j≥1,j∈J ∗ 1/λj

sJ ∗
+ (|J ∗| − 1)2

∑
j≥1,j∈J ∗ 1/λ2

j

s2
J ∗

.

Further using Lemma 2, we have: Ψ = 200

(
λ1

λ1+λ0

)2

− U∗T(
λ1

λ1+λ0

)2

+ U∗T

. (5)

3.1 Equal C-players

We begin with the study of the special case, when λj = λ1 for all j ≥ 1. In this
case s = n/λ1 + 1/λ0 and all the C-players satisfy the hypothesis of Lemma 1
(clearly s > n/λ1). However, the adversary may or may not satisfy the same and
we study the different sub-cases in the following (proof in Appendix A).

Lemma 3. 1)If the adversary is weak, i.e., when s ≤ n/λ0, the BoC Ψ is de-
creasing in λ0 as below:

Ψ = 200

((
λ1

λ1 + λ0

)2

− 1

n

)/((
λ1

λ1 + λ0

)2

+
1

n

)
, with J ∗ = {1, · · · ,n}.

Further, we have the smallest BoC at

λ∗0 =
n− 1

n
λ1 and the minimum BoC equals Ψ(λ∗0) = 200

n3 − (2n− 1)2

n3 + (2n− 1)2
.

2) If the adversary is strong i.e., when s > n/λ0 (i.e., if λ0 > λ1(n− 1)/n), the
BoC is increasing with λ0 and reaches 200(n− 1)/(n + 1) as λ0 →∞:

Ψ = 200

(
λ1

λ1+λ0

)2

− n
(

λ1

nλ0+λ1

)2

(
λ1

λ1+λ0

)2

+ n
(

λ1

nλ0+λ1

)2 with J ∗ = {0, 1, · · · ,n}. 2



To Participate or Not in a Coalition in Adversarial Games 7

To Participate or Not: Thus the BoC decreases monotonically with λ0 until
λ∗0 = (n−1)λ1/n and increases monotonically afterwards. The minimum possible
BoC Ψ(λ∗0) provided by the above Lemma can easily be computed. It is easy to
verify that the minimum BoC is positive for all n > 2. When n = 2, it equals
-200/17 approximately and by continuity (which can easily be verified) we have a
range of adversary strength λ0 (around λ∗0) for which the BoC is negative. Thus
it is always beneficial to participate in cooperation when there are more than
two equal strength C-players. However when there are only two equal strength C-
players it may not always be beneficial to cooperate. These results are reinforced
in the numerical example of Figure 1.

As the number of C-players increases, irrespective of weak or strong
adversary, U∗T always decreases in n and limn→∞ U∗T = 0. This is kind of obvious
and is mainly because the interference is increasing. However the more interesting
fact is that the cooperative scenario is lot more beneficial. From Lemma 3, the
BoC

Ψ = 200

(
λ1

λ0+λ1

)2

− 1
n(

λ1
λ0+λ1

)2

+ 1
n

→ 200 and Ψ = 200

(
1

λ0+λ1

)2

− n
(

λ1
nλ0+λ1

)2

(
1

λ0+λ1

)2

+ n
(

λ1
nλ0+λ1

)2 → 200,

as n→∞, respectively with weak and strong adversary.
In all, irrespective of the strength of the adversary, a large number of equally

strong C-players benefit to the maximum extent by participating in coalition. One
may have very different results with unequal C-players, we next study the same.

Unequal C-players

We numerically compute the BoC (5) for some examples in Figures 1-2. We plot
Ψ as a function of λ0, ranging from 0 to 3 and with γ = 0.4. In Figure 1 with
equal players, the BoC Ψ decreases initially with λ0 till λ1/2, takes minimum
value −200/17 at λ0 = λ1/2, and further on increases towards 200/3. This is
true for all the examples of the Figure and is exactly as depicted by Lemma 3.

On the other hand, when λ1 6= λ2 as in Figure (2), we have a similar trend
for initial values of λ0. BoC decreases as λ0 increases, reaches a minimum value
and starts raising again. However, in contrast to the equal C-player case, the
BoC eventually decreases to zero. It is clearly the case for λ2 ≤ .95 and one can
observe a similar trend even for the case with λ2 = 1.2. One can compute the
strength of the adversary for which BoC is zero, using Theorem 1. For example,
when λ1 = 1.5 and λ2 = 0.5 the BoC is zero at λ0 = 0.3974, by using:

Ψ/200 =
( λ1

λ0 + λ1

)2

− λ2
1 + λ2

2

(λ2 + λ1)2
=

2.25

(λ0 + 1.5)2
− 2.25 + 0.25

4
= 0.

We notice again the cases with negative BoC surrounding such zero BoC cases.

When to participate: For equal C-player case, it is beneficial to cooperate
once the number of C-players is greater than two. However, this may not be
true when the players are of uneven strengths. In Table 1, we tabulate the cases
with negative BoC for the case with n = 4. Thus we have a second contrast with
respect to the equal player case: cooperation may not be beneficial even when there



8 Ranbir Dhounchak, Veeraruna Kavitha and !Yezekael Hayel

0 0.5 1 1.5
  0

-15
0

30

75

1 = 2 = ;  = 0.4

=.1 =.5 =1.8 =4

Fig. 1: λ1 = λ2, n = 2, BoC
increases, rate of convergence
faster with small λ1.

0 1 2 3
 0

0

20

40

60

 1 =  1.5,  =  0.4

2=1.2 2=.95 2 =.8 2=.5

Fig. 2: λ1 6= λ2, n = 2, BoC
decreases, increases and fi-
nally converges to 0.

0 10 20 30
! 60 

0

30

90

150

*

61  =  62  =  63 = 64 =  0.5

61=.5,  62 =  63 = .49,  64=.48

Fig. 3: Drastic differ-
ence between equal
and unequal agents

are more number of C-players. It rather depends upon the relative strengths of
the C-players and that of the adversary. For example, one can have huge number
of C-players, however most of them are not sufficiently strong, and in effect we
have only two players with non-zero components in NE (can be verified easily):

Lemma 4. When λ0 ≥ λ1λ2/(λ1 − λ2) with λ1 > λ2, J ∗ = {0, 1} irrespective
of the number of C-players, and so

U∗T =

(
λ1

λ1 + λ0

)2

and hence Ψ = 0 ∀ n ≥ 2. 2

Observe that λ1, slightly greater than λ2, is sufficient for this zero BoC case.
In Figure 3 we considered two examples with n = 4 to further illustrate this.
The BoC for the case with equal agents converges towards 120 (as given by
Lemma 3), while that with unequal agents converges to zero, as λ0 increases.
The differences (0.01, 0.02, etc.) in the strengths of the respective agents, in the
two examples is negligible, however the outcome is drastically different.

Sr. No. λ0 λ1 λ2 λ3 λ4 J Ψ {λ0 : Ψ ≤ 0}
1 2.1 3 1.2 1 0.5 {0, 1} 0 (2,∞)

2 1.36 2.6 2.4 1.3 1.3 {0, 1, 2} -6.17 [1.18, 1.6]

3 1.3 2.7 2.4 1.32 1.1 {0, 1, 2, 3} -5.63 [1.2, 1.55]

4 1.34 2.7 2.4 1.32 1.31 {0, 1, 2, 3, 4} -5.44 [1.22, 1.62]

Table 1: Example scenarios in which Cooperation Fails

Lemma 4 also illustrates a third contrast: there would be scenarios when BoC
converges to zero (or is zero) as the number of C-players increases.

4 Fair Sharing

In the previous section, we studied the BoC derived by the grand coalition of
C-players. In the scenarios where BoC is positive, it is important to quantify
the sharing of the worth among C-players. Towards this we form a relevant
Transferable utility (TU) game (e.g., [1]), which has many cooperative solutions
(e.g., core, Shapley value etc). We consider only Shapley value in the current
paper, while other solution concepts could be of future interest.

4.1 Transferable utilities:

Let S := {C : C ⊂ {1, · · · ,n}}, represent the collection of all subsets of the play-
ers, basically the collection of all possible coalitions. The characteristic function
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v : S → R, maps every coalition to a value on real line R, which represents the
worth of the coalition.

We first discuss a commonly used practice, that defines a TU game from any
given strategic form game. Consider any coalition C ⊂ {1, · · · ,n}. The worth of
this coalition v(C) is defined as the value of the two player zero-sum game, where
the first player is the aggregate of all the players from C and the second player
is aggregate of the rest of the players Cc := {1, · · · ,n} −C. The first aggregate
player maximizes the sum of utilities (utilities as given in strategic form game) of
all the players from C, while the second aggregate player minimizes the same sum
utility. We need some changes to this procedure to suit the problem under hand:
a) each player pays some cost for using an action; b) we have an adversary. To
incorporate the second factor, we include the adversary as a part of the second
aggregate player. To incorporate the first factor we define the reward of the
second aggregate player as negative of the reward of the first aggregate player
and then include the cost for choosing the particular action(s). Thus we define
the worth of the coalition C as the utility obtained by the first aggregate player
using the NE of the following two player strategic game:

Uag,1 =

∑
j∈C λjaj∑

j∈C λjaj +
∑
j∈Cc λjaj + λ0a0

− γ
∑
j∈C

aj and

Uag,2 = 1−
∑
j∈C λjaj∑

j∈C λjaj +
∑
j∈Cc λjaj + λ0a0

− γ

(∑
j∈Cc

aj + a0

)
.

The analysis of this game is exactly as in Lemma 2. By Lemma 2 and remarks
thereafter, this aggregate game may have multiple NE but the utility of the
two aggregate players remain the same irrespective of the CNE. The worth of
coalition C (for any C ∈ S) is defined as the utility under a CNE, i.e., from
Lemma 2:

v(C) :=

[
λC

λC + λcC

]2

with λC := max
j∈C

λj , λ
c
C := max{λ0, λCc}, λc{1,··· ,n} = λ0. (6)

Thus we have a TU game
〈
{1, · · · ,n}, v(·)

〉
. There are many fair solutions for

TU games, and we consider the well known Shapley Value. The Shapley value
of player k, φk, is given by the following (e.g., [1]):

φk =
∑

C∈S,k/∈C

|C|!(n− |C| − 1)!

n!
[v(C ∪ {k})− v(C)] for any player k. (7)

4.2 Shapley value: Strong adversary case

We first consider the case with λ0 ≥ λj for all j ≥ 1. For this case, from (6)
λcC = λ0 for any coalition C. We first compute the improvement in worth of
coalition C when player k joins it:

v(C ∪ {k})− v(C) =


0 if λk ≤ λC and(

λk
λk+λ0

)2

−
(

λC
λC+λ0

)2

if λk > λC , and(
λk

λk+λ0

)2

if C = ∅, the empty set.
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Fix player k. From above it is clear that (note λC = λC∪{k})

v(C ∪ {k})− v(C) = 0 for any coalition C such that, C ∩ {1, · · · , k − 1} 6= ∅.

Thus to compute the Shapley value φk, we consider the improvement in worth
when {k} joins sub coalitions, that are subsets of {k + 1, · · · ,n}:

v(C∪{k})−v(C) =

(
λk

λk + λ0

)2

−
(

λC
λC + λ0

)2

> 0, for any C ⊂ {k+1, · · · ,n}.

Fix any 1 ≤ m ≤ n− k and consider further sub-coalitions as below:

any C ⊂ {k +m, · · · ,n} and (k +m) ∈ C.

Note that λC = λk+m, λC∪{k} = λk for all such C and so the improvement:

v(C ∪ {k})− v(C) =

(
λk

λk + λ0

)2

−
(

λk+m

λk+m + λ0

)2

.

We will have
(
n−k−m

r

)
such coalitions of size r + 1, with r = 0, · · · ,n − k −m

and hence the contribution to the Shapley value from such coalitions equals:

∑
C⊂{k+m,··· ,n} and (k+m)∈C

|C|!(n− |C| − 1)!

n!
[v(C ∪ {k})− v(C)]

= δk,m

[(
λk

λk + λ0

)2

−
(

λk+m

λk+m + λ0

)2
]

with

δk,m :=

n−k−m∑
r=0

(
n− k −m

r

)
(r + 1)!(n− r − 2)!

n!
=

1

n

n

(k +m− 1)(k +m)
.

Thus in all, from (7) the Shapley value for any 1 ≤ k ≤ n

φk =
1

n

(
λk

λk + λ0

)2

+

n−k∑
m=1

1

(k +m)(k +m− 1)

[(
λk

λk + λ0

)2

−
(

λk+m

λk+m + λ0

)2
]

=
1

k

(
λk

λk + λ0

)2

−
n∑

m=k+1

1

m(m− 1)

(
λm

λm + λ0

)2

. (8)

4.3 Shapley value for weak adversary

Now consider the case when λ0 ≤ λ1. One can compute the Shapley value for
this case as in the previous case. The computations are slightly more complex
and are carried out in Appendix A. The Shapley value for this case is given by:
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φ1 =
1

n

(
λ1

λ1 + λ̂2

)2

+

n−1∑
m=2

1

(1 +m)m

[(
λ1

λ1 + λ̂2

)2

−
(

λ1+m

λ1+m + λ1

)2
]

+

n−1∑
m=2

1

(m+ 1)m

[(
λ1

λ1 + λ̂1+m

)2

−
(

λ2

λ2 + λ1

)2
]

+
1

n

[(
λ1

λ1 + λ0

)2

−
(

λ2

λ2 + λ1

)2
]
,

and for any k ≥ 2:

φk =
1

n

(
λk

λk + λ1

)2

+

n−k∑
m=1

1

(k +m)(k +m− 1)

[(
λk

λk + λ1

)2

−
(

λk+m

λk+m + λ1

)2
]

+

n∑
m=k+1

1

m(m− 1)

[(
λ1

λ1 + λ̂m

)2

−
(

λ1

λ1 + λ̂k

)2
]

+
1

n

[(
λ1

λ1 + λ0

)2

−
(

λ1

λ1 + λ̂k

)2
]
.
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Numerical observations: Figures 4-5 show the Shapley values and the utilities
under NE for two examples with strong adversary (λ0 ≥ λ1) and n = 4. Both
the examples have positive BoC. In Figure 4, the sharing as given by Shapley
values (lines with markers) is fair: all players derive more than their respective
utilities at NE (non cooperative scenario). In Figure 5 the allocation is not fair:
the stronger agents derive lesser utilities than those under NE while the weaker
ones improve. Thus the conclusion is that the Shapley values are not always fair
for this system. The game is not super-additive (and hence not convex) and this
could be the reason. Further the grand coalition may not be the best in this case:
one can easily gather examples for which v({1}) = v({1, · · · , N}).

The above discussion shows that one needs an alternate way of sharing the
utilities among C-players. We intend to work towards this in future. We close
this discussion by suggesting a heuristic, which could be a part of our future
work: ψi := U∗i +

λi∑
j≥1 λj

(
U∗ag − U∗T

)
. (9)

Few initial remarks: Basically share the overall gain (above the non-cooperative
utility), among the C-players, proportional to their influence factors. Note that
(9) need not be individually rational, as v({1}) = v({1, · · · , N}) and v({1}) �
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U∗1 for some examples (e.g., Figure 5). These observations are mainly due to
the following: ”when players cooperate they not only aid themselves, they also
aid the opponents. And this is because the weaker ones remain silent is the best
strategy for cooperative scenario, which reduces the interference to all, including
the opponents”.

5 Game with Exponential Utilities
Online Social Networks (OSNs) play an instrumental role in marketing of prod-
ucts or services of the organizations. Due to immense activities of the users,
OSNs become predominant vehicles to proliferate contents therein. The market-
ing/advertising companies make use of these platforms to publicize their ”content
of interest.” We use the model and results of [7] (studies content propagation
properties using branching processes), for analysing the importance of cooper-
ation when ‘relative visibility’ of a content is important to its content provider
(CP). We first summarize their model and results.

Each user of an OSN possesses time-line (TL) structure, basically an inverse
stack of certain length, where different contents appear on different levels based
on their newness. The old content is pushed down by the arrival of new content
to the TL. On the other hand, the content gets ‘replicated’, if a user forwards the
post to its friends. After a series of such events a particular content, depending
upon the interest it generates, either gets extinct (gets deep down the TLs, to
attract any further attention) or gets viral, i.e., the copies of the post grow
exponentially fast due to rigorous sharing (see [7]), after considerable time t.

A marketing content is posted to some users initially by a Content Provider
(CP). The extinction/virality of a post depends upon network parameters as
well as the quality of the post represented by η. It is shown that the number
of copies of a content grows in accordance with branching process under certain
assumptions. Using the theory of branching processes the growth rate of the
content is shown to be proportional to η (see [7]). And growth rate characterizes
the visibility of the content: the more the growth rate, the more the visibility.

The authors in [7] obtained the expected number of TLs (E[X(t)]) containing
the post at time t, after inception with one copy. We reproduce the expression for
this expected number, for one interesting example scenario in which the shared
post always sits on the top of the recipient TL immediately after sharing (see
[7, Theorem 1 and Lemma 1] with ρi = 1i=1):

E[X(t)] ≈ k̄eαt = kecwη, where (10)
α :=

(
(1− θ)md1d2wη − 1 + θd2

)
(λ+ ν), is the virality co-efficient,

ri = d1d
i
2, is the probability that user reads the post at level i of TL,

λ, ν − rates (of appropriate Poisson processes) at which users visit the OSN,

w − the influence factor of CP, m− the mean number of friends

k̄ =
1

1− d2

(1− θ)md2wη

(1− θ)md2wη + θd2 − θ
, k = k̄e

(
−1+θd2

)
(λ+ν)t

,

c := (1− θ)md2(λ+ ν)t and θ =
λ

λ+ ν
.
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The above is the expected number of TLs, with the post under consideration, at
some level of the TL. Here wη represents the probability that a typical user
shares the post. Further, we consider the case with d2 close to 1 (users read post
from a good number of levels), and we hence approximate k̄ ≈ 1/(1 − d2), a
constant independent of η. Thus in the expression (10) for the expected number
of posts, k and c are constants independent of the action/strategy η.

Further the probability of virality (i.e., the probability that a post gets viral)
is positive if and only if the virality coefficient α > 0 ([7, Lemma 2]). Thus
E[X(t)] > 0 if and only if α > 0. Hence E[X(t)] = 0 for any η ≤ η̄ where:

η =
1− θd2

(1− θ)md2
× 1

w
, (11)

and if η > η, then E[X(t)] is given by (10). Thus summarizing, the expected
number of TLs with the content of a CP depends on its quality η:

y(η;w) =

{
kecwη η < η ≤ 1

w

0 else,
or equivalently y(x;w) :=

{
kex x < x ≤ c
0 else,

(12)

after the change of variable to x = cwη and where x := cwη. It is important to
note that the constants c, x depend only upon the network parameters, and are
not altered by w the CP related parameter (see equations (10)-(11)). Thus these
boundary points would be the same for any CP using the given OSN.

Content of competing CPs, when propagate through the same OSN and at
the same time, create interference to each other by reducing the visibility of
each other’s post. The visibility of the content of a particular CP is proportional
to the number of TLs with its own content and inversely proportional to the
number of TLs with content of the competing CPs. We consider (n + 1) number
of competing CPs, one among them being an adversary. As before, �adversary
could be an player that might not be interested in participating in any coalition
or the aim of the adversary could be to jam the visibility of the content of other
CPs. We study (as before), if it is good to participate in cooperative strategies.

5.1 Non Co-operative N players

Let xj represent the quality of CP-j content. Its content gets viral only if xj > x.
If the content gets viral, the expected number of shares is given by (12). The CP
incurs a cost proportional to its (actual or non-transformed) quality ηj = xj/wj
and its aim is to get best relative visibility of its content over OSN. Thus the
utility of CP j when it creates a content of quality xj and when others create
content with respective qualities (x0, · · · , xj−1, xj+1, · · · , xn) equals (see (12)):

Uj(x0, x1, · · · , xn) =

{
0− γxj

wjc
, xj ≤ x

exj∑
i e

xi1xj>x
− γxj

wjc
, x < xj ≤ c.

(13)

This type of utility again induces a (n+1)-player non cooperative strategic form
game. We begin with non cooperative scenario where each CP chooses its quality
factor to maximize its own utility function.
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The objective functions corresponding to this game have discontinuities. Fur-
ther it is clear from the above utility that the effective domain of optimization is
{0} ∪ (x, c], which is not connected. Thus as expected, the analysis is far more
complicated. We observe (through numerical computations) that in many cases
pure strategy NE does not even exist. We performed the best response analysis
of utility of any typical player (details in Appendix B) and found that the best
response is one among {0, x, c}, in most of the cases. Further since x is just at
the border of virality (the post gets extinct for any x ≤ x and gets viral for any
x > x), it may not be a right choice for practical purposes. Because of all these
reasons, we continue further analysis with binary actions, i.e., the players choose
a ∈ {0, c}. That is, the CPs either prepare the best quality post or do not even
participate.

NE with binary actions We first obtain the NE for this strategic form game.

Lemma 5. This game can have multiple NE. The set of NE, N ∗, is given by:

N ∗ :=

{
x

∣∣∣∣∣
n∑
j=0

1{xj=c} = k∗, xj = 0 if wj < k∗γ and xj = c if wj ≥ (k∗ + 1)γ

}

with k∗ := max

{
0 ≤ k ≤ n :

n∑
j=0

1{wj≥kγ} ≥ k

}
, k̄+ :=

∑
j

1{wj≥(k∗+1)γ} and

k̄∗ :=
∑
j

1{wj≥k∗γ}. Also |N
∗| = N∗ :=

(
k̄∗ − k̄+

k∗ − k̄+

)
. (14)

In any NE the number of players with non-zero action equals k∗, the action of
first k̄+ strong players is c and there are N∗ number of NE for this game. 2

Proof. Proof is given in Appendix B.

Thus we have multiple NE for this scenario. Our aim is to compute the
BoC (benefit of cooperation) and towards this we need U∗T =

∑
j≥1 U

∗
j , the total

utility of C-players at an ‘appropriate’ NE. We consider the minimum total utility
of C-players among all possible NE as the utility derived in the Non-cooperative
scenario.

If the adversary is weak, i.e., if w0 < k∗γ, then at any NE x∗ ∈ N ∗

U∗T (x∗) = 1−
∑
j

γx∗j
wjc

, and min
x∈N∗

U∗T (x) = 1−
k̄+∑
j=1

γ

wj
−

k̄∗∑
j=k̄∗−k∗+k̄++1

γ

wj
. (15)

If the adversary is strong, i.e., if w0 ≥ k∗γ, the minimum total utility equals:

min
x∈N∗

U∗T (x) =
k∗ − 1

k∗
−

k̄+∑
j=1

γ

wj
−

k̄∗∑
j=k̄∗−k∗+k̄++2

γ

wj
. (16)

5.2 Co-operative N players

When the players decide to participate in a coalition, they make a combined post
having content of all the participating players. The combined post gets liked by
an user of OSN, if user likes the content of any one of them. Thus the probability
that a combined post (of grand coalition) is liked by any user equals:
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ηag = 1−
(
1− w1η1

)(
1− w2η2

)
· · ·
(
1− wn−1ηn−1

)
= 1−

∏
1≤i≤n

(1− xi/c). (17)

One can normalize the influence factor of the combined player to 1, i.e., wag = 1.
As before define, xag := cηag and xad = cwadηad = x0.

In non-cooperative scenario, content of each CP starts with one copy (at
start one user has content stored on its TL). Equivalently for any coalition C
we consider that the process starts with |C|-copies of the combined post. Thus
the aggregated utility of C-players for this exponential-utility game equals (see
(12), (13) and with x = (x1, · · · , xn) ∈ [0, c]n):

Uag(x0,x) =
1{xag≤x}ne

xag

nexag + exad
−

n∑
i=1

γxi
wic

, with xag = c

1−
∏

1≤i≤n

(
1− xi

c

) .
and that of adversary is:

Uad(x0,x) =
1{xad≤x}e

xad

nexag + exad
− γ xad

w0c
, with xad = cw0ηad = x0.

As before we consider two player non cooperative game with the above two as
the players, and compute the NE, which we again refer as CNE. This two player
game is to study the Benefit of cooperation when all C-players form a (grand)
coalition. We begin with the following basic result which could also be used
while studying the Shapley value. When more than one players participate in a
coalition, optimizing the aggregate utility by only the strongest player’s strategy
is better than (or as good as) that obtained by optimizing using the actions of
all/some of the coalescing players. Basically it states that the weaker players
should remain silent (as in Lemma 2) and this is the best way to cooperate.
Assume throughout w1 ≥ w2 · · · ≥ wn.

Lemma 6. Say w1 = maxj≥1 wj. For any x0, xn
1 := (x1, · · · , xn) ∈ (0∪ (x, c])n

Uag(x0,x
n
1 ) ≤ Uag(x0, x

′, 0, 0, · · · , 0) with x′(xn1 ) = min

{
c, w1

n∑
i=1

xi
wi

}
. (18)

Hence for any given x0, the best response of the aggregate player is obtained by:

sup
(x1,x2,x3··· ,xn)∈[x,c]n

Uag(x0, x1, x2 · · · , xn−1, xn)

= sup
x∈{0}∪(x,c]

Uag(x0, x, 0, 0, · · · , 0) = sup
x∈{0}∪(x,c]

(
nex1x>x

nex + 1{x0>x̄}e
x0
− γx

cw1

)
. 2

Proof. Proof is given in Appendix B.

Remarks: 1) As in (linear case) Lemma 2, the best response is dominated by
best response when the weaker C-players remain silent. 2) However the reduced
game can’t be analysed as easily as in Lemma 2. Nevertheless, as in the linear
case, a NE (x∗0, x

∗) of following the reduced game (action profile of aggregate
player has only one component) with utilities of the two players as
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U ′ag(x0, x) =
nex1x>x

nex + 1{x0>x̄}e
x0
− γx

cw1
, Uad(x0, x) =

ex01x0>x
nex + 1{x0>x̄}e

x0
− γx0

cw0
, (19)

gives a CNE to the original game, (x∗0, x
∗, 0, · · · , 0). Once again, the original

game can have more CNEs than those derived from the reduced game. For
example, when w1 = w2, if CNE derived from reduced game is (x∗0, x

∗, 0, · · · , 0)
then (x∗0, 0, x

∗, 0, · · · , 0) is also a CNE (as in Lemma 2.ii). However by virtue of
the above Lemma the utility under any CNE of the original game equals that at
a corresponding CNE derived using the reduced game. 3) Once again the result
is readily true for any sub-coalition, even when it includes adversary, as would
be required for defining the TU game (which we might consider in future).

Binary actions We again consider the case with Binary actions, while the case
continuous set of actions from {0} ∪ (x, c] is analysed using numerical computa-
tions. From (19) the CNE for binary actions equals:

(x∗0, x
∗
1) =



(0, 0) if w0 < γ and w1 < γ
(0, c) if w0 < γ and w1 > γ
(c, 0) if w0 > γ and w1 < γ
(0, c) or (c, 0) if γ < w0 < (n + 1)γ and γ < w1 <

(
1
n

+ 1
)
γ

(0, c) if w0 < (n + 1)γ and w1 >
(

1
n

+ 1
)
γ

(c, 0) if w0 > (n + 1)γ and w1 <
(

1
n

+ 1
)
γ

(c, c) if w0 > (n + 1)γ and w1 >
(

1
n

+ 1
)
γ

(20)

Thus there are situations with multiple CNE and unlike in the linear case, we
have (drastically) different utilities at different CNE, at (0, c) utility of aggregate
player is 1−γ/w1 and at (c, 0) it has 0 utility. Thus as in the concept of ‘security
level’, we define the utility in cooperative scenario as the minimum possible
utility at any CNE. With this definition

U∗minag =
(
1{w1>γ}1{w0<γ} + 1{w1>( 1

n
+1)γ}1{w0<(n+1)γ}

)[
1− γ

w1

]
+1{w1>( 1

n
+1)γ}1{w0>(n+1)γ}

[
n

n + 1
− γ

w1

]
. (21)

5.3 Benefit of cooperation

As in linear case, one can define the BoC

Ψ = 200
(U∗minag − U∗minT )

(U∗minag + U∗minT )

which can be computed using (15) and (21).
When w1 < γ, the utility in cooperative as well as non-cooperative scenario

is zero and so is the BoC. When γ ≤ w1 < (1/n + 1)γ and w0 < γ then
U∗ag = 1− γ/w1, while U∗minT = 1−minwj :wj>γ(γ/wj) as k∗ = 1. Thus the BoC
is positive:

Ψ = 200
U∗minag − U∗minT

U∗minag + U∗minT

= 200
minwj :wj>γ

γ
wj
− γ

w1

2 + minwj :wj>γ
γ
wj

+ γ
w1

.
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When γ ≤ w1 < (1/n + 1)γ and w0 > γ then U∗ag = 0, while k∗ = 1 and

k̄∗ ≥ 2. Thus U∗minT = 0 as (c, 0, · · · 0) is one of the NE which gives the minimum
total utility for C-players, and hence BoC is again 0.

Thus with k∗ < 2, we have zero BoC cases, and hence cooperation may not be
beneficial. But otherwise, it is always beneficial to cooperate (proof in Appendix
B):

Lemma 7. If k∗ ≥ 2, then BoC Ψ > 0, i.e., cooperation is always beneficial. 2

When k∗ ≥ 2, which implies w1 > 2γ > 1/(n + 1)γ, cooperation is always
beneficial. We consider three further sub-cases to study the extent of the benefit
when w1 > 1/(n + 1)γ.

Weak Adversary, w0 < k∗γ: Thus, w0 < (n + 1)γ. By (15) and (21):

Ψ = 200
U∗minag − U∗minT

U∗minag + U∗minT

= 200
1− γ

w1
− 1 +

∑k̄+

j=1
γ
wj

+
∑k̄∗

j=k̄∗−k∗−k̄++1
γ
wj

1− γ
w1

+ 1−
∑k̄+

j=1
γ
wj
−
∑k̄∗

j=k̄∗−k∗+k̄++1
γ
wj

= 200

∑k̄+

j=1
γ
wj

+
∑k̄∗

j=k̄∗−k∗−k̄++1
γ
wj
− γ

w1

2− γ
w1
−
∑k̄+

j=1
γ
wj
−
∑k̄∗

j=k̄∗−k∗+k̄++1
γ
wj

, where
∑0

j=1 · = 0,
∑−m

j=1 · = 0.

With Equal C-Players: Consider that all CPs are of equal strength, i.e., their
influence factors are equal wi = w1 ≥ ∀ i ≥ 1. Then the above BoC simplifies:

Ψ = 200
1− γ

w1
− 1 + k∗ γw1

1− γ
w1

+ 1− k∗ γw1

=
200(k∗ − 1)γ

2w1 − (k∗ + 1)γ
, with k∗ = min{n, bw1/γc}.(22)

As, n→∞, k∗ → bw1/γc and BoC Ψ → 200(bw1/γcγ/w1−γ/w1)
2−bw1/γcγ/w1−γ/w1

, and the limit equals

200, if w1/γ were an integer. On the other hand, if w1 increases, BoC Ψ → 0.

Strong Adversary, w0 > (n + 1)γ: Thus, w0 > k∗γ. By (16) and (21)

Ψ = 200

n
n+1
− k∗−1

k∗ +
∑k̄+−1
j=1

γ
wj

+
∑k̄∗−1
j=k̄∗−k∗−k̄++1

γ
wj
− γ

w1

n
n+1

+ k∗−1
k∗ −

γ
w1
−
∑k̄+−1
j=1

γ
wj
−
∑k̄∗−1
j=k̄∗−k∗+k̄++1

γ
wj

, and with equal C-players

Ψ = 200

n
n+1
− k∗−1

k∗ + (k∗ − 2) γ
w1

n
n+1

+ k∗−1
k∗ − k∗

γ
w1

, where k∗ = min{n + 1, bw1/γc}.

As n increases, the BoC, Ψ → 200
(

1/bw1/γc+bw1/γcγ/w1−2γ/w1

)
2−1/bw1/γc−bw1/γcγ/w1

, and the limit equals

200 (if w1/γ is integer). If w1 increases, k∗ → n + 1 and Ψ → 0.
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Intermediate Adversary, k∗γ ≤ w0 ≤ (n + 1)γ: By (16) and (21):

Ψ = 200
1− k∗−1

k∗ +
∑k̄+−1
j=1

γ
wj

+
∑k̄∗−1
j=k̄∗−k∗−k̄++1

γ
wj
− γ

w1

1 + k∗−1
k∗ −

γ
w1
−
∑k̄+−1
j=1

γ
wj
−
∑k̄∗−1
j=k̄∗−k∗+k̄++1

γ
wj

.

With equal C-players, Ψ = 200
1− k∗−1

k∗ + (k∗ − 2) γ
w1

1 + k∗−1
k∗ − k∗

γ
w1

, k∗ = min{n, bw1/γc}.

As n increases, the BoC, Ψ → 200
(

1/bw1/γc+bw1/γcγ/w1−2γ/w1

)
2−1/bw1/γc−bw1/γcγ/w1

, and the limit equals

200, if w1/γ were an integer. On the other hand, if w1 increases k∗ → n + 1 and
the BoC converges to 1/(2n+ 1).
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6 Appendix A: Linear Utilities

Proof of Lemma 1 Recall the utility of a player i is:

Ui =
λiai∑
j λjaj

− γai; i = 0, 1, · · · ,n.

We compute the Nash Equilibrium using best response method. The best re-
sponse of a player i against fixed a−i (game theoretic notation) is given by:

BRi(a−i) := arg max
ai

Ui(ai, a−i).

This set can be computed using the method of differentiation1 as follows:

∂Ui
∂ai

=
λi
∑
j λjaj − λ2

i ai(∑
j λjaj

)2 − γ = λi

∑
j λjaj − λiai(∑

j λjaj

)2 − γ (23)

∂2Ui
∂a2

i

= −2λi
λi
∑
j:j 6=i λjaj(∑
j λjaj

)3 .

We first compute the NE for unconstrained action set/domain and later on show
that the computed NE is in fact in the interior of the bounded domain. In view of
this, the best response of a player is/are among the stationary points of the corre-
sponding utility function and is given by equating the corresponding/respective
first derivative to zero. That is, by ∂Ui/∂ai = 0, we get the following system of
equation

∑
j

λjaj − λiai =
γ

λi

∑
j

λjaj

2

∀ i. (24)

On summing, n
∑
j

λjaj = γ
∑
j

1

λj

∑
j

λjaj

2

=⇒ n

sγ
=
∑
j

λjaj .(25)

Moreover for the stationary points obtained using (24) and (25), the second
derivative at the same is negative. Thus these stationary points are maximiz-
ers and hence are the best response set. Further, the Nash Equilibrium is the
simultaneous solution to the above system of equations [2]. Using (25) equation
(24) becomes

−λ2
i ai =

n2

s2γ
− nλi

sγ
or ai =

nλi
s2γλi

(
s− n

λi

)
∀ i = 0, 1, · · · ,n. (26)

One can substitute the above into equation (24) and show that this indeed is a
solution. Note that the above solution is in the interior of the domain because
1 Boundary conditions are considered towards the end.
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of the hypotheses of the Lemma. Further one can argue that this is the unique
solution of the set of equations given by (24) as follows: a) when

∑
i λiai is

considered as a constant (say κ) in (24), then clearly the set of equations have
unique solution for each κ; b) the final solution is derived by obtaining correct
κ, which is the solution of (25) and it is clear there exists an unique solution to
(25).
We now rule out the possibility of a∗j being 0 or ā for some player j as follows.
Under the hypotheses of Lemma, ā can not be best response for any player as
the utility driven is strictly less than zero (ā > n

γ ). Now the only possibility
left is the action ’0’. Let us say the best response for j player a∗j = 0 for some
j ∈ J c in some NE (if possible) and non-zero for the rest of the players.

It is easy to see that the best responses of players in J , against zeros of
players from set J c, are obtained by replacing n by |J − 1| in (26) and which
further satisfy

|J − 1|
γsJ

=
∑
i∈J

λja
∗
j ; with sJ :=

∑
i∈J

1/λi. (27)

We show that a player from set J c derives positive utility at non zero action
against the given (a∗i , i ∈ J ); proving action ‘0’ can not be in Nash Equilibrium.
We compute the best response of the least influential player from set J c; say it
to be player j i.e. λj ≤ λk ∀ k ∈ J c . Its best response, using (27), is given as

max
a∈[0,ā]

λja∑
i∈J λia

∗
i + λja

− γa = max
a∈[0,ā]

{
λja

|J−1|
γsJ

+ λja
− γa

}
.

Note that at a = 0 player j’s utility is 0. Now observe the following

sJ = s−
∑
k∈J c

1

λi
>

n

λi
−
∑
k∈J c

1

λk
=

n− |J c|
λi

+
|J c|
λi
−
∑
k∈J c

1

λk
∀ i ∈ J c ∪ J .

And in particular, we have the following inequality

sJ >
n− |J c|

λj
+
|J c|
λj
−
∑
k∈J c

1

λk
(28)

hence sJ >
n− |J c|

λj
=
|J − 1|
λj

; as
∑
k∈J c

λk ≥ |J c|λj . (29)

Now define G(a) :=
λj

|J−1|
γsJ

+ λja
− γ; and then G(0) =

λj
|J−1|
γsJ

− γ.

Appealing to (29), we get G(0) > 0. Consider the following neighborhood of zero
(0, ε) where ε is a positive number arbitrary close to 0, using the continuity of
G(.) we can write

|G(b)−G(0)| < G(0)/2 =⇒ G(0)/2 < G(a) < 3G(0)/2 ∀ b ∈ (0, ε).
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We thus have G(b) > 0 ∀ b ∈ (0, ε) which gives Uj(b, a
∗
−j) > 0 as Uj(a, a

∗
−j) =

G(a)a where a∗−j standard game theoretic notation. Thus action ‘0’ can not best
response for player j ruling out the possibility of zero action (by j player) in NE.
Which contradicts the fact that Nash strategy of player j is zero. This completes
the proof. 2

Proof of Theorem 1: For ease of notations, represent λ′i by λi for each i.
This notation is used only in this proof. Given that

λ0 ≥ λ1 ≥ · · · ≥ λn. (30)

We claim there exists exactly one n∗ such that with

J ∗ := {1, · · · , n∗}, we have sJ > (n∗ − 1)/λj for all j ≤ n∗ and

sJ ≤ (n∗ − 1)/λj for all j > n∗. (31)

It is clear that such an n∗ and J ∗ would satisfy (3). We first provide the proof

of the above claim. For any k ≤ n, define sk :=
∑k−1
j=0 1/λj and start with Step

0 given below.
Step 0: Start with k = 2. It is easy to verify that

sk
k − 1

≥ 1

λi
for all i ≤ k. (32)

Step 1: For the given k we have:

sk
k − 1

≥ 1

λi
for all i ≤ k. If further,

sk+1

k
≤ 1

λk+1
(33)

then condition (31) is satisfied with n∗ = k and stop. If the above is negated,
then by Lemma 8

sk+1

k
>

1

λk+1
≥ 1

λi
for all i ≤ k + 1.

Now set k ← k + 1 and loop back to Step 1 till k ≤ n. Else stop with n∗ = n.
Remark: Using (32), one can easily see that {0, 1} ∈ J ∗ always. Next we prove
the uniqueness of n∗, we begin with two case as follows

– When n∗ = n, uniqueness is obvious.
– When it stops with n∗ < n, we have

sn∗+1

n∗
≤ 1

λn∗+1
, and then using Lemma 8 recursively

sk+1

k
≤ 1

λk+1
∀ k ≥ n∗.

This gives uniqueness of |J | satisfying (31), which is same as the condition (3).
From equation (33) as applied to n∗:

sn∗

n∗ − 1
>

1

λn∗
,
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then one can easily verify that

s

n
=

sn∗

n∗ − 1

n∗ − 1

n
+

∑
j≥n∗ 1/λj

n
>

1

λn∗

n∗ − 1

n
+

n + 1− n∗

n

1

λn∗
=

1

λn∗
.

Thus by monotonicity of (see (30)) ,

s

n
>

1

λn∗
≥ 1

λi
for all i ≤ n∗,

and thus we have:

{0, 1, · · · , n∗} = {j : s > n/λj}.

This proves J ∗ ⊂ {j : s > n/λj}.
The condition to to determine n∗ If the below condition is true

s <
n

λn
or equivalently if λ0 ≥

 n

λn
−

n∑
j=1

1

λj

−1

then n /∈ J ∗, by previous steps of the proof. In a similar way we also have
(n− 1) /∈ J ∗ if additionally one of the following two conditions is satisfied, a) if
s < n/λn−1 or equivalently if the following true

λ0 ≥

 n

λn−1
−

n∑
j≥1

1

λj

−1

,

we have (n − 1) /∈ J ∗; b) if the above the condition is not true, but if sn−1 <
(n− 1)/λn−1 is true or equivalently if

λ0 ≥

n− 1

λn−1
−

n−1∑
j=1

1

λj

−1

,

then also (n − 1) /∈ J ∗, and this is obtained by concentrating on the reduced
game with players only from {0, 1, · · · ,n − 1}. This reduced game has to be
considered/ results because, when n /∈ J ∗ (which means when a∗n = 0) then in
all the best responses we have zero influence from player n.

By monotonicity if (n−1)-th player is not eliminated, i.e., if n ∈ J ∗, then so
are the remaining players. In other words NE has all non-zero components only
if

λ0 <

n− 1

λn−1
−

n−1∑
j=1

1

λj

−1

,
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and J∗ = {1, · · · ,n− 1} if n

λn
−

n∑
j=1

1

λj

−1

≤ λ0 <

n− 1

λn−1
−

n−1∑
j=1

1

λj

−1

.

Proceeding in the same manner, by induction, we have that J∗ = {1, · · · , k} for
any k, if the following is true:k + 1

λk+1
−
k+1∑
j=1

1

λj

−1

≤ λ0 <

 k

λk
−

k∑
j=1

1

λj

−1

.

This completes the first part, i.e., part (i) of the Theorem.
Uniqueness: Due to the uniqueness of the set J ∗ and appealing to Lemma 1
for the reduced game with players only from J ∗, we have unique NE with the
following characteristics: a) there exists an unique J ∗, and a∗i = 0 for all i /∈ J ∗;
and b) (a∗0, · · · , a∗n∗) equals the unique NE in the interior of the (reduced) do-
main, given by Lemma 1 for the reduced game. 2

Proof of Lemma 2 Using λ1 > maxj≥2 λj . it is easy to see the following

1− λ0a0∑
j λjaj

< 1− λ0a0

λ0a0 + λ1

∑
j≥1 aj

= 1− λ0a0

λ0a0 + λ1â
; â :=

∑
j≥1

aj∑
j≥1 λjaj∑
j λjaj

− γ
∑
j≥1

aj < 1− λ0a0

λ0a0 + λ1â
− γâ

Further in the light of unbounded actions, we can as well take a1 = â keeping
the inequality intact. And thus for any ad the unconstrained (more precisely
optimization over the non-negative axis) optimization

max
ag∈[0,∞)n

Uag(ag, ad) ≤ max
ag∈[0,∞)×{0}n−1

Uag(ag, ad). (34)

For computing the NE, one can consider unconstrained optimization as above,
to begin with. Once the NE is computed and if it is within [0, ā]n+1, then we
are done. We are following the same approach here. In view of (34), it suffices
to consider action profile of the aggregate player from [0,∞)× {0}n−1, i.e., set
ai = 0 for all i ≥ 2, and the resulting simplified utility function is

Uag(ag, ad) = Uag((ag, 0, · · · , 0), ad) =
λ1ag

λ1ag + λ0ad
− γag.

We first check if a pair of interior points becomes an NE. Towards this we
compute the respective gradients and attempt to obtain the best responses using
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their zeros:

∂Uag
∂ag

=
λ1λ0a0(

λ1ag + λ0a0

)2 − γ = 0 (35)

∂Uad
∂a0

= λ0
λ1ag(

λ1ag + λ0a0

)2 − γ = 0 (36)

On solving the above set of equations we have:

λ0λ1ag = λ1λ0a0 and γ
(

1 +
λ0

λ1

)
λ1ag = λ0.

Thus we get a unique simultaneous critical point (as there is an unique zero of
the above equations)

a∗1 = a∗g =
λ1λ0

γ
(
λ1 + λ0

)2 = a∗0 and a∗i = 0 for all i ≥ 2. (37a)

It is clear that the a∗1, a
∗
0 components of the above solution is in the interior of

the domain. To see the behaviour of these critical points, we compute the second
derivative at {a∗0, a∗g}

∂2Uag
∂a2

g

=
−2λ0λ

2
1a
∗
0(

λ1a∗g + λ0a∗0

)3 (38)

which is negative. In similar way, one can show the same for adversary player.
Hence (a∗0, a

∗
g, 0 · · · , 0) is unique NE, because one can further show by direct

computations that any combination of boundary and interior points can’t be
CNE, as well as (ā, ā, 0 · · · , 0) is not a CNE.
ii) Follows trivially using the above part, by first noticing that arguments of part
(i) go through even when λ1 ≥ maxj≥2 λj . Further we can have one such CNE
with each of the maximizers of maxj≥1λj . One can also have one CNE with
every convex combination of the maximizers (using exactly similar logic), and
hence part (ii). 2

Proof of Lemma 3 We are given λ1 = λ2 · · · = λn. We begin with:
1) Weak Adversary i.e., s ≤ n/λ0, using Theorem 1 we get a∗0 = 0 and∑
j≥1 U

∗
j = 1/n. Further, using Lemma 2 the performance improvement equals:

Ψ = 200

(
λ1

λ1+λ0

)2

− 1
n(

λ1

λ1+λ0

)2

+ 1
n

= 200
nλ2

1 − (λ1 + λ0)2

nλ2
1 + (λ1 + λ0)2

.

On differentiating Ψ w.r.t λ0

∂Ψ

∂λ0
=
−2(λ1 + λ0)

(
nλ2

1 + (λ1 + λ0)2 + nλ2
1 − (λ1 + λ0)2

)
(
nλ2

1 + (λ1 + λ0)2
)2 =

−4(λ1 + λ0)nλ2
1(

nλ2
1 + (λ1 + λ0)2

)2 .
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Thus the derivative is negative and hence Ψ is decreasing in λ0. And the the
minimum improvement (while the adversary is being weak) occurs at maximum
allowable value of λ0. As s ≤ n/λ0 we have λ0 ≤ (n− 1)λ0/n. Hence

λ∗0 =
n− 1

n
λ1 and Ψ(λ∗0) =

n3 − (2n− 1)2

n3 + (2n− 1)2
200.

This completes the first part.
1) Strong Adversary: In this case we have

λ0 >
(n− 1)λ1

n
; and Ψ = 200

(nλ0 + λ1)2 − n(λ1 + λ0)2

(nλ0 + λ1)2 + n(λ1 + λ0)2
.

Similarly on differentiating Ψ w.r.t, we get

∂Ψ

∂λ0
= 4(λ0 + λ1)(nλ0 + λ1)n

(n− 1)λ1

((nλ0 + λ1)2 + n(λ1 + λ0)2)
2 > 0

which is always (strictly) positive. Thus, in this case, Ψ is increasing in λ0 as
long as the adversary is strong, i.e., beyond λ∗0. Thus in all, minimum value of
BoC occurs at λ∗0. Further notice that

lim
λ0→∞

(nλ0 + λ1)2 − n(λ1 + λ0)2

(nλ0 + λ1)2 + n(λ1 + λ0)2
= lim
λ0→∞

(n2 − n)λ2
0 + (1− n)λ2

1

(n2 + n)λ2
0 + (1 + n)λ2

1 + 2nλ0λ1

Thus limλ0→∞ Ψ = 200n2−n
n2+n = 200n−1

n+1 . 2

Shapley values: When λ0 < λ1

Similar to the case of strong adversary to compute the Shapley value for any k,
we group together coalitions of similar nature that provide same improvement.
We begin with k ≥ 2 and first consider all coalitions in C ⊂ {2, · · · ,n}. The
analysis for such sub-coalitions is exactly the same as in previous subsection,
in that λcC is the same for all such coalitions. The only difference being that,
λcC = λ1 = λcC∪{k}. Thus (see (8)):∑
C:1,k/∈C

|C|!(n− |C| − 1)!

n!
[v(C ∪ {k})− v(C)]

=
1

n

(
λk

λk + λ1

)2

+

n−k∑
m=1

1

(k +m)(k +m− 1)

[(
λk

λk + λ1

)2

−
(

λk+m

λk+m + λ1

)2
]
.

Now we consider the rest of the coalitions, i.e., the ones with 1 ∈ C. We derive
further analysis, by considering further (appropriate) sub-class of coalitions.

For the coalitions of the type, such that

Cc ∩ {2, · · · , k − 1} 6= ∅, and 1 ∈ C, clearly, v(C ∪ {k})− v(C) = 0.
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Note that in the above λC = λC∪{k} = λ1.

Now consider sub-coalitions such that (with 2 ≤ m ≤ n− k)

1, 2, · · · , (k − 1) ∈ C, (k + 1), · · · , (k +m− 1) ∈ C and (k +m) /∈ C.

For all such coalitions we have, with λ̂i := λi ∨ λ0:

v(C ∪ {k})− v(C) =

(
λ1

λ1 + λ̂k+m

)2

−
(

λ1

λ1 + λ̂k

)2

.

And the contribution towards the Shapley value by such coalitions, as before
can be calculated as below (with ra := (r + a− 2)):

n−k∑
m=2

n−k−m∑
r=0

(
n− k −m

r

)
rk+m!(n− rk+m − 1)!

n!

[(
λ1

λ1 + λ̂k+m

)2

−
(

λ1

λ1 + λ̂k

)2
]

=

n∑
m=k+2

n−m∑
r=0

(
n−m
r

)
rm!(n− rm − 1)!

n!

[(
λ1

λ1 + λ̂m

)2

−
(

λ1

λ1 + λ̂k

)2
]

=

n∑
m=k+2

1

m(m− 1)

[(
λ1

λ1 + λ̂m

)2

−
(

λ1

λ1 + λ̂k

)2
]

The last equality follows because: (using ([sum binom(n-m, k-m) / binom (n-1,
k-2), k = m to n] in wolfram))

n−m∑
r=0

(
n−m
r

)
rm!(n− rm − 1)!

n!
=

n∑
r=m

(
n−m
r −m

)
(r − 2)!(n− r + 1)!

n!
=

1

n

n

m(m− 1)
.

When C = {1, 2, · · · , (k − 1)}, the improvement by this coalition:

(k − 1)!(n− k)

n!
(v(C ∪ {k})− v(C)) .

Further one needs to consider all sub-coalitions in which

1, 2, · · · , (k − 1) ∈ C, and (k + 1) /∈ C.

The total contribution of all such coalitions towards Shapley value, computing
as before equals:

1

k(k + 1)

[(
λk

λk + λ1

)2

−
(

λk+m

λk+m + λ1

)2
]
.
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Thus in all for any k ≥ 2:

φk =
1

n

(
λk

λk + λ1

)2

+

n−k∑
m=1

1

(k +m)(k +m− 1)

[(
λk

λk + λ1

)2

−
(

λk+m

λk+m + λ1

)2
]

+

n∑
m=k+1

1

m(m− 1)

[(
λ1

λ1 + λ̂m

)2

−
(

λ1

λ1 + λ̂k

)2
]

+
1

n

[(
λ1

λ1 + λ0

)2

−
(

λ1

λ1 + λ̂k

)2
]
.

The last term is due to improvement when {k} is added to C = {1, · · · ,n}−{k}.
When k = 1, consider sub-coalitions C ∈ {1 + m, · · · ,n} and such that

1 +m ∈ C for any m > 1. Following similar logic as before the contribution by
such terms towards Shapley value is given by:∑
C:1,2/∈C

|C|!(n− |C| − 1)!

n!
[v(C ∪ {1})− v(C)]

=
1

n

(
λ1

λ1 + λ̂2

)2

+

n−1∑
m=2

1

(1 +m)m

[(
λ1

λ1 + λ̂2

)2

−
(

λ1+m

λ1+m + λ1

)2
]
.

Now consider the coalitions of the type with 2 ≤ m ≤ n− 1:

2, 3, · · · ,m ∈ C and 1, (m+ 1) /∈ C.

For these coalitions,

λC = λ2, λC∪{1} = λ1, λ
c
C = λ1 and λcC∪{1} = λ̂1+m.

The contribution towards φ1 by such coalitions:

n−1∑
m=2

n−m−1∑
r=0

(
n−m− 1

r

)
rm+1!(n− rm+1 − 1)!

n!

[(
λ1

λ1 + λ̂1+m

)2

−
(

λ2

λ2 + λ1

)2
]

=

n−1∑
m=2

1

(m+ 2)(m+ 1)m

[(
λ1

λ1 + λ̂1+m

)2

−
(

λ2

λ2 + λ1

)2
]

The last equality is because of:

n−m−1∑
r=0

(
n−m− 1

r

)
rm+1!(n− rm+1 − 1)!

n!
=

n∑
r=m+1

(
n−m− 1

r −m− 1

)
(r − 2)!(n− (r − 2)− 1)!

n!

=
1

(m+ 1)m
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Thus in all we have:

φ1 =
1

n

(
λ1

λ1 + λ̂2

)2

+

n−1∑
m=2

1

(1 +m)m

[(
λ1

λ1 + λ̂2

)2

−
(

λ1+m

λ1+m + λ1

)2
]

+

n−1∑
m=2

1

(m+ 1)m

( λ1

λ1 + λ̂1+m

)2

−
(

λ2

λ2 + λ1

)2
+

1

n

[(
λ1

λ1 + λ0

)2

−
(

λ2

λ2 + λ1

)2
]

The last term is because of {1} being added to the set {2, · · · ,n}. 2

Appendix B: Exponential Utilities

Proof of Lemma 5: Consider a permutation π on the set of players such that,
w′0 ≥ w′1 ≥ w′2 ≥ · · · ≥ w′n where w′i := wπ(i) for each i.

To keep things simple, for this proof, we refer player numbered π(i) as player
i and note influence factor of player i now equals w′i. Let X{·} represent the
indicator function. Define the function

h̄(x) :=
∑
i

X{xi = c},

to count the number of non-zeros action choices in the action profile, x. Let
xa−i := (x0, x1, · · · , xi−1, xi+1, · · · , xn) represent the action profile of all (C-
players + adversary and after permutation), other than player i. Now the best
response (represented by B(·)) of any player i against the action profile of others
xa−i can be represented as below (see (13)):

Bi(x) = cX{ (h̄(xa−i) + 1)γ < w′i}.

When k∗ given by (14) exists, the best response of the player j with w′j ≥ k∗γ,
satisfies the following:

Bj(x−j) = c, for any action profile, x with h̄(x−j) ≤ k∗ − 1.

Consider any k < k∗. Then any action profile x with k number of c, i.e.,
when h̄(x) = k, can not be a NE: best response of any player j with w′j > k∗γ
against (k − 1)ec or kec (i.e., against action profile with k − 1 or k number of
players choosing c) is c; and there are k̄∗ > k number of such players.

Any action profile with k (where k > k∗) number of c can not be a NE:
this is possible only if the best response of at least k number of players against
(k−1)ec is c, and by definition of k∗, such a thing is not possible for any k > k∗.

One can readily prove the remaining results using similar best response based
arguments. 2

Proof of Lemma 6: We first show that xag ≤ x′ for all (x1, · · · , xn) ∈ [0, c]n

and then using this result, we will prove both the parts of the Theorem.
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We begin with the claim that xag ≤ x′ i.e.,

xag = c

[
1−

n∏
i=1

(
1− xi

c

)]
≤ x′ = min

{
c, w1

n∑
i=1

xi
wi

}
∀(x1, · · · , xn) ∈ [0, c]n.

By definition of xag, it is clear that xag ≤ c, thus it suffices to prove the following,
to hold the claim

c

[
1−

n∏
i=1

(
1− xi

c

)]
≤ w1

n∑
i=1

xi
wi
∀ (x1, · · · , xn) ∈ [0, c]n. (39)

We prove (39) via the method of induction as follows.
We begin with n = 2,

xag = c

(
x2

c
+
x1

c

c− x2

c

)
.

Using w1 ≥ w2 ≥ · · · ≥ wn and the fact that x1

c
c−x2

c ≤ min
{
x1

c ,
c−x2

c

}
, for all

(x1, x2) ∈ [0, c]2

xag = c
(x2

c
+
x1

c

c− x2

c

)
≤ cmin

{x2

c
+
x1

c
,
x2

c
+
c− x2

c

}
= min

{
x1 + x2, c

}
≤ min

{
w1

2∑
i=1

xi
wi
, c

}
= x′,

thus (39) holds for n = 2.
Induction step: Assume (39) holds true for n = k i.e

c
(

1−
k∏
i=1

(1− xi
c

)
)
≤ w1

k∑
i=1

xi
wi
∀ (x1, · · · , xk) ∈ [0, c]k (40)

and then prove (39) for n = k + 1.
It is easy to verify that:

1−
k+1∏
i=1

(
1− xi

c

)
=
(

1− xk+1

c

)(
1−

k∏
i=1

(
1− xi

c

))
+
xk+1

c

Multiplying with c and using (40), we get for any (x1, · · · , xk) ∈ [0, c]n

(
1− xk+1

c

)
c

(
1−

k∏
i=1

(
1− xi

c

))
+ xk+1 ≤

(
1− xk+1

c

)[
w1

k∑
i=1

xi
wi

+ xk+1

]

≤
(

1− xk+1

c

)[
w1

k+1∑
i=1

xi
wi

]
,
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as w1/wk+1 ≤ 1, thereby proving (40) for any k by induction. Thus summarizing

xag ≤ x′ ≤ c for all (x1, · · · , xn) ∈ [0, c]n and so also for (x1, · · · , xn) ∈ ({0}∪[x+, c])n.

We now prove the first part of the Theorem. Writing the utilities of the aggre-
gated player

Uag(x0, x1, · · · , xn) =

{
0 xag ≤ x

nexag

nexag+ex0
− γ

∑n
i=1

xi

wic
x < xag ≤ c

Uag(x0, x
′, 0 · · · , 0) =

{
0 x′ ≤ x

nex
′

nex′+ex0
− γx′

cw1
x < x′ ≤ c.

For the first part, we have to show the following in the specified domain i.e.
(0 ∪ [x+, c])

Uag(x0, x1, x2 · · · , xn) ≤ Uag(x0, x
′, 0, · · · , 0, xn)n. (41)

Trivial case: when xag = 0, Uag(x0, x1, · · · , xn) = 0, and (41) holds trivially
as in that case x′ = 0 also and Uag(x0, x

′, 0 · · · , 0) = 0.
We now consider the non trivial case i.e., when x < x+xag ≤ x′ ≤ c. In this
case, proving (41) is equal to showing

nexag

nexag + ex0
− γ

n∑
i=1

xi
wic
≤ nex

′

nex′ + ex0
− γx′

cw1
. (42)

Recall wj ≥ 1 ∀ j = 0, 1, · · · ,n, and observe the following

n∑
i=1

xi
wi
≥ x′

w1
; x′ = min

{
c, w1

n∑
i=1

xi
wi

}
.

As xag ≤ x′ then for any non decreasing function say f(.), f(xag) ≤ f(x′). In
what follows, for any x0 ∈ (0 ∪ [x, c])

nexag

nexag + ex0
≤ nex

′

nex′ + ex0
and further

n∑
i=1

γxi
cwi
≥ γx′

cw1

And hence
nexag

nexag + ex0
−

n∑
i=1

γxi
cwi
≤ nex

′

nex′ + ex0
− γx′

cw1
.

Hence first part of the Theorem is proved.
Now the second part of the Theorem comes direct via taking supremum of over
the closed domain.

sup
(x0,x1,··· ,xn)∈[x,c]n

Uag(x0, x1 · · · , xn−1, xn) = sup
x∈[x,c]

Uag(x0, x, 0, 0, · · · , 0)

= sup
x∈[0,c]

(
nex

nex + 1{x0>x̄}e
x0
− γx

cw1

)
1x>x.
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This completes the proof. 2
Proof of Lemma 7: From Lemma 5, k∗ > 1 and w1 ≥ wj for all j ≥ 1

implies,

w1 ≥ 2γ >

(
1

n
+ 1

)
γ for any n ≥ 2.

Case 1: If further w0 < (n + 1)γ, then by (21), irrespective of other system
parameters:

U∗minag = 1− γ

w1
.

As w1 ≥ wj for any j and k∗ ≥ 2, we immediately have the following

U∗minag = 1− γ

w1
> 1−

∑
j∈J

γ

wj
for any subset J ⊂ {1, 2, · · · ,n}, such that J = |k∗|

and

U∗minag = 1− γ

w1
>
k∗ − 1

k∗
−
∑
j∈J

γ

wj
for any subset J , such that J = |k∗ − 1|.

Thus by (15)-(16), U∗minag > U∗minT , and hence BoC Ψ > 0.
Case 2: On the other hand, if w0 ≥ (n + 1)γ then from (21):

U∗minag =
n

n + 1
− γ

w1
>
k∗ − 1

k∗
− γ

w1
,

when k∗ ≤ n. Using similar logic as above we again have U∗minag > U∗minT , and
hence BoC Ψ > 0, when k∗ ≤ n. When k∗ = n + 1, because n ≥ 2 we have

U∗minag =
n

n + 1
− γ

w1
>

n

n + 1
−

n∑
j=1

γ

wj
= U∗minT .

Thus in all, Ψ > 0 once k∗ > 1. 2

Lemma 8. For any k ≥ 2, then

sk
k − 1

>
1

λk+1
if and only if

sk+1

k
>

1

λk+1
.

Proof: It is easy to verify that:

sk+1

k
− sk
k − 1

= sk

(
1

k
− 1

k − 1

)
+

1

kλk+1

Thus we have:

sk+1

k
=

sk
k − 1

(
1− 1

k

)
+

1

kλk+1

>
1

λk+1

(
k − 1

k
+

1

k

)
=

1

λk+1
.

Similarly negation of the condition will provide negative result: if

sk
k − 1

≤ 1

λk+1
then

sk+1

k
≤ 1

λk+1
. 2
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6.1 Reference System for BR analysis

We provide the best response analysis for the exponential utility game in both
cooperative and non cooperative scenario considering the continuous action set.
Consider the following system with d ≥ 0

U(x) =
ex

d+ ex
− γx

cw
; x ∈ (x, c] and U(x) = 0 for all x ≤ x.

Trivial cases: 1) If γ = 0, the utility function is always increasing in x. Thus
the maximizer is c, further U(c) > 0 for any w and thus the best response, x∗,
is c.
2)When d = 0, the best response is given as

x∗ =

{
0 if w ≤ γx

c
x+ else,

(43)

where x+ := limx↓x x. When we say x+ is the optimizer, it means we don’t have
a precise optimizer but any value bigger than and close to x provide a value close
to the optimal value.
3) If cw < 4γ: On differentiating U(x) w.r.t. x, we get

∂U

∂x
=

dex(
d+ ex

)2 −
γ

cw
=
dex(cw − 4γ)− γ(ex − d)2(

d+ ex
)2

cw
. (44)

The derivative is always negative and hence maxima is at 0 or x+. Further
directly checking the values at 0 and x+ we get the following:

x∗ =


0 if w ≤ min

{
γx(d+ex)

cex , 4γ
c

}
x+ if min

{
γx(d+ex)

cex , 4γ
c

}
< w ≤ 4γ

c .

(45)

4) When d ≥ ec, computing the second derivative is

∂2U

∂x2
=
dex
(
d+ ex

)2 − 2de2x
(
d+ ex

)(
d+ ex

)4 =
dex
(
d− ex

)(
d+ ex

)3 .

which is always positive in this case and hence there does not exist interior
maxima. Thus the best response is one among {0, x+, c} depending upon the
functional values thereof.

Thus in all the above cases the best response is in one of the three boundary
points. We now consider the left out case, which is more complicated than the
previous ones.

Non trivial case, when 0 < d < ec, cw > 4γ: We first compute all the
stationary points and then characterize each of them (maxima, minima, saddle
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point etc). The stationary points are the solution of ∂U/∂x = 0 or equivalently
the solution of (see (44)),

γy2 + (2γd− dcw)y + γd2 = 0 with y := ex.

And the solutions to this quadratic equation are

y1 =
d(cw − 2γ)− d

√
cw(cw − 4γ)

2γ
; y2 =

d(cw − 2γ) + d
√
cw(cw − 4γ)

2γ
.

We show that y1 is minimizer. Referring to the second derivative

d− y1 =
d

2γ

(
− (cw − 4γ) +

√
cw(cw − 4γ)

)
.

thus

d− y1 > 0 =⇒ ∂2U(x)

∂x2
|x=y1 > 0

Thus y1 is minimizer. And by the way of similar expressions one can prove that
y2 is maximizer.

Further if y2 < c (note y2 > x), the best response x∗ is one among {0, x+, c, y2}
depending on the function values at these points. Thus one can have interior
maximizer only if y2 is the maximizer and y2 < c. The domain of optimization
is {0} ∪ (x, c] and thus we are not interested in the case with y2 > c. Thus we
further study to check if y2 < c is a maximizer. Towards this we further study
the first derivative ∂U/∂x.

Recall ∂U/∂x = dex/(d + ex)2 − γ/(cw), note that the first term is varying
while the second is constant in above expression. If the minimum of the first term
is greater than the second term, the first derivative is always positive implying
maxima of U is at boundary. Towards utilizing this we consider the derivatives
of the first term,

g(x) :=
dex(

d+ ex
)2 .

The first and second derivatives are:

∂g

∂x
=
∂2U

∂x2
=
dex
(
d+ ex

)2 − 2de2x
(
d+ ex

)(
d+ ex

)4
=
dex(d+ ex)− 2de2x(

d+ ex
)3 =

dex(d− ex)(
d+ ex

)3

∂2g

∂x2
= d

(dex − 2e2x)(d+ ex)3 − 3(d+ ex)2ex(dex − e2x)

(d+ ex)6

= dex
(d− ex)(d− 2ex)− e2x(d+ ex)

(d+ ex)4
.
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The only possible stationary point of g is at x∗ = log(d) (i.e., when ex
∗

= d)
and the second derivative at this point

∂2g

∂x2

∣∣∣
x∗=log(d)

< 0

Thus the only stationary point is a maxima. Thus the minimizers of the function
g are at one of the boundary points x or c. In all, if

min{g(x), g(c)} ≥ γ

cw

then the derivative is always positive (see (44)) and then

max
x∈{0}∪[x,c]

= max{0, U(c)} if min{g(x), g(c)} ≥ γ

cw
.

Thus we are left with the following case:

d < ec, w >
4γ

c
and min{g(x), g(c)} < γ

cw
, (46)

for which there is a possibility of interior point maximizer (or best response) for
U .

Lemma 9. Assume w > 4γ/c and d < ec. i) When g(x) < γ/cw then there

exists at least one point y ∈
(
x,max{x, log d}

)
such that g(y) − γ

cw = 0, which

is minimizer of U .

ii) When g(c) < γ/cw then there exists at least one point y ∈
(
max{x, log d}, c

)
such that g(y)− γ

cw = 0, which is an interior (local) maximizer of U .
iii) Thus if γ/cw < g(c), there exists no interior maximizer of U.

Proof: Let h(x) := ∂U(x)/∂x = g(x) − γ/(cw) and let x∗ = log(d). (i) In this
case h(x) < 0 while (note ex

∗
= d)

h(x∗) =
d2

4d2
− γ

cw
> 0, as w >

4γ

c
.

Thus by intermediate function theorem there exists an intermediate y at which
h(y) = 0. Further the second derivative of U for this point is greater than zero,
since (d− ey) > 0. Thus it is a minimizer of U. Proof of (ii) is similar.
Towards (iii) observe that the derivative ∂g/∂x is negative for any x > log(d),
thus g(x) > γ/cw for all x > log(d) if g(c) > γ/cw. Thus there exists no zero of
h(x) for any x > log(d). It is clear that for any x < log(d) the second derivative
∂2h/∂2x = ∂g/∂x > 0 (thus these points can never be maximum of h(.)) and
hence (iii) follows. 2

In the case (iii) of the above lemma either c or 0 is the maximizer and hence
the following:
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Non Cooperative: Thus the summary with 0 < d < ec

x∗ =



0 if w ≤ min
{
γx(d+ex)

cex , 4γ
c

}
x+ if min

{
γx(d+ex)

cex , 4γ
c

}
< w ≤ 4γ

c

interior if 4γ
c < w < γ

c
(d+ec)2

dec = γ
cg(c) and U(x∗) ≥ max{U(x+), 0},

c if w ≥ max
{
γ
c

(d+ec)2

dec , γ(d+ec)
ec

}
0 if w ≥ γ

c
(d+ec)2

dec , but w < γ(d+ec)
ec

Boundary point else.

(47)

Thus we may have interior points as global maximizers only when d < ec

and when
4γ

c
< w <

γ

c

(d+ ec)2

dec
.

If we exclude w in the following range

4γ

c
< w < max

ex≤d<ec
γ

c

(d+ ec)2

dec
=
γ

c

(ex + ec)2

exec
,

we would have BR only on boundaries.


