
1

Queueing with Heterogeneous Users: Block
Probability and Sojourn times

Veeraruna Kavitha and Raman Kumar Sinha
IEOR, Indian Institute of Technology Bombay, India

Abstract—We consider a queueing system with heterogeneous
agents. One class of agents demand immediate service, and would
leave the system if not provided. The agents of the second class
have longer job requirements and can wait for their turn. We
discuss the achievable region of such a two class system, which
is the set of all possible pairs of performance metrics. Blocking
probability is the relevant performance metric for impatient
class while the expected sojourn time is appropriate for the
second tolerant class. We consider static (time invariant and state
independent) and dynamic (state dependent) scheduling policies.
In queueing systems with homogeneous agents, where expected
sojourn time is the performance metric for both the classes, we
show that the static and dynamic achievable regions coincide.
However, this is not the case with heterogeneous setting. We
obtain the achievable region, under static policies. We consider
an example dynamic policy and show that the dynamic achievable
region is strictly bigger than the static region.

We conjecture a pseudo conservation law, in a fluid limit for
impatient customers, which relates the blocking probability of
eager customers with the expected sojourn time of the tolerant
customers. We provide a partial proof and use the pseudo
conservation law to obtain the static achievable region. We
validate the pseudo conservation law using two example families
of static schedulers, both of which achieve all the points on
the achievable region. Along the way we obtain smooth control
(sharing) of resources between voice and data calls.

Index terms– Heterogeneous agents, achievable region, processor
sharing, resource sharing, dynamic and static scheduling.

I. INTRODUCTION

We consider queueing systems with heterogeneous classes.
First one is a class of impatient agents. They reject the system
if service is not offered almost immediately. One would require
a parallel (upto K servers) service-offer facility to handle
this class. Blocking probability, the probability that an agent
returns without service, is important metric for this class. The
agents of the second class are tolerant, can wait for their turn.
However, their satisfaction depends upon the expected sojourn
time (total time spent in the system).

An achievable region for an n-class system is the set of
relevant performance vectors (pm1, · · · , pmn), obtained by
varying all possible scheduling policies (e.g., [12], [15], [16]).
In heterogeneous setting, the achievable region is the set of
pairs of blocking probability and expected sojourn times.

The achievable region is well understood for homogeneous
classes, when the performance metric of both the classes is
expected sojourn time (e.g., conservation laws, pioneered by
[9]). Coffman and Mitrani [11] were the first to identify such
achievable regions. Multi-class single server queueing systems
pose nice geometric structure (polytopes) for achievable region
(e.g., [11], [12]). The scheduling policies are dynamic if they

depend upon the (time varying) system state. Static policies
are time invariant and state independent. Our first observation
is that the homogeneous achievable region is the same under
static as well as dynamic policies.

In this paper we are studying the achievable region of
queueing systems with heterogeneous classes.

A parametrized family of scheduling policies is called
complete by [20], if it achieves all possible performance
vectors of the achievable region, average waiting times in
their context. A complete scheduling class can be used to
find the optimal control policy over all scheduling disciplines.
Discriminatory processor sharing (DPS) class of parametrized
dynamic priority schedulers is identified as a complete family
in case of two class M/G/1 queue in [21]. Many more
families of scheduling policies are identified to be complete.

Our contribution

We conjecture a relation between the expected sojourn time
and the blocking probability, which would be valid for any
static scheduling policy, and, call it a pseudo conservation
law. This pseudo conservation law is valid in a fluid limit for
short job impatient agents and we provide a partial proof. We
then show that two sets of scheduling (PS and CD) policies
satisfy this conservation law and also achieve all the points
of the resulting achievable region. In both the policies, the
admission of an impatient agent disrupts the service of the
ongoing tolerant agent (if any). In the first case the entire
system capacity is transferred to the impatient agent, while
a fixed fraction of capacity is transferred in the second case.
We refer the first system as PS policy, as here the impatient
agents derive service in the well known processor sharing
mode. At maximum K impatient agents can share the facility.
In the second policy, the service of the tolerant agent is
continued with the remaining capacity. Admission of another
impatient agent results in the transfer of an additional fraction
of capacity, while a departure results in the transfer back of
the same fraction. The second policy is referred as capacity
division-CD policy, because the capacity is divided between
the two classes. The tolerant agents are always served in serial
fashion, i.e., one at a time in both the policies.

We solve an appropriate set of balance equations to obtain
the busy probability. We majorly use a domination technique
to study the tolerant class. The actual system is sandwiched in
between the two M/G/1 queues. The difference in the sojourn
time performance between the two queues converges to zero
as arrival-departure rates of the impatient agents converge to
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infinity, while maintaining their ratio fixed. Typically agents
with long job requirements form tolerant class, while the im-
patient ones demand for short jobs (e.g., super markets, data-
voice calls etc.). Thus they operate in the precise asymptotic
regime, for which our results are accurate.

Applications
The problem of resource allocation, between data-voice

calls of a communication network is a loosely related topic
(e.g., [5], [6]). Voice calls are dropped if server is not available,
while data calls can wait. The voice, data calls respectively
form impatient and tolerant agents. In [5] the authors consider
a three channel pool scheme to obtain a novel adjustable
boundary based channel allocation scheme with pre-emptive
priority for integrated data-voice networks. They attain various
levels of priority by adjusting the division of total available
channels among the three pools. In [6] authors again consider
channel allocation scheme for packet level allocations. These
papers discuss coarse sharing of resources between data-voice
calls. While we provide a smooth control: by varying the
admission parameter p (continuously) in the interval [0, 1], one
can achieve any pair of performance metrics for data-voice
calls on the static achievable region.

Various applications (e.g., computers, communication net-
works, manufacturing systems) can be modelled as multi-class
queueing systems and dynamic control of such systems is
an important aspect. One of the main techniques for such
problems is to characterize the achievable region, then use
optimization methods to obtain optimal control policy (for
example [17], [18], [19]). Once the heterogeneous achievable
region is known, many relevant optimization problems can be
solved in a similar way. If further a good complete family is
identified, the optimization problem gets simplified greatly.
For example, our CD/PS policies are parametrized by K,
the number of parallel service facilities and p the probability
with which an impatient job is admitted. Thus the problem
of finding the optimal expected sojourn time of data calls
in a communication network, given a constraint on blocking
probability of voice calls can readily be obtained, by optimally
choosing K, p.

In a super market the long jobs wait, while short jobs are
provided fast service via dedicated express counters. Alterna-
tively, if one use the same counters to serve both the jobs and
if selected (controlled) short jobs pre-empt the long jobs, one
could obtain optimal design using our static achievable region.
For example, one can obtain the optimal fraction of short jobs
lost, given a constraint on the expected sojourn time of long
jobs.

Consider a communication system with K orthogonal chan-
nels. Initially all the channels are dedicated to data calls. As
and when the voice calls arrive, one by one the channels are
transferred and data calls use the remaining. Our CD policy
captures this scenario precisely. If the voice calls are served
at the highest possible rate as with PS policy, it improves
the chances of a free server being available to subsequent
voice arrivals. The two achievable regions overlap, but PS
has a bigger region (when number of maximum parallel calls
is fixed) as it attains a smaller blocking probability.

Literature survey, related to Queueing systems

Our paper mainly deals with resource sharing between
customers who are willing to wait for the service and the
customers who are not willing to wait much. To the best of
our knowledge we are not aware of a work that directly studies
this type of a heterogeneous achievable region. Some variants
of queueing systems (e.g., [23], [13], [14], [7], [4], [10], [2]
etc) have some connections to few parts of our models and
we brief such papers here.

In [13] authors consider multi-class queueing system with
eager and tolerant customers. This is the work that is closest
to our work, especially to CD policy. The tolerant customers
utilize all the remaining servers (hence are work conserving)
in our model, while [13] considers tolerant customers also in
multi-server mode. If there is only one tolerant customer and
if say n > 1 free servers are available, the tolerant customer
uses only one server in [13], while with our CD policy the
tolerant user is served using the consolidated capacity of all
the n servers. The authors in [13] obtain a set of (balance)
equations, solving which stationary probabilities (and then the
stationary performance) can be derived. We provide a closed
form expression for these performance measures in fluid limit
for eager customers. We further discuss a ‘policy-independent’
pseudo conservation law.

In [2] authors analyzed an M/G/1 queue with Poisson
interruptions, caused either by server breakdown or by the
arrival of higher priority agents. This system is similar to our
PS/CD policy with single server.

In [23], the authors consider time limited autonomous
polling system. Here the server visits a finite number of queues
in a periodic manner, while spending a random (exponentially
distributed) visit time at each queue, independent of the
status of the queues. It spends the designated exponential
time, even if the queue gets/is empty. The tolerant agents of
our PS model can be studied using their results. However
their expressions are complicated, while we derive simple
expressions in an appropriate asymptotic limit. Further, similar
techniques are used to study the CD model.

In [14] Sleptchenko et. al considered a multi-class M/M/k
queueing system with two priority groups, both groups of
customers are tolerant and each priority group may consist
of multiple customer types. Different customers type having
their own arrival and service rates. Upon arrival a high priority
customer pre-empts the lower one, if all the servers are
busy and some are serving low priority customers. The main
contribution is that they obtain the stationary state probabil-
ities, which provides many more performance measure (e.g.,
moments of type wise waiting customers, mean number of
low-priority customers interrupted etc.) beyond the stationary
mean values. As already mentioned, this paper only considers
tolerant customers.

In [7], authors consider multi-class single-server queue
with K classes of customers. Arrival of each class follows
independent Poisson process and the service time is generally
distributed. The service capacity is shared simultaneously
among all customers present in proportion to the respective
class-dependent weights. They derived closed form approx-
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imation for the mean conditional and unconditional sojourn
time of each classes and verified it in light traffic and high
traffic modes. In [4], authors considered M/M/K queue with
m > 2 number of priority classes. They reduce the m-
dimensional Markov chain to 1-dimension Markov chain using
the busy period of high priority customers. They modelled
the one dimensional Markov chain as QBD (Quasi Birth
Death) processes and calculate the mean sojourn time for low
priorities customers. Both these papers only deal with tolerant
customers.

In section II we describe the problem. We conjecture the
complete static region and provide a partial proof in section
III. PS and CD models are respectively analyzed in sections
IV and V and are compared in section V. Using an example
dynamic policy for PS model we showed in section VII that
the heterogeneous dynamic achievable region is strictly bigger
than the static region.

II. PROBLEM STATEMENT AND SYSTEM MODEL

We refer the impatient/eager customers by ε-customers
while the tolerant customers are referred to as τ -customers.
The system has a fixed server capacity, that needs to be shared
between the two classes of customers. The exact sharing of
capacity depends upon the allocation/scheduling policy. For
example the system can serve K customers in parallel for
some K, by dividing the server capacity among the customers
under service. The system can chose to vary K dynamically,
e.g., processor sharing. The system can chose to serve one
customer with full capacity etc. In this paper we discuss two
example sets of scheduling policies. We only consider ‘τ -work
conserving’ policies, wherein the τ -customers utilize all the
remaining server capacity.

A. Arrival process and the Jobs

The arrival processes are modelled by independent Poisson
processes, with rates λε and λτ respectively. The job require-
ments for both the classes are exponentially distributed. The
time required to complete a job, depends upon the scheduling
policy. If a τ -customer (ε-customer) is served with full server
capacity, then the service time is exponentially distributed with
parameter µτ (respectively µε).

B. Achievable region

The two classes of users have different goals and hence
naturally require different qualities of service (QoS). An eager
ε-agent would leave the facility without service, if service
is not provided almost immediately. Block probability PB ,
the probability of such an event is an important performance
metric for ε-class. The service of a typical τ -customer can
possibly be interrupted, possibly to provide required QoS
for ε-agents, and a typical τ -agent can face several such
interruptions during its service. Thus the expected sojourn time
E[Sτ ], the expected value of the total time spent by a typical
agent would be an appropriate QoS for τ -class. Either of these
performance metrics depend upon the scheduler β used.

A scheduling decision is required at every ε-arrival in-
stance1, because the ε-agents are impatient. Because of this
the service of a τ -agent can be pre-empted several times. Thus
the appropriate QoS for τ -agents is the expected sojourn time,
and not the expected waiting time. Therefore the achievable
region is given by:

Ahetero = {(PB(β), E[Sτ (β)]) : β is a scheduler}.

In this paper we consider (τ ) static policies, wherein the ε-
admission rules do not depend upon the status of the τ -class.
The probability of admission, p, is an important parameter of
any such scheduling policy. Further, the (maximum) number
of ε-calls served in parallel and the sharing of resources
between ε and τ customers is also a part of the scheduling
decision. For example, the system may allocate/transfer entire
server capacity to the first admitted ε-arrival. It may processor-
share the capacity among the further admitted ε-customers.
There may be a limit on the number of ε-customers that can
simultaneously share the capacity. Alternatively the system
may allocate a fixed fraction of the server capacity to each
admitted ε-arrival and the remaining is allocated to τ -class
etc. All these rules are independent of the τ -state (e.g., the
number of τ customers in the system, waiting time of them
etc). This implies that ε-calls pre-empt τ -call when required.
In all a τ -static policy implies that an ε-arrival is admitted
with some probability p, and further admission also depends
upon the number of ε-calls already in the system, but not on
τ -state. Mathematically a static achievable region is defined:

Astatichetero =
{(
PB(βCSp ), E[Sτ (βCSp )]

)
:

0 ≤ p ≤ 1 and (CS) a capacity sharing rule
}
. (1)

We primarily analyze the static achievable region. Towards the
end, in section VII an example dynamic policy is considered
to show that the achievable region with dynamic policies is
strictly bigger than the static achievable region.

C. Short-Frequent Job (SFJ) limits

The ε-class has short job requirements. If one considers
limit µε →∞, the impact of ε-customers becomes negligible
at the limit. To obtain a more general and useful result, we
also increase the ε-arrival rate while µε → ∞. That is, every
ε-agent may utilize the server for a short duration, but the
system has to attend the ε-agents frequently. Because of this
ε-agents cause significant impact even in the limit. To be more
precise we consider the limits µε → ∞ and λε → ∞ while
the load factor ρε = λε/µε is maintained constant. We refer
this as “Short-Frequent Job (SFJ) limits”.

III. ENTIRE STATIC REGION: PSEUDO CONSERVATION
LAW

In a (homogeneous) multi-class queueing system, with all
tolerant classes, a work conservation law holds. The total

1On the contrary, in homogeneous setting two or more classes of agents
wait at their waiting lines and scheduling epochs are the service comple-
tion/departure epochs. The scheduler had to decide which class to be served
next. While in heterogeneous setting, at any departure epoch there is only one
class of agents possibly waiting and hence no decision is required.
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workload in the system remains the same irrespective of the
scheduling policy, as long as the server does not idle during
busy period. Further by Little’s law and Wald’s lemma, a
linear combination of expected sojourn (or waiting) time of
different classes of customers remains the same irrespective
of the scheduling policy (e.g., [12]).

The above is obviously true when the incoming workload
remains the same. However in our heterogeneous setting, the
ε-customers depart the system, if service is not offered almost
immediately. And this depends upon the scheduling policy.
Thus the workload arriving into the system itself changes
with different scheduling policies and naturally one may not
expect work conservation. However if the amount of work
blocked remains the same, one can anticipate a different kind
of work conservation. We conjecture that given a probability
of blocking, irrespective of the way the ε-agents are blocked
and irrespective of the way the τ -agents are served, the τ -
expected sojourn time remains the same2. And this could be
conjectured only in SFJ limit and when the policies do not
depend upon the τ -state.

In SFJ limit, ε-agents will have fluid arrivals and departures.
Given the ε-load factor (ρε) and the probability of blocking
(pB), in the SFJ limit, the ε-agents occupy ρε(1−pB) fraction
of system resources at all the times. Hence we conjecture
that the τ - performance equals that of an M/M/1 queue with
smaller service rate µτ (1−ρε(1−pB)), and that the expected
sojourn time for any 0 ≤ pB ≤ 1 equals:

ESτ (pB) :=
1

µτ (1− ρε(1− pB))− λτ
if ρε(1− pB) + ρτ < 1.

(2)

Conjecture: Static achievable region, in SFJ limit, equals:

Aheterostatic =
{(
pB , ESτ (pB)

) ∣∣∣ pB ∈ [0, 1], ρε(1− pB) + ρτ < 1
}
.

We would like to refer the equation (2) as a pseudo conser-
vation law, as it provides the expected sojourn time in terms
of the fraction blocked (lost). This would require an explicit
proof which is provided immediately.

A. Proof of Pseudo Conservation Law

We will prove Pseudo conservation law (Theorem 1 given
below) under some of the following assumptions:
A.1) The schedulers are τ -static (do not depend upon τ -state).
A.2) The scheduling policies depend only upon the number

of ε-customers already in the system.
A.3) The τ -customers are served in serial fashion. The sched-

uler is work-conserving for τ -customers, i.e., it serves
the τ -customers with all the left over server capacity, if
there are any.

We begin with some discussions, which form a part of the
proof.

We obtain different ε-systems with different µε using the
following special construction (without loss of generality).
First we consider a sequence of ε inter-arrival, job-requirement
sequences {A1

ε,n, B
1
ε,n}n for µε = 1. Note that E[A1

ε,n] =

2With one class of customers, the expected sojourn time by Little’s law
and Wald’s lemma is proportional to the workload in the system

1/ρε and E[B1
ε,n] = 1 for all n. Then obtain the sequence

{Aµεε,n, Bµεε,n}n for any general µε, by multiplying the corre-
sponding arrival-departure sequences by 1/µε, i.e.,

Aµεε,n =
A1
ε,n

µε
and Bµεε,n =

B1
ε,n

µε
for every n, µε. (3)

Since the decisions are independent of τ -customers (by
A.1) one can identify a renewal process, corresponding only
to the ε-system, alternating between ε-busy periods and ε-idle
periods, both of which depend only upon ε-customers. Let Xa,
Xtot respectively represent the number of ε-customers that
received service and the number that arrived in one renewal
cycle. By renewal reward theorem (RRT) applied twice we
obtain the blocking probability:

(1− PB) =
E[Xa]

E[Xtot]
. (4)

By A.1, we are considering τ -static scheduling policies here,
wherein the decision do not depend upon the τ -state of the
system. By A.2 the policies depend only upon the number
of ε-customers in the system. Thus, if Xµ(t) represents the
number of ε-customers in the system at time t with µε = µ,
then

Xµ(t) = X1(µt) for any µ. (5)

Hence with A.1-2, PB remains the same for all µε (see (4)).
The length of a typical renewal cycle equals the arrival in-

stance of Xtot-th customer, which by the special construction
equals:

Xtot∑
n=1

Aµεε,n =
1

µε

Xtot∑
n=1

A1
ε,n,

By Wald’s Lemma the expected value of the length of a
renewal cycle (with µε) equals E[Xtot]/λε. The total amount
of time for which ε-customers utilize the server during one
typical renewal cycle, irrespective of the way the service is
offered and the way the customers are admitted, stochastically
equals

Xa∑
n=1

Bµεε,n,

whose expected value clearly equals E[Xa]/µε. Thus the long
run fraction of server time available for τ customers by RRT
equals:

ντ (µε) = ντ (PB) =
E[Xtot]/λε − E[Xa]/µε

E[Xtot]/λε

= 1− ρε
E[Xa]

E[Xtot]
= 1− ρε(1− PB).

This is true for any µε and for any static scheduler. Hence,
we have the following:

Theorem 1: a) Assume A.1. For any µε and for any static
scheduler, the long run fraction of server capacity available
to τ -customers depends only upon ρε and the probability of
blocking PB of ε customers:

ντ (µε) = ντ (PB(µε)) = 1− ρε(1− PB).
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b) Assume A.1-2. Then PB and hence ντ remains the same
for all µε; and
c) When µε →∞ the accumulated amount of server capacity
available to τ -customers at time t, Rµε(t), converges to a
constant curve with value µτντ . This convergence is uniform
over any bounded time intervals and almost surely:

sup
t∈[0,W ]

∣∣Rµε(t)− ντ t∣∣→ 0 almost surely, as µε →∞.

for any 0 < W <∞.
d) Under A.1-3 when µε → ∞, τ -sojourn time converges
to that of a M/M/1 queue with respective parameters λτ and
ντµτ = (1− ρε(1− PB))µτ :

lim
µε→∞, λε/µε=ρε

E[Sτ ] =
1

ντµτ − λτ
if ντµτ > λτ .

Proof: Parts (a) and (b) are already proved. Parts (c)-(d) will
be proved below.

We again consider the special construction given by (3) and
(5) is true by A.1-2. Let Rµ(t) represent the total amount of
residual server time available for τ -customers till time t. By
RRT, as depicted by part (a)

Rµ(t)

t
→ ντ (µ) a.s. as t→∞ for any µ.

By part (b), ντ (µ) = ντ is the same for all µ. Now, clearly

Rµ(t)

t
=
R1(µt)

µt
which implies Rµ(t) =

R1(µt)

µ
.

By Theorem 4 of Appendix A, a function version of RRT, we
have:

sup
t∈[0,W ]

∣∣∣R1(µt)

µ
− ντ t

∣∣∣→ 0 almost surely, as µ→∞.

for any 0 < W <∞. Hence we proved part (c), i.e.:

sup
t∈[0,W ]

∣∣Rµ(t)− ντ t
∣∣→ 0 almost surely, as µ→∞, (6)

for any 0 < W < ∞. Let the time to complete service of a
typical τ -customer considering all possible ε-interruptions be
defined using Rµ(t) as below:

Tµ = inf
t

{
t : Rµ(t) ≥ Bτ

}
,

where Bτ is the job requirement of the τ -customer. By Lemma
3 of Appendix A, using (6), we have that∣∣∣Tµ − Bτ

ντ

∣∣∣ almost surely as µ→∞.

Thus we have an exponential random variable in the limit.
Hence and further using dominating systems as in CD/PS
policies (see sub-section IV-B2 which dominates sojourn times
for FCFS service) we can show that the expected stationary τ -
workload with any work conserving policy converges towards
that of an MM1 queue with service rate µτντ , as µε → ∞,
under A.3. We can first dominate the workload at any time,
then time average of the workload till any time, which implies
the sand-witching and further converge of the limit of the time
average workload and hence that of expected workload.

In exactly similar lines one can sand-witch the number of
customers at any time of the original system between that of

two dominating systems in almost sure sense, if consider a
small modification of the sample paths of the three systems.
We assume that the job requirements of n-th departing cus-
tomers (as opposed to the n-th arriving customer which we
considered for workload analysis) for any n is exactly the same
in all the three systems. This would provide the domination
of corresponding ‘effective server times’ (Tµ). Using this one
can obtain the convergence of expected number in the system
towards that of the MM1 queue with job demands as B/ντ ,
when one serves the limiting queue with the same service
discipline as used with the original system. One can use this
technique as long as the service discipline is non anticipating,
i.e., the next customer to be served, does not depend upon the
job requirements.

This implies the convergence of the expected sojourn time
E[Sτ ] by Little’s law. �

Remarks: We are working towards establishing this law
under more general conditions. As of now we have the
following results by virtue of the above theorem:

1) We have established Pseudo conservation law (2) for
subclass of τ -static schedulers which a) serve the τ -
class customers serially and when the policies are non
anticipative; b) the admission rules for ε-class depends
upon at maximum upon the number of ε-customers in the
system;

2) In exactly similar lines, we can extend this result if the
admission rules depend upon the time spent by a typical
agent, etc, under further assumption that this rule scales
appropriately with µε. All we need is that equation (5) is
true;

3) Further it is clear from the proof of the above theorem,
that the expected workload is a deterministic function of
blocking probability PB for all τ -work conserving policies.
This establishes a Pseudo conservation law in terms of
blocking probability and expected workload, for more
general conditions;

4) One can easily verify that the result is true for M/G queues
at τ customers and G/G queues for ε-customers.

5) With G/G queues for both the classes of the customers,
we have that the expected workload of the τ -customer con-
verges towards that of the limit of the the expected work-
load of the G/G queue with job demands distributed as
Tµ. This is true for any work-conserving, non-anticipative
policy. We still need to prove that this limit equals the
expected workload of the correspond G/G queue with job
demands as B/ντ , where B is the original τ -job demand.

We now consider two example families of schedulers and
illustrate the validity of our pseudo conservation law. Further,
using the same sets of schedulers, we achieve all the points
of the static region. Such a family is generally referred to as
complete family of schedulers.  
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Fig. 1. State transitions for ε-agents with βPSp,K scheduler.
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IV. PROCESSOR SHARING PS − (p,K) SCHEDULERS

Any ε-arrival is admitted to the system with probability p,
independent of τ -state. Once admitted it will pre-empt the
existing τ -agent, if any. We consider K-processor sharing
service discipline for ε-agents. If there is only one agent of the
ε-class receiving service, it is served with maximum capacity,
i.e., using capacity µε. Upon a new (admitted) arrival of the
same class, the capacity is shared among the two. Both are
served in parallel and independently, each with rate µε/2.
Upon a third (admitted) arrival each is served with rate µε/3.
This continues up to K ε-agents. Any further arrival, leaves
without service even after being admitted. When any of the
existing ε-agents depart, the service rate is readjusted to an
appropriate higher value. The τ -service is resumed only after
all the ε-agents depart. We call this as βPSp,K scheduling policy.

Tolerant agents are served in FCFS (first come first serve)
basis. They are served in a serial fashion and with full
capacity3 µτ . That is, system would serve at maximum one
τ -agent, and the service of the next τ -agent begins only after
the preceding one departs.

The transitions and evolution of the ε-agents is independent
of that of τ -agents under a static policy: the arrivals are
admitted and the service is provided to the admitted agents
immediately, irrespective of the state of τ -agents. Thus one
can analyze the ε-class independently and we first consider
this analysis.

A. Blocking Probability of ε-class

Fix 0 ≤ p ≤ 1, K and consider policy βPSp,K . Blocking
probability is the probability with which a new (ε-class) arrival
leaves the system without service. Blocking can occur in case
of two events. Upon arrival, an ε-agent is admitted to the
system with probability p and is blocked with probability
(1 − p). Secondly, an admitted agent leaves without service,
if the system is already serving K ε-agents.

Let Φε(t) represent the number of ε-agents in the system
at time t. We claim that the ε-class transitions are caused
by exponential random events and hence that Φε(t) is a
continuous time Markov jump process (see for example [8])
for the following reasons: a) it is clear that the inter-arrival
times are exponentially distributed with parameter λεp; b) by
Lemma 1, given below, the departure times are exponentially
distributed with parameter µε (i.e., ∼ exp(µε)), irrespective of
state Φε(t).

Lemma 1: Let Dl
ε represent the time to first departure

among the l ε-agents receiving the service, with 1 ≤ l ≤ K.
Then for PS policy, Dl

ε ∼ exp(µε) for any l.
Proof: When l agents are receiving service in parallel, because
of processor sharing the service time of each is exponentially
distributed with parameter µε/l. And the time to first depar-
ture, the minimum of these l exponential random variables, is
again exponential with parameter lµε/l = µε. �

In Figure 1, we depict the transitions of the continuous time
Markov jump process Φε(t). For such processes, well known

3Capacity of the server is such that, it can either serve one tolerant agent
at rate µτ , or l ε-agents each at µε/l (where l ≤ K).

balance equations are solved to obtain the stationary prob-
abilities (see for example [8]). The stationary probabilities,
{π0, π1, · · · , πK}, of Φε(t) are obtained by solving:

π0λεp = µεπ1, πl(λεp+ µε) = λεpπl−1 + µεπl+1 for 1 ≤ l < K,

and πKµε = λεpπK−1.

The solution or the stationary probabilities are (0 ≤ l ≤ K):

πl =
ρlε,p
a0

with a0 :=

K∑
j=0

ρjε,p and ρε,p :=
λεp

µε
= ρεp.

An admitted agent gets blocked, if it finds K ε-agents in
the system, and, this by PASTA (Poisson Arrivals See Time
Averages) equals the stationary probability πK of K ε-agents
in the system. The agents are not admitted with probability
(1 − p) and those admitted are blocked with probability πK .
Therefore the overall blocking probability equals:

PPSB (p) = (1− p) + pπK = (1− p) + p
ρKε,p
a0

. (7)

B. Expected sojourn time of τ -class

The ε-class requires short but frequent jobs (e.g., voice
calls). Hence we are looking for a good relevant approximation
that facilitates the analysis, and which further allows us to
study other important variants (like CD policy of section
V). Towards this, we approximately (accurate asymptotically)
decouple the evolution of τ -agents from that of ε-agents.

We first understand the effective server time (EST), Υτ ,
which is defined as the total time period between the service
start and the service end of a typical τ -agent. We refer this as
EST of the agent under consideration, as no other τ -agent has
access to server during this period. Sojourn time of a typical
τ -agent equals the sum of two terms: a) waiting time, the
time before the service start; and b) EST Υτ , the time after
the service start.

1) Analysis of effective server time (EST) (Υτ ): This time
equals the sum of the actual service time, Bτ , of the τ -agent
and the overall time of interruptions caused by ε-agents, which
is denoted by Υe

τ . Let N(Bτ ) represent the total number of the
ε-class interruptions, that occurred during the service time Bτ .
In reality these interruptions would have occurred in disjoint
time intervals, the sum of all of which is Bτ . This random
number has same stochastic nature as the number of Poisson
arrivals that would have occurred in a continuous time interval
of length Bτ . This is true because of the memory less property
of the exponential service time Bτ and because Poisson
process is a counting process. After an ε-agent interrupts the
ongoing τ -agent, there is a possibility of further admissions.
Eventually the service of the τ -class is resumed, where left,
when all the ε-agents (that were admitted) leave the system.

Thus the time duration for which the service of τ -agent is
suspended per interruption, equals a busy period of the ε-class,
that started with one ε-agent. There would be N(Bτ ) (random)
number of such interruptions. Hence,

Υτ = Bτ + Υe
τ with Υe

τ :=

N(Bτ )∑
i=1

Ψε,i , (8)

where {Ψε,i}i are the IID (independent and identically dis-
tributed) copies of ε-busy period. We have the following result.
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Lemma 2: The first two moments of the ε-busy period and
EST Υτ are given by:

E[Ψε] =
a1

µε
and E[Ψ2

ε ] =
1

µ2
ε

K∑
i=1

qi−1 ci
(1− q)i , (9)

E[Υτ ] =
1

µτ
+
λεp

µτ
E[Ψε] =

a0

µτ
,

E[Υ2
τ ] =

2a2
0

µ2
τ

+
ρε,p
µτµε

K∑
i=1

qi−1 ci
(1− q)i ,

where the constants q, {ci} and {ai} are defined as:

ρε,p =
λεp

µε
, q =

ρε,p
ρε,p + 1

, ai =

K−i∑
j=0

ρjε,p for all 0 ≤ i ≤ K, (10)

bi =

K−1∑
j=K−i+1

(K − j)ρjε,p for all 2 ≤ i ≤ K, b1 = 0,

c1 =
2ρε,p (2a2 + b2) + 2

(1 + ρε,p)2µ2
ε

, and for all 1 ≤ i < K

ci =
2ρε,p ((i+ 1)ai+1 + bi+1) + 2 ((i− 1)ai−1 + bi−1) + 2

(1 + ρε,p)2µ2
ε

,

cK =
2ρε,p(KaK + bK) + 2((K − 1)aK−1 + bK−1) + 2

(1 + ρε,p)2µ2
ε

.

Proof: The proof is provided in Appendix B. �

2) Approximate decoupling via Domination: Every τ -agent
undergoes similar stochastic behaviour, as below. Each τ -agent
will have to wait for the beginning of its service, and has to
finish its service in the midst of random interruptions, all of
which have identical stochastic nature. Further, evolution of
the ε-agents during the EST Υτ of one τ -agent is independent
of that of the other τ -agents. Hence the Υτ times correspond-
ing to different τ -agents are independent of each other. Thus
the idea is to model the τ -class evolution approximately as
an independent process, with that of an M/G/1 queue. The
arrivals remain the same, but the service times in M/G/1
queue are replaced by the sequence of ESTs {Υt

τ}.
We call this M/G/1 queue asML system and the original

system as O system. In fact we will define another M/G/1
system MU as below and show that: a) the performance
(expected sojourn times) of the original system is bounded
between the performances of the two M/G/1 systems; and
b) that the performances of the two sandwiching systems
converge towards each other as µε →∞ (even with ρε fixed).

a) ML system: The ESTs are considered as service
times of τ -agent in ML system. We study the (sample path
wise) time evolution of the two systems, original and ML, to
demonstrate the required domination. Towards this, we assume
that both the systems are driven by same input (arrival times
and service requirements) processes. Consider that both the
systems start with same number (greater than 0) of τ -agents
and assume that both of them start with service of the first
among the waiting ones. Then the trajectories of both the
systems evolve in exactly the same manner, until the τ -queue
gets empty. There can be a change in the trajectories of the two
systems, upon a subsequent new τ -arrival. We can have two
scenarios as in Figure 2. If ε-agents are absent at the τ -arrival
instance in the original O system (as in sub-figure b), then
again, both the systems continue to evolve in the same manner.
On the other hand, if an ε-agent is deriving service (as in sub-
Figure a), the service of τ agent is delayed in the original O
system till the end of the ongoing ε-busy period. While the
service starts immediately inML system. Then the trajectories
in the two systems continue with the same difference, until the
end of the next τ -idle period. At this point the difference: a)
either gets reduced, if the τ arrival marking the end of τ -idle
period occurs after sufficient time and finds no ε-agent; b) or
can increase, if the τ -arrival occurs again during an ε-busy
period; c) or can continue with almost previous value, if the
τ -arrival occurs immediately and finds no ε-agent. And this
continues. Thus the sojourn times in ML system are lower
than or equal to that in O system in all sample paths. As
we notice the difference between the two systems is because
of ε-busy cycles and this difference may diminish if the later
shorten. We will show this indeed is true in coming sections.

b) MU system: Consider another M/G/1 system whose
service times equal Υτ +Ψε, where Ψε is an additional ε-busy
period independent of Υτ . It is clear that this system dominates
the O system everywhere (see O and MU trajectories in
Figure 2). Hence the sojourn times of τ -agent in O system are
upper bounded by that in MU system (in all sample paths).
Thus the expected sojourn time of O system is sandwiched as
below:

EML [Sτ ] ≤ EO[Sτ ] ≤ EMU [Sτ ]. (11)

3) Performance of ML and MU systems: In Lemma 2,
we obtained the first two moments of the ε-busy period and
the EST, Υτ . Using the well known formula for the expected
sojourn time of an M/G/1 queue, we have:
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EML [Sτ ] = E[Υτ ] +
λτE[Υ2

τ ]

2(1− ρML
τ )

with ρML
τ = λτE[Υτ ].

Similarly with ρMU
τ = λτE[Υτ + Ψε],

EMU [Sτ ] = E
[
Υτ + Ψε

]
+
λτ
(
E[Υ2

τ ] + E[Ψ2
ε ] + 2E[Ψε]EΥτ ]

)
2(1− ρMU

τ )
.

From Lemma 2 constants {ci}, moments of busy period
E[Ψε], E[Ψ2

ε ] converge to zero as µε → ∞, and so the
difference EMU [Sτ ] − EML [Sτ ] converges to zero. In fact
this is true even when µε, λε jointly converge to ∞ while
maintaining ρε = λε/µε constant. If µε → ∞ for a fixed λε,
then the load factor also decreases to zero in limit. Thus the
result would have been true only for low load factors. But by
maintaining the ratio ρε fixed when µε →∞, we ensured that
the approximation is good for any given load factor and for
any given admission control p, i.e., for any (ρε, p). Under SFJ
limit, using Lemma 2:

EPS [Sτ (p)] := EOPS [Sτ (p)] ≈ 1

µ̃τ,p(1− ρ̃τ,p)
, (12)

with ρ̃τ,p = ρτa0, µ̃τ,p =
µτ
a0

and ρτ :=
λτ
µτ
.

Thus the achievable region under SFJ limit is given by:

APS =

{(
(1− p) +

p(ρε,p)
K

a0
,

a0

µτ (1− a0ρτ )

)
∣∣∣ with a0ρτ < 1, 0 ≤ p ≤ 1

}
.

In the above, condition a0ρτ < 1 ensures stability.

C. Validation of Pseudo conservation law (2), Completeness

By direct substitution4 one can verify that the performance
measures of βPSp,K scheduler, for every (p,K), satisfy the
pseudo conservation law (2). Further as K increases to∞, the
blocking probability PPSB (1), given by equation (7), decreases
to zero if ρε ≤ 1. When ρε > 1, using simple computations5,
one can show that PPSB (1)→ 1−1/ρε and only pB > 1−1/ρε
can be a part of the Astatichetero. Also it is easy to verify that
the function, p 7→ PPSB (p), is continuous in p for any K.
Thus by intermediate value theorem, all the points of Aheterostatic

can be achieved by these schedulers. And hence the family of
schedulers,

FPS :=
{
βPSp,K , 0 ≤ p ≤ 1,K

}
,

is complete. It is important to note here that these schedulers
achieve the entire static region, nevertheless a larger K implies
a larger time spent by ε-agents in the system. Thus system may
have a restriction on the size of K to be used based on the
QoS requirements.

4By (7), 1−ρε(1−PPSB ) = 1/a0 and so
(
µτ
[
1−ρε(1−PPSB )

]
−λτ

)−1

(see equation (2)) equals EPS [Sτ ] given by (12).
5It is easy to verify as K →∞ that:

ρKε∑K
l=0 ρ

l
ε

=
1∑K

l=0 ρ
−(K−l)
ε

=
1∑K

l=0 ρ
−l
ε

→
1
1

1−ρ−1
ε

= 1−
1

ρε
.
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Fig. 4. State transitions for ε-agents in CD model.

V. CAPACITY DIVISION (CD) POLICIES

In the previous section, when an admitted ε-customer pre-
empts the ongoing service of τ -customer the entire system
capacity is transferred to ε-customer. In this section we analyze
a different scheduling policy. Here the capacity is not com-
pletely transferred, but rather a fraction of it is used by each
ε-customer. The τ -customer is continued with the remaining
capacity.

Service Discipline: Each ε-customer uses (1/K)-th part of
the capacity, µε/K. If the system has only one ε-customer, the
remaining capacity i.e., (K − 1)/K-th part of the capacity is
utilized by the τ -customer. In other words, τ -class is served
with rate µτ (K − 1)/K. If there are 0 ≤ l ≤ K number
of ε-customers receiving the service, then (l/K)-th part of
the capacity is used by the ε-customers and the τ -customer
is served at rate ((K − l)/K)µτ . This continues up to K ε-
customers, and any further (admitted) ε-arrival, departs without
service. Whenever an existing ε-customer departs, the capacity
is readjusted to an appropriate higher value for τ -customer.

It is clear that ε-class evolution is again independent of τ -
class evolution and its analysis is considered first.

A. Blocking Probability of ε-class

Consider any fixed 0 ≤ p ≤ 1. The ε-inter arrival times are
exponentially distributed with parameter λεp. Say there are l
ε-agents in the system (note l ≤ K). Each one of them receive
service at rate µε and this happens simultaneously. Thus the
first departure time would be exponentially distributed with
parameter lµε. This is again a continuous time Markov jump
process and its transitions are as shown in Figure 4. In fact the
ε-agents evolve like the well known, finite capacity and finite
buffer queueing system, M/M/K/K queue. The stationary
distribution of such a queue is well known and in particular
(see for e.g., [8]):

π̌K =
(Kρε,p)

K

K!ǎ0
where ǎ0 :=

K∑
j=0

(
Kρε,p

)j
j!

.

As before, agents are admitted with probability (1 − p), and
hence the overall blocking probability by PASTA equals:

PCDB (p) = (1− p) + pπ̌K = (1− p) + p
(Kρε,p)

K

K!ǎ0
.(13)

B. Expected sojourn time of τ -class

The idea is once again to approximately decouple the
evolution of τ -agents from that of ε-agents. The procedure
is similar, however the current model is more complicated.
Once again EST is denoted as Υ̌τ , has similar meaning as in
section (IV-B) and typical τ -sojourn time equals the sum of
waiting time and the effective server time (EST).
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Fig. 5. Lower and Upper dominating systems (CD Model)

1) Analysis of effective server time ˇ(Υτ ): In the CD model,
EST is the total time period between the service start and
service end of a typical τ -agent, when the capacity is divided
possibly between the two classes. With the arrival+admission
of each ε-agent the server capacity available for the ongoing
τ -agent reduces, with each ε-departure it increases, and its
service is completed in the midst of such rate changes. In
fact, the τ -agent’s service is completely pre-empted with
the admission of K-th ε-agent. The service would again be
resumed, where left, when one of the K ε-agents depart. The
EST depends upon the number of ε-agents in the system at the
service start. Hence we introduce superscript l in the notation
of Υ̌. That is, Υ̌l

τ represent the EST, when it starts with l ε-
agents. Thus the analysis of EST for this model is not as easy
as in PS model. One can not estimate this using the number
of interruptions and time per interruption as in PS model.
However, the underlying transitions are Markovian in nature,
and hence we obtain the analysis by directly considering the
EST’s {Υ̌l

τ}l. We have the following, (proof in Appendix C):

Theorem 2: The first two moments of EST Υ̌0
τ are:

E[Υ̌0
τ ] =

ǎ0 +O(1/µε)

ηµτ +O(1/µε)
, ǎ0 :=

K∑
j=0

(
ρε,p
)j

j!
and (14)

E
[(

Υ̌0
τ

)2]
=

2
ǎ20
ηµτ

+O(1/µε)

ηµτ +O(1/µε)
with η :=

K−1∑
j=0

(
ρε,p
)j

j!

K − j
K

,

where f(µε) = O(1/µε) for any function f implies,
f(µε)µε → constant as µε →∞, with ρε fixed. �

2) Dominating systems: It was not difficult to obtain the
conditional moments of the EST, {Υ̌l

τ}l, when conditioned
on the number of ε-agents at the service start. However to
obtain the unconditional moments, one requires the stationary
distribution of the number at service start of a typical τ -
agent. And this is not a very easy task. However the various
conditional moments differ from each other at maximum in
one ε-busy period. Hence one can possibly obtain the (ap-
proximate) unconditional moments, along with M/G/1 queue
approximation, using the idea of dominating fictitious queues.

We again have two dominating systems, which dominate
on either side at the beginning of the τ -busy period, exactly
as in the previous model. In addition, two partial ε-busy
periods (if possible) are subtracted from every EST in the
lower dominating system. While the upper dominating system
is obtained by adding two extra partial ε-busy periods as in
Figure 5. Using exactly the same logic as in the previous
model, one can show that the expected sojourn time of the CD
model can also be obtained as limit of the expected sojourn

times of M/G/1 queues with service time moments given by
that of Υ̌0

τ of Theorem 2. We again consider the SFT limit.
3) Sojourn time of CD Model: Using M/G/1 analysis and

Theorem 2, the sojourn time for τ -agent in SFJ limit:

ACD =

{(
(1− p) + p

(Kρε,p)
K

K!ǎ0
,

1

µ̈τ,p (1− ρ̈τ,p)

)
(15)

: ρ̈τ,p < 1, 0 ≤ p ≤ 1

}
, with ρ̈τ,p = λτ

µ̈τ,p
,

ǎ0 :=

K∑
j=0

(
Kρε,p

)j
j!

, η :=

K−1∑
j=0

(
Kρε,p

)j
j!

K − j
K

, and µ̈τ,p =
ηµτ
ǎ0

.

By direct substitution6 one can verify that the CD policies
also satisfy the pseudo conservation law (2). Further they also
form a complete family of schedulers, for exactly the same
reasons as that for PS policy when ρε ≤ 1 and using Lemma
5 of Appendix E.

VI. NUMERICAL EXAMPLES

Random system with large µε: We conduct Monte-Carlo
simulations to estimate the performance of both the policies.
We basically generate random trajectories of the two arrival
processes, job requirements and study the system evolution
when it schedules agents according to PS/CD policy. We
estimated the blocking probability and expected sojourn time
for ε and τ -agents respectively, using sample means, for
different values of (p,K).

In Figure 3, we consider an example to compare the
theoretical expressions with the ones estimated using Monte-
Carlo simulations for PS policy. We consider two different
values of ρε. We notice negligible difference between the
theoretical and simulated values with µε = 100. However even
with µε = 20, the difference is about 10-12% for most of the
cases.

We consider another example of PS model in Table I with,
K = 8, λτ = 4, µτ = 8 and ρε = 0.5. As the service rate
of ε-agents increases with fixed load factor (ρε), the simulator
results are close to the theoretical results. The performance
is very close to that of theoretical, for values of µε greater
than 120. For µε = 80, the difference is at maximum 5%.
Even at values as low as 20, the simulator performance is
within 10% of the theoretical values for most of the cases.
Thus the theoretical results well approximate the simulated
ones, in most of the scenarios. Especially in the cases with
large µε, λε.

Achievable region: is also plotted in Figure 3 for differ-
ent values of ρε. Towards this, we plot EPS [Sτ (p)] versus
PPSB (p), for p ∈ {iδ : 0 ≤ i ≤ 1/δ} with sufficiently small
δ > 0. It is a convex curve. We notice a downward shift
(improvement) in the curve with smaller ρε, as anticipated.
However the formula derived, helps us understand the exact

6From equation (13),

1− ρε(1− PCDB ) =

∑K−1
j=0

(
Kρε,p

)j
j!

K−j
K

K∑
j=0

(
Kρε,p

)j
j!

=
η

ǎ0

and so
(
µτ
[
1−ρε(1−PPSB )

]
−λτ

)−1 (see equation (2)) equals EPS [Sτ ]
given by (15).
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Simulation Theoretical
p µε PPSB E[Sτ ] PPSB E[Sτ ]

0
20 1.0000 0.2500 1.0000 0.2500
80 1.0000 0.2500 1.0000 0.2500
120 1.0000 0.2500 1.0000 0.2500

0.25
20 0.7500 0.3525 0.7500 0.3333
80 0.7500 0.3387 0.7500 0.3333
120 0.7500 0.3373 0.7500 0.3333

0.50
20 0.5000 0.5671 0.5000 0.5000
80 0.5000 0.5146 0.5000 0.5000
120 0.5000 0.5105 0.5000 0.5000

0.75
20 0.2502 1.2377 0.2502 0.9993
80 0.2502 1.0417 0.2502 0.9993
120 0.2502 1.0367 0.2502 0.9993

1
20 0.0020 110.2218 0.0020 127.750
80 0.0020 112.1243 0.0020 127.750
120 0.0020 127.1987 0.0020 127.750

TABLE I
PS MODEL: COMPARISON OF SIMULATED, THEORETICAL METRICS

amount of shift. We plotted the curves only in the τ -stability
region, {λτ : a0ρτ < 1}. Unlike the case of homogeneous
agents, the τ -stability region varies with the scheduling policy.
This is because, varying fractions of ε-agents are lost with
different values of p, which can expand or contract the stability
region.

Comparison of the two policies: We compare the achievable
regions of PS and CD policies by plotting ACD and APS .
We set ρε = 0.9/K, λτ = 5.6 µτ = 8 and K = 3 or 5.

In Figure 6, we plot the achievable region for both the
models/policies, i.e, we plot E[Sτ (p)] versus PB(p), for dif-
ferent p. And in Figures 7, we plot the performance measures
PB(p) and E[Sτ (p)] respectively versus p with K = 3. From
Figure 6, the two achievable (sub) regions overlap, however
we observe from the Figures 7 that the performance measures
of the two models are different for the same (p,K). But
if we choose a p and p′ such that PCDB (p) = PPSB (p′),
we observe that the two expected sojourn times are equal.
Because of this the two achievable regions overlap in Figure
6. This observation is precisely the pseudo-conservation law.
Whatever the policy used, once the blocking probabilities are
the same the expected sojourn times are the same.

Now we will discuss a slightly different, yet, a related
important aspect. We would compare the two sets of policies,
when K (maximum number of parallel calls) is the same. As
seen from the figures the sub-achievable region of CD policy,
with fixed K, is a strict subset of that of the PS policy. This is

because the best possible blocking probability with CD policy,

PCDB (1) =
(Kρε)

K/K!∑K
j=0 (Kρε)j/j!

≥ (ρε)
K∑K

j=0(ρε)j
= PPSB (1),

is greater than that with the PS policy. In Figure 6 the best
PB with CD and PS models/policies respectively is 0.002
and 0.0002 (0.05 and 0.019) when K = 5 (K = 3). Thus
it appears that the static achievable region would overlap for
different policies, however the sub-regions covered by different
policies can be different when K is fixed.
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Completeness: In Figure 8, we plot pseudo-conservation
law (2). We also plot the performance of PS/CD policies with
K = 3 and for varying p. We see that the three curves exactly
overlap, again validating (2). For the same configuration we
plot performance of PS policies with a bigger K = 50, in
Figure 9. With K = 50 we are able to achieve a bigger part
of the achievable region. One can achieve a similar result with
CD policy. With even bigger K one can achieve further lower
parts of the pseudo-conservation curve. However, as mentioned
before, one may not be able to use a larger K because of other
QoS restrictions. For example, the ε customers may not agree
for a very small service rate (µε/K) which can prolong their
stay in the system. It is in this context that the PS could
be better than the CD policies. Even though both the sets of
policies are complete, PS policy achieves a bigger sub-region
than the CD policy for the same K (see Figures 6 and 8).

VII. A DYNAMIC POLICY

We consider dynamic policies (for PS model) with an aim
to demonstrate that the dynamic region is bigger than the static
region. Towards this we construct an example dynamic policy



11

and show that the block probability, for the same sojourn time
E[Sτ ], is better with the dynamic policy.

The static policy of the previous sections is modified as
follows. We refer this as policy βdp . When there are no τ -
agents in the system, i.e., during the τ -idle period, there is no
admission control for ε-agents. An arriving ε-agent is admitted
with probability one. Recall, however that service is offered
to an admitted agent only when the number in system is less
than K. When the system is in τ -busy period7, i.e., when the
τ -queue is non-empty, we admit the ε-agents with probability
p. So, this is a dynamic policy which alternates between full
and partial admission.

Let Ψτ and Iτ respectively represent the busy and idle peri-
ods of the τ -agents. By stationarity, memoryless property, the
consecutive busy, idle periods {Ψτ,i}, {Iτ,i}i are independent
and identically distributed. We have (proof is in Appendix D):

Theorem 3: The block probability, PBd (p), for the system
with the dynamic policy βdp :

PBd (p) =
E[Iτ,1]PB(1)

E[Ψτ,1] + E[Iτ,1]
+

E[Ψτ,1]PB(p)

E[Ψτ,1] + E[Iτ,1]
. � (16)

Using the ideas of dominating systems as in the section IV
one can show that the moments of the idle, busy periods of
the original system with policy βdp converges towards that of
the equivalent M/G/1 system ML, as µε → ∞. Thus we
will have for large values of µε:

E[Iτ,1] ≈ 1

λτ
,

EO[Ψτ,1] ≈ EML [Ψτ,1] =
E[Υτ ]

1− λτE[Υτ ]
→ a0

µτ − λτa0
.

The second last equality is obtained using the well known
formula for the average busy period of an M/G/1 queue. It
is easy to see that the sojourn time of the dynamic policy βdp is
same as that with static policy βp (asymptotically), while the
blocking probability is improved from (7) to (16). Note that
PB(1) ≤ PB(p) for any p ≤ 1. Hence the dynamic policy
performs better and the dynamic achievable region is bigger.
One can obtain similar improvement with CD model.

Numerical comparison of Dynamic and Static regions

In Figure 10, we compare the performance of the dynamic
policy βdp with the corresponding static policy, for PS model.
We notice a good improvement in the curve: blocking prob-
ability decreases significantly for the same expected sojourn
time. This indicates that the dynamic region is strictly bigger
than the static region, unlike the homogeneous case. In fu-
ture, we would like to obtain complete analysis of dynamic
achievable region for this heterogeneous system.

VIII. CONCLUSIONS AND FUTURE WORK

We consider a queueing system with heterogeneous classes
of agents. The impatient class demands immediate service,
hence receives the service immediately and if required in

7Normally a busy period begins immediately with an arrival to an empty
queue. However, in our system we say a τ -busy period starts with the service
start of that τ -agent, which arrives to an τ -empty queue. If ε-agents were
present at the τ -arrival instance, the service of the τ -agent is deferred till the
end of the ongoing ε-busy period.
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parallel with others. There is an admission control to ensure
the QoS requirements of the other (tolerant) class. The tolerant
class can wait for their turn, however would like to optimize
their sojourn time.

We conjecture a pseudo conservation law for this lossy
queueing system, which relates the blocking probability of
impatient agents to the expected sojourn time of the tolerant
agents, in a short and frequent job (SFJ) limit-regime for the
former. The pseudo conservation law should be satisfied by all
the policies, that are static (do not depend upon the state) and
work conserving (left over server capacity is completely used
when there is a customer) with respect to the tolerant agents.

We consider two families of scheduling policies, which
differ in the way the system capacity is shared between the
two classes. With processor sharing policy the entire system
capacity is transferred to impatient customer, once admitted.
In the second policy, which we refer as capacity division
policy, only a (fixed) fraction of capacity is transferred to each
admitted impatient customer.

We obtain closed form expressions for the asymptotic
performance measures, under SFJ limit, for both the families
of policies. The two families satisfy the pseudo-conservation
law. Further, both the families are complete, i.e., they attain
every point of the achievable region given by the pseudo-
conservation law. The CD achievable region is a strict subset
of the PS region, when restricted to the same number of
parallel service possibilities. This demonstrates the limitation
of CD model, which could be a more practically used model.
The PS model can attain a much smaller blocking probability.

We obtain the performance with an example dynamic policy
and illustrate that the dynamic region is strictly bigger than the
static region. This is in contrast to the homogeneous case (all
tolerant classes), where the two regions coincide. However,
under a dynamic policy the impatient agents may experience
non-stationary blocking. Some systems may not prefer this and
hence static policies have importance of their own.
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The results are asymptotic and are accurate when the arrival-
departure rates of the impatient class is large. Usually such
customers have short frequent job requirements and hence this
is an useful asymptotic result. Further, we have an upper and
lower bound for the sojourn time performance, even when the
rates are not large.
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APPENDIX : STATIC AND DYNAMIC REGIONS COINCIDE IN HOMOGENEOUS SYSTEMS

We discuss the case without pre-emption. By the well known work conservation principle ([9]), for any (work conserving)
scheduling policy the expected waiting times of the two classes satisfy:

ρ1E[W1] + ρ2E[W2] = c =⇒ E[W1] =
c

ρ1
− ρ2

ρ1
E[W2], (17)

where c is an appropriate constant. A family of schedulers is called complete (e.g., [20], [21]), if every performance vector of
the achievable region is obtained by one of its schedulers. It is well known that the priority schedulers (see for e.g., [3]) form
a complete family for homogeneous classes. Each scheduler is represented by a priority factor b, say meant for class 1, and
class 1 is scheduled if b times its longest waiting time w̃1 is greater than w̃2. By varying b from 0 to infinity, we obtain all
the performance pairs of the dynamic region.

Consider the set of static policies parametrized8 by p ∈ (0, 1). Class 1 is scheduled with probability p, now independent of
everything else. As p→ 1, class 1 gets maximum priority. It is not difficult to see that the limit performance of the two classes
with p → 1 equals that obtained with dynamic priority scheduler as b → ∞. Both the limits are obtained by giving absolute
priority to class 1 and hence are equal. Similarly the performance under static policy with p→ 0, equals the performance under
dynamic policy with b = 0. Further, it is easy to show that the performance of the two queues is continuous in parameter p of
the static policy. Thus by intermediate value theorem all the values between the two extremes are achieved as p varies between
0 and 1. And these pairs satisfy (1). Hence the static achievable region coincides with dynamic region in homogeneous setting.
�

APPENDIX A: RESULTS RELATED TO PSEUDO CONSERVATION LAW

Lemma 3: Let τµ := inft
{
t : Rµ(t) ≥ B

}
, be any random time defined using any random variable B which is independent

of {A1
ε,n, B

1
ε,n}n. Since Rµ(t) satisfies (6) we have:∣∣∣τµ − B

ντ

∣∣∣→ 0 a.s. as µ→∞

Proof: By continuity of probability measure, one can assume that (6) is satisfied together for a sequence of {Wn} with
Wn →∞, almost surely. Let

A :=

{
w : sup

t∈[0,Wn]

∣∣Rµ(t)− ντ t
∣∣→ 0 for all n

}
and P (A) = 1.

For any w ∈ A, consider a Wn > (B(w) + 1)/ντ . For every 1 > ε > 0, there exists an µε <∞ such that:

sup
t∈[0,Wn]

∣∣Rµ(t)− ντ t
∣∣ ≤ ε for all µ ≥ µε.

Thus ντ t− ε ≤ Rµ(t) ≤ ντ t+ ε for all t ≤Wn.

Now in particular for t = (B(w) + ε)/ντ < Wn, we have:

Rµ(B(w)/ντ + ε/ντ ) ≥ ντ ((B(w) + ε)/νt)− ε = B(w),

which implies
τµ ≤ (B(w) + ε)/ντ .

Further, trivially (B(w)− ε)/ντ < Wn and hence we also have:

Rµ(B(w)/ντ − ε/ντ ) ≤ ντ ((B(w)− ε))/νt) + ε = B(w).

Thus for any 0 < ε < 1,
τµ ≥ (B(w)− ε)/ντ and so

∣∣∣τµ −B(w)/ντ

∣∣∣ ≤ ε

ντ
. �

Theorem 4: (Functional RRT) Let R1(.) be any monotone time-reward function of a renewal process with parameter 1.
Let a be the RRT limit, i.e, say

R1(t)

t
→ a almost surely as t→∞.

Then, for any W <∞:

sup
s∈[0,W ]

∣∣∣∣R1(µs)

µ
− as

∣∣∣∣→ 0 as µ→∞ a.s..

8The system is unstable with p = 1 or 0, these values are not considered.
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Proof: For any ε there exists a Tε such that: ∣∣∣∣R1(t)

t
− a
∣∣∣∣ ≤ ε ∀ t ≥ Tε (18)

Consider s such that µs ≥ Tε, it follows that ∣∣∣∣R1(µs)

µs

s

W
− a s

W

∣∣∣∣ ≤ s

W
ε ≤ ε. (19)

If s is such that µs < Tε, ∣∣∣∣R1(µs)

µs

s

W
− a s

W

∣∣∣∣ =

∣∣∣∣R1(µs)

µW
− a s

W

∣∣∣∣
≤ R1(µs)

µW
+ a

s

W

≤ R1(Tε)

µW
+ a

Tε
µW

< ε, (20)

by choosing µ further large to get the required upper bound, if required. Equations (19) and (20) are true for any arbitrary s.
Hence the result follows. �

APPENDIX B: PROOF OF LEMMA 2

By conditioning on Bτ , one can verify that

E[N(Bτ )] =
λεp

µτ
, E[BτN(Bτ )] =

2λεp

µ2
τ

,

E[(N(Bτ ))2] =
λεp

µτ
+

2(λεp)
2

µ2
τ

.

By conditioning on N(Bτ ) we obtain the first moment:

E[Υτ ] = E[Bτ ] + E

N(Bτ )∑
i=1

Ψε,i

 (21)

= E[Bτ ] + E

E
N(Bτ )∑

i=1

Ψε,i

∣∣∣∣∣∣N(Bτ )

 =
1

µτ
+
λεpE[Ψε]

µτ
.

Note that the busy periods {Ψε,i}i are IID. From (8) we have:

E[Υ2
τ ] = E[B2

τ ] + 2E
[
BτΥe

τ

]
+ E

[
(Υe

τ )2]. (22)

By first conditioning on (Bτ , N(Bτ )) and then on Bτ :

E
[
BτΥe

τ

]
= E

E
Bτ N(Bτ )∑

i=1

Ψε,i

∣∣∣∣∣∣Bτ , N(Bτ )


= λεpE

[
Ψε]E

[
BτBτ

]
=

2λεpE
[
Ψε

]
µ2
τ

. (23)

Conditioning as before and because of independence:

E
[
(Υe

τ )2] = E

E
(N(Bτ )∑

i=1

Ψε,i

)2

∣∣∣∣∣∣N(Bτ )

 ,
=

λεpE
[
Ψ2
ε

]
µτ

+
2(λεp)

2

µ2
τ

(
E
[
Ψε

])2
,

which simplifies to (9).
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Busy period of ε-class: Busy period of any class is defined as the time till the first epoch at which all the customers of
that class have departed. Let Ψk, represent the busy period of ε-class, when it begins with k number of customers. Note that
Ψε = Ψ1. In all the discussions below, an arrival is meant an admitted arrival.

The busy period Ψ1 starts with the arrival of one ε-customer. If the customer leaves before the next arrival, the busy period
ends. On the other hand, if an arrival occurs before the departure of the existing customer, it marks the beginning of a busy
period with two customers, Ψ2. As seen in section IV-A (see Fig. 1), a departure time is memoryless, i.e., exponential random
variable with parameter µε irrespective of the number of customer sharing the service. Let D represent the departure time.
The inter arrival time, A, is exponential with parameter λεp. Let W := min{D,A} represent the minimum of the two. With
these definitions:

Ψ1 = 1{D<A} 0 + 1{A<D} Ψ2 +W. (24)

The busy period Ψ2 starts with two ε-customers. If one of the two customers leave before the next arrival, it marks the
beginning of the busy period Ψ1, and an early arrival marks the beginning of a busy period with three customers, Ψ3. From
Lemma 1 of section IV-A, the departure time of the earliest customer among the two is again exponential random variable
with parameter µε. Thus this departure time is also distributed as D, defined above. The inter arrival time A obviously remains
the same as in the previous paragraph. Thus:

Ψ2 = 1{D<A} Ψ1 + 1{A<D} Ψ3 +W.

Continuing using similar logic we have:

ΨK = 1{D<A} ΨK−1 + 1{A<D} ΨK +W and (25)
Ψi = 1{D<A} Ψi−1 + 1{A<D} Ψi+1 +W ∀ 1 < i < K.

In the first equation of (25) the two ΨK are different, independent of each other, but they are identically distributed. For ease
of notation, we represent them by the same symbol. Note, in all, that the random variables W , D and A have same stochastic
nature and are correlated. Further, if an arrival occurs before departure when the system already has K customers, the arrival is
dropped. By memoryless property of exponential distributions, we again have busy period ΨK . Taking expectation of equations
(24) - (25) and solving backward recursively ({ai}, {bi} given in (10)):

E[Ψi] =
iai + bi
µε

for all 1 ≤ i ≤ K. (26)

Squaring and taking the expectation of (24) we obtain:

E
[
Ψ2

1

]
= c1 + qE

[
Ψ2

2

]
where q := E

[
A < D

]
c1 = 2E

[
W1{A<D}

]
E
[
Ψ2

]
+ E

[
W 2
]

=
2λεp

(λεp+ µε)2
E
[
Ψ2

]
+

2

(λεp+ µε)2
.

Terms c1, q simplify as in (10). Similarly from (25) we have

E[Ψ2
i ] = ci + qE

[
Ψ2
i+1

]
+ (1− q)E

[
Ψ2
i−1

]
with

ci = 2E
[
W1{A<D}

]
E[Ψi+1] + 2E[W1{D<A}]E[Ψi−1]

+E[W 2] for any 2 ≤ i < K.

Constant ci simplifies as in (10). Now squaring ΨK of (25):

E
[
Ψ2
K

]
= E

[
Ψ2
K−1

]
+

cK
(1− q) .

Solving the expressions backward recursively we obtain:

E[Ψ2
ε ] = E[Ψ2

1] (27)

=
qK−1 cK
(1− q)K +

qK−2 cK−1

(1− q)K−1
+ ...+

q c2
(1− q)2

+
c1

1− q . �
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APPENDIX C: PROOF OF THEOREM 2
Let Iml := [l, · · · ,m] represent the interval of integers, the big O notations are shortly represented by

Oε := O(1/µε), O
(2)
ε := O(1/µ2

ε), λ̃ := λεp and [i] := K − i. (28)

Let Υ̌l = Υ̌l
τ , with l ∈ IK−1

0 , represent a simpler notation for EST when it begins with l ε-agents. Let us begin with Łthe
analysis of Υ̌0. If τ -agent leaves before next ε-arrival, the EST ends. If instead an ε-agent arrives before, it marks the beginning
of EST, Υ̌1.Ł Let Dτ represent the departure time of τ -agent and Dτ ∼ exp(µτ ). It equals Bτ since the service is offered
at full capacity. Let A ∼ exp(λ̃) represent the exponential inter arrival time of admitted ε-agent. Let W̄0 := min{Dτ , A}
represent the minimum. Then,

Υ̌0 = 1{Dτ<A} 0 + 1{A<Dτ} Υ̌1 + W̄0. (29)

Let Dε ∼ exp(µε) represent the departure time of an ε-agent. EST, Υ̌l, starts with l ε-agents. If one of the ε-agents depart
before the next ε-arrival or τ -departure, it marks the beginning of EST Υ̌l−1 and an early ε-arrival begins Υ̌l+1. The τ -departure
ends the EST. Let Dl

ε represent the departure time of the earliest among l ε-agents, and note Dl
ε ∼ exp(lµε). Let Dl

τ represent
the departure time of τ -agent, when the capacity is shared with l ε-agents, then Dl

τ ∼ exp([l]µτ/K). Inter arrival time, A,
remains the same. Let W̄l := min{A,Dl

ε, D
l
τ} represent the minimum of three, which is again exponentially distributed. Thus

for any l ∈ IK−11 we have:
Υ̌l =1{Dlε=W̄l} Υ̌l−1 + 1{A=W̄l} Υ̌l+1 + W̄l. (30)

For the case with K ε agents, if one of them leave before next arrival, an EST with (K − 1) ε-agents begins and an early
arrival begins another EST with K ε-agents. Further, any arrival of ε-agent is dropped in this case. By memoryless property,
we again have busy period Υ̌K (W̄K := min{DK

ε , A}):
Υ̌K = 1{DKε <A} Υ̌K−1 + 1{A<DKε } Υ̌K + W̄K . (31)

In the above the two Υ̌K are different, but are identically distributed. For ease of notation, we represent them by the same
symbol. Taking expectation of (29)-(31) ([i] := K − i):

E
[
Υ̌0

]
=

λ̃

α0
E
[
Υ̌1

]
+

1

α0
, (32)

E
[
Υ̌[i]

]
=

[i]µε
α[i]

E
[
Υ̌[i]−1

]
+

λ̃

α[i]

E
[
Υ̌[i]+1

]
+

1

α[i]

, ∀ i ∈ IK−1
1

E
[
Υ̌K

]
=
Kµε
αK

E
[
Υ̌K−1

]
+

λ̃

αK
E
[
Υ̌K

]
+

1

αK
, where

αi := λ̃+ iµε +
[i]µτ
K

for any i ∈ IK0 .

Solving the equations backward recursively (start with K):

E
[
Υ̌K

]
= mK + E

[
Υ̌K−1

]
,

E
[
Υ̌K−1

]
= mK−1 + nK−1E

[
Υ̌K−2

]
and (33)

E
[
Υ̌[i]

]
= m[i] + n[i]E

[
Υ̌[i]−1

]
∀ i ∈ IK−1

2 ,

where the coefficients are defined recursively as below:

mK =
1

γk
, mK−1 =

1 +mK λ̃

γK−1
, nK−1 =

(K − 1)µε
γK−1

,

m[i] =
1 +m[i]+1λ̃

α[i] − n[i]+1λ̃
, n[i] =

([i])µε

α[i] − n[i]+1λ̃
, ∀ i ∈ IK−1

2

γi = iµε +
[i]µτ
K

, ∀ i ∈ IK0 . (34)

Using the first equation of (32) and E[Υ̌1] of equation (33) we obtain:

E[Υ̌0] =
1 +m1λ̃

α0 − n1λ̃
=

1 +m1λ̃

λ̃+ µτ − n1λ̃
. (35)

Squaring and taking the expectation of (31) we get9

E
[(

Υ̌K

)2]
=

λ̃

αK
E
[(

Υ̌K

)2]
+
Kµε
αK

E
[(

Υ̌K−1

)2]
+

2

α2
K

+
2λ̃

α2
K

E
[
Υ̌K

]
+

2Kµε
α2
K

E
[
Υ̌K−1

]
.

9Since the product of the two indicators is zero, we will not have cross correlation terms like E
[
Υ̌K1Υ̌K2

]
etc. Furthe note that the indicators, {W̄l} are

independent of the ESTs {Υ̌l}l on the right hand side of the equations (29)-(31).
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Simplifying we obtain:

E
[(

Υ̌K

)2]
= rK + E

[(
Υ̌K−1

)2] with δK = γK = Kµε and (36)

rK =
2

δKαK
+
σK
δK

, σK =
2δK
αK

E
[
Υ̌K−1

]
+

2λ̃

αK
E
[
Υ̌K

]
.

Similarly from (30) we obtain for any i ∈ IK−11 ,

E
[(

Υ̌[i]

)2]
= r[i] +

[i]µε
δ[i]

E
[(

Υ̌[i]−1

)2] with (37)

r[i] =
1

δ[i]

[
2

α[i]

+ λ̃r[i]+1 + σ[i]

]
,

δ[i] =
α[i]δ[i]+1 − λ̃([i] + 1)µε

δ[i]+1

,

σ[i] =
2λ̃

α[i]

E[Υ̌[i]+1] +
2([i])µε
α[i]

E[Υ̌[i]−1].

From (29),
E
[(

Υ̌0

)2]
=

λ̃

α0
E
[(

Υ̌1

)2]
+

2

α2
0

+
2λ̃E[Υ̌1]

α2
0

.

Further using equation (37) with i = K − 1 or [i] = 1:

E
[(

Υ̌0

)2]
=

1

δ0

[
2

α0
+ λ̃r1 +

2λ̃E[Υ̌1]

α0

]
, δ0 =

α0δ1 − λ̃µε
δ1

. (38)

SFT Limit: From (35) and using (41) of Lemma 4 (see (28)):

E
[
Υ̌0

]
=

ǎ0 +Oε
ηµτ +Oε

. (39)

Thus and considering the limit (forward) recursively in (32)

E
[
Υ̌l

]
= limE

[
Υ̌0

]
+Oε =

ǎ0

ηµτ
+Oε.

Hence for all i ∈ IK−10 from (37)

σ[i] = θ +Oε, rK λ̃ =
ρε,pθ

K
+Oε where θ :=

2ǎ0

ηµτ
.

Again considering limits (backward) recursively in (37), while using the above two equations and equation (42) of Lemma 4
and backward induction (as in Lemma 4) we obtain:

λ̃r[i] =

(
ρε,p
[i]

+Oε

)(
λ̃r[i]+1 + θ +Oε

)
=

(
ρε,p
[i]

+Oε

)(i−1∑
j=0

ρj+1
ε,p θ

([i] + 1) · · · ([i] + 1 + j)
+ θ +Oε

)

=

i∑
j=0

ρj+1
ε,p θ

[i] · · · ([i] + j)
+Oε for all i ∈ IK−1

0 .

Simplifying we obtain:
λ̃r1 +

2λ̃E[Υ̌1]

α0
=

2ǎ2
0

ηµτ
+Oε.

Further using δ0 of (42) of Lemma 4 we obtain the asymptotic limit of the second moment (38). �
Lemma 4: We have the following asymptotic results for the coefficients defined in the proof of Theorem 2:

n[i] = 1−
µτω[i]

µε
+O(2)

ε , i ∈ IK−1
1 with (40)

ω[i] :=
1

K

i−1∑
j=0

(i− j)ρjε,p
([i] + j)([i] + j − 1) · · · ([i]) ,

λ̃+ µτ − n1λ̃ = η +Oε, 1 +m1λ̃ = ǎ0 +Oε, (41)

δ[i] = [i]µε + [i]ω[i]µτ +Oε ∀ i ∈ IK−1
1 and δ0 = ηµτ +Oε. (42)

Proof: We begin with terms {n[i]} and prove the required result by backward mathematical induction. From (34),

nK−1 = 1− µτωK−1

µε
+O(2)

ε , with ωK−1 :=
1

K(K − 1)
.
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Assume the statement holds for i = l − 1, i.e., say:

nK−l+1 = 1− µτωK−l+1

µε
+O(2)

ε and

ωK−l+1 :=
1

K

l−2∑
j=0

(l − 1− j)ρjε,p
(K − l + 1 + j) · · · (K − l + 1)

.

We need to prove the result for i = l. From (34) and substituting the above

nK−l=
(K − l)µε

αK−l − nK−l+1λ̃
=

(K − l)µε
(K − l)µε + lµτ

K
+ µτρε,pωK−l+1 +Oε

= 1− µτωK−l
µε

+O(2)
ε as µε →∞ with ρε constant.

This proves (40). It is easy to see that

ω1 =

K−2∑
j=0

K − j
K

ρjε,p
j!

and hence that ω1ρε,p + 1 = η,

where η is defined in the hypothesis of the Theorem 2. Using this we obtain the first part of (41):

λ̃+ µτ − n1λ̃ = (ω1ρε,p + 1)µτ +Oε = ηµτ +Oε.

Using (40), for all i ∈ IK−12 (note λε = ρεµε with ρε fixed),

α[i] − n[i]+1λ̃ = [i]µε +

(
ω[i]+1ρε,p +

i

K

)
µτ +Oε (43)

and hence λ̃

α[i] − n[i]+1λ̃
=
ρε,p
[i]

+Oε.

From above and using a similar backward induction on {mi} of (34) we obtain,

m[i]λ̃ =

i+1∑
j=1

ρjε,p
([i])([i] + 1) · · · ([i] + j)

+Oε, ∀ i ∈ IK−1
2 . (44)

Thus we get the second part of (41):
1 +m1λ̃ =

K∑
j=0

ρjε,p
j!

= ǎ0 +Oε.

Let ζ[i] := [i]µε/δ[i], for all i ∈ IK−11 . Using the recursive definition of δi, as given in (37), ζ[i] satisfies the following recursive
equation,

ζ[i] =
[i]µε

α[i] − λ̃ζ[i]+1

, (45)

just like the recursive definition of {ni} given in (34). Further,

ζK−1 = (K − 1)µε/γK−1 = nK−1 and hence using (40)

ζ[i] = n[i] = 1−
µτω[i]

µε
+O(2)

ε for all i ∈ IK−1
1 .

Thus we have the first part of (42):

δ[i] = [i]µε + µτ [i]ω[i] +Oε for any i ∈ IK−11 .

And from (38),
δ0 = µτ + µτρε,pω1 +Oε = ηµτ +Oε. �

APPENDIX D: PROOF OF THEOREM 3

For any static policy βp, the processor sharing system with ε-agents is ergodic. With Lp(T ) representing the number of ε
agents lost in time T , when the arrivals are admitted at rate p, we have:

lim
T→∞

Lp(T )

T
= PB(p) almost surely,

where PB(p) is given by equation (7).
Let Ldp(T ) represent the number of ε-agents lost in time T with dynamic policy. Let Iτ (T ), Ψτ (T ) respectively represent

the total τ -idle time and total τ -busy period until time T . These are basically the sum of all the busy/idle periods that elapsed
till the time T . Note that Iτ (T ) + Ψτ (T ) = T. In this case,

Ldp(T ) = Ldp(Iτ (T )) + Ldp(Ψτ (T )).
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At the end epoch of any busy period (Ψτ,i for some i), the system is completely empty. That is, agents of both the classes
are absent. Also a τ -busy period starts only once the system is free from all of its ε-agents. Thus there are no ε-agents in the
system at both start and end epochs of a τ -busy period. Hence the evolution of the ε-class loss counting process that occurred
during disjoint time intervals (of τ -busy periods) constituting Ψτ (T ) is stochastically equivalent to the ε-class loss counting
process that would have evolved in a continuous time interval of length exactly Ψτ (T ). This is because of the memoryless
property associated with Poisson arrival process. Thus we have:

Ldp(Ψτ (T ))

Ψτ (T )
→ PB(p) almost surely .

In a similar way at the start/end epoch of any τ -idle period the system is free of ε-agents. Using similar arguments, and
because all ε-agents are admitted during idle periods we have:

Ldp(Ψτ (T ))

Ψτ (T )
→ PB(1) almost surely .

Further using renewal reward theorem, one can show that the following happens almost surely:

Ψτ (T ))

T
→ E[Ψτ,1]

E[Ψτ,1] + E[Iτ,1]
,
Iτ (T ))

T
→ E[Iτ,1]

E[Ψτ,1] + E[Iτ,1]
.

Using all the results established so far, equation (16) follows because:

PBd (p) = lim
T→∞

Ldp(T )

T
. �

APPENDIX E
Lemma 5: For any ρε > 1,

PCDB (1)→ 1− 1

ρε
and PCDB (1)→ 0 if ρε ≤ 1.

Proof: When ρε ≤ 1 we have:

PB(1) =
(Kρε)

K

K!
K∑
j=0

(
Kρε

)j
j!

=

1

K∑
j=0

(
Kρε

)j
j!

(Kρε)K

K!

=
1

K∑
j=0

K(K−1)···(K−j+1)
Kj ρj−Kε

≤ 1
K∑
j=0

K(K−1)···(K−j+1)
Kj

.

Let

f(K) :=

K∑
j=0

K(K − 1) · · · (K − j + 1)

Kj
= 1 + (1− 1

K
) + (1− 1

K
)(1− 2

K
) + · · ·+ ΠK

i=1(1− i

K
),

and note that
f(K) ≥ NΠN

i=1(1− i

K
) for any N ≤ K.

Fix any ε > 0. For any N there exist a large KN such that for all K ≥ KN ,

((1− 1

K + 1
) · · · (1− N

K + 1
) ≥ (1− ε) which implies f(K) ≥ N(1− ε) and hence f(K)→∞ as K →∞.

Thus PCDB (1)→ 0. When ρε > 1, it is clear after redefining that:

f(K) :=

K∑
j=0

K(K − 1) · · · (K − j + 1)

Kj
ρj−Kε ≤

K∑
j=0

ρj−Kε =

K∑
j=0

ρ−jε hence lim
K→∞

f(K) ≤ 1

1− ρ−1ε
.

On the other hand for any ε > 0, as before for any N for all K > KN we have:

f(K) ≥
K∑

j=K−N
ρj−Kε (1− ε) =

N∑
j=0

ρ−jε (1− ε).

By first letting N →∞ we have

lim
K→∞

f(K) ≥ (1− ε)
(

1

1− ρ−1ε

)
and then with ε→ 0 lim

K→∞
f(K) ≥ 1

1− ρ−1ε
. �


