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Abstract— In the context of standard Markov decision
processes (MDPs), the connection between Dynamic Pro-
gram (DP) and Linear Program (LP) is well understood
and is well established under sufficiently general conditions.
LP based approach facilitates solving the constrained
MDPs. Multiplicative or Risk sensitive MDPs, introduced
to control the fluctuations/variations around the expected
value, are relatively less studied objects. DP equations
are considerably well understood even in the context of
Risk MDPs, however the LP connection is not known. We
consider a finite horizon risk MDP problem and establish
the connections between the DP and LP approaches. We
augment the state space with a suitable component, to
obtain the optimal policies for constrained risk MDPs.
We apply this results to a server selection problem in
Ber/M/K/K queues, with a constraint on the utilization
of the fast server. We discuss some interesting structural
properties of the risk optimal policies.

I. INTRODUCTION

Markov Decision Process (MDP) is a mathematical
framework used to solve the problem of sequential
decision making in stochastic situations ([6], [3], [2], [4]
etc). The aim of MDP is to find an optimal policy for the
decision makers. A policy is a sequence of decisions one
for each time slot, possibly depending upon the (current
state or history of all states) state of the system. MDP
considers a running cost at every time step, depending
upon the state and the action taken at that time step, and
obtains an optimal policy that optimizes the expected
value of the sum (integral in case of continuous time
problems) of the running costs over all the time slots
under consideration. In case of finite horizon problems,
it also considers a terminal cost.

There can be three varieties of MDP problems based
on the time horizon for which the problem spans. It is
finite time horizon problem if the sum cost is considered
for a finite duration. In case of infinite time horizon
problems, variants like discounted cost, average cost and
total cost are considered. The focus of this paper is on
finite horizon problems.

In many scenarios, the agents are interested not just in
the average cost. But some agents would like to reduce
the risk on most of the sample paths. Worst case analysis
deals with an extreme case in this direction. While risk
sensitive framework offers varying ranges of importance
to sample paths and average value as controlled by a
parameter. Depending upon the parameter, called risk
parameter, it provides importance to higher moments of

the sum cost. In all, while average cost/linear MDPs
are concerned about first moment of the sum cost, risk
sensitive MDPs incorporate higher moments of the cost,
to control the variability/fluctuations about the expected
value. The linear MPDs are also viewed as risk neutral
MDPs.

The linear MDP is a well studied topic and many
solutions approaches are known. Dynamic programming
(DP), Linear programming (LP), Value iteration are
some of them ([6], [3], [2], [4] etc). DP obtains the
value function, the optimal cost to go till termination
from any time and any state, using backward induction.
Alternatively value functions can be obtained using a
solution of an appropriate Linear Program (LP). The dual
LP directly provides the optimal policy (e.g., [6], [2]).
Relatively risk sensitive MDPs are studied to a limited
extent. Nevertheless, dynamic programming approach
can be applied even in the context of finite horizon risk
MDP ([5]). To the best of our knowledge, the connection
between risk sensitive MDPs and an appropriate linear
program is not yet established and this is the main focus
of the paper. This connection does not solve the dimen-
sionality problem. Nevertheless, the advent of fast LP
solvers makes this a very attractive alternative. Further
and more importantly one can incorporate constraints
in the MDP framework. Our LP connection thus pro-
vides computational methods to solve such constrained
risk sensitive MDPs. Availability of resources can be
captured as suitable constraints and hence solutions to
constrained MDPs are important.

The work on risk sensitive control is vast and varied
and we give a sample of some of the strands. The
pioneering work is by Howard and Mathieson [7]. The
backward recursion dynamic programming equations in
finite horizon setting are of multiplicative type and
algorithms to compute optimal polices in this model
are known. In general, the optimal policies in infinite
horizon setting tend to be non stationary, [8], etc. Some
papers identify suitable sufficient conditions that ensure
that the optimal polices are stationary and also develop
algorithms to compute the same ([10]) or approximate
optimal policies. Other papers also explore the relations
between robust MDPs and risk sensitive MDPs [9]. We
develop LP based algorithm that computes optimal risk
sensitive polices for constrained risk MDPs.
Notation: The bold letters represent the vectors, e.g.,



y = {y(t, x, a)}t,x,a represents a feasible vector of dual
LP (9), given below. While xtn represents the vector
xtn = [xn, · · · , xt]. The random variables are repre-
sented by capital letters, while their realization by the
corresponding small letters. When required to specify the
time index, a subscript of the time index is used. When
not required it is avoided. For example, x represents a
realization of random variable Xt for any t. If it required
to represent a realization of the pair of random variables
Xt, Xn, then we use xt, xn. The realizations for random
variables of subsequent time slots, like Xt, Xt+1, are
represented by (x, x′).

II. RISK SENSITIVE MDP FRAMEWORK

Risk sensitive MDP, as in the case of linear MDP,
consists of a set X of all possible states, a set A of all
possible actions and an immediate reward function

rt : X ×A → R for each time slot t.

The terminal cost rT depends only upon the state x ∈ X .
The state, action spaces X , A do not depend the time
slot t, that is we consider the same set for all the time
indices. It is further characterized by a transition function
p : X×A → X , which defines the action dependent state
transitions. Here p(x′|x, a) gives the probability of the
state transition from x to x′, when action a is chosen.

We consider a finite horizon problem and let {Xt}t≤T ,
{At}t≤T−1 respectively represent the trajectories of the
state and the action processes. The terminal cost, cost in
final time slot T , depends only upon the (final) state. A
policy Πt = (πt, πt+1 · · ·πT−1) is a sequence of state
dependent and possibly randomized actions, given for
time slots between t and T − 1. Given a policy Πt, the
state, action pair evolve randomly over the time slots
t < n < T , with transitions given by the following laws:

qΠt

n (x′, a′|x, a) =P (Xn = x′, An = a′|Xn−1 = x,An−1 = a)

= πn(x′, a′)p(x′|x, a) where
p(x′|x, a) = P (Xn = x′|Xn−1 = x, An−1 = a) and
πn(x′, a′) = P (An = a′|Xn = x′). (1)

The above evolution further depends upon the initial
condition, i.e., the initialization of the stating point Xt.
Let Ex,Π

t

represent the expectation operator with initial
condition Xt = x and when the policy Πt is used. Let
Eα,Π

t

represent the same expectation operator when the
initial condition is distributed according to α, written as
Xt ∼ α. Here α(x) = P (Xt = x). We are interested in
optimizing the following risk sensitive objective:

J̃t(α,Π
t) = γ−1 log

(
Jt(α,Π

t)
)

where

Jt(α,Π
t) = Eα,Π

t
[
eγ

∑T−1
n=t rn(Xn,An)+rT (XT )

]
. (2)

The above equation represents the cost to go from time
slot t to T under the policy Πt, with Xt ∼ α. The
value function, a function of (x, t), is defined as the

optimal value of the above risk sensitive objective given
the initial condition Xt = x:

Vt(x) := min
Πt∈Dt

J̃t(x,Π
t) for any x ∈ X , (3)

where Dt represents the space of policies Πt.

Dynamic Programming

We are interested in the optimal policy Π0∗ = Π∗

(we discard 0 in superscript when it starts from 0)
that optimizes the risk cost J0(x,Π0), or equivalently
a policy that achieves the value function, i.e., a Π∗ such
that V0(x) = J̃0(x,Π∗) for all x ∈ X .
Dynamic programming (DP) is a well known technique,
that provides a solution to such control problems, and
DP equations are given by backward induction as below
for any x ∈ X (see [5]):

VT (x) = rT (x), and for any 0 ≤ t ≤ T − 1,

Vt(x) = min
a∈A

{
rt(x, a) +

1

γ
log

[∑
x′∈X

p(x′|x, a)eγVt+1(x′)

]}
.

We consider the following translation of the value
function, to simplify the above set of equations:

ut(x) = eγVt(x) for all 0 ≤ t ≤ T , and x ∈ X .

Note by monotonicity and continuity ut for any t is
minimum value of Jt given in (2 ):

ut(x) = min
Πt

Jt(x,Π
t).

The DP equations can now be rewritten as:

uT (x) = eγrT (x) for any x ∈ X and (5)

ut(x) = min
a

{
eγrt(x,a)

∑
x′∈X

p(x′|x, a)ut+1(x′)

}
for any 0 ≤ t ≤ T − 1, and x ∈ X . (6)

For ease of notations, we absorb γ into the cost
functions {rt}. One needs to solve the above set of
equations to obtain the value function:

u∗ = {u∗t (x); t < T, x ∈ X},

and the optimizers in the minimization step will provide
us the optimal policy ([6], [5] etc).

III. LINEAR PROGRAMMING FORMULATION

The dynamic programming based approach suffers
from the curse of dimension. As we increase the number
of states and/or time epochs, the complexity of the
problem increases significantly. This results in limited
applicability of dynamic programming. In the context of
linear MDPs, it is a well known fact that a DP problem
can be reformulated as a Linear Program (LP), under
considerable generality (see for e.g., [6] in the context of
infinite horizon problems). However this conversion may



Ct,πt,a =


πt(1, a)ert(1,a) 0 . . . 0

0 πt(2, a)ert(2,a) . . . 0
. . . . . 0
. . . . . 0
. . . . . 0

0 . . . . πt(N, a)ert(N,a)

 ,

Pa =


p(1|1, a) p(2|1, a) . . . p(N |1, a)
p(1|2, a) p(2|2, a) . . . p(N |2, a)

. . . . . .

. . . . . .

. . . . . .
p(1|N, a) p(2|N, a) . . . p(N |N, a)

 (4)

not solve the problem of dimension. But recent improve-
ments in LP solvers makes it an attractive alternative.
Further and more importantly the LP based approach
extends easily and provides solutions for constrained
MDPs.

In the coming sections, as in the case of linear MDP
(see for e.g., [6]), we will obtain two relevant LPs (a
primal and a dual LP). The solution of the primal LP
will be the translated value function vector, u∗, which is
the function value on the left hand side (LHS) of the DP
equation (6), at the optimizer(s). On the other hand the
solution of the dual LP will directly provide the optimal
policy Π∗ ∈ D of the control problem (3).

We begin with introducing some more notations. Let
N be the number of elements of the state space and
without loss of generality let X = {1, · · · , N}. Let
ut = [ut(1) · · · , ut(N)] represent an N dimensional
vector indexed by time t, indicative of the possible
value function for different states at time t. And let
the combined vector that includes the value function for
all combinations of time slots and states be rewritten as
below:

u = {ut(x); t < T, x ∈ X} = [u0,u1,u2, · · · ,uT−1].

Define the operator that operates on the combined vector
u by:

Lu = [L0u, L1u, · · · , LT−1u] where

Ltu := inf
πt

∑
a

Ct,πt,aPaut+1 (7)

with the matrices Ct,πt,a, Pa are defined using (4),
placed at the top of the page and uT = {uT (x);x ∈
X} is given by equation (5). The above operator is
constructed using the right hand side (RHS) of the
DP equation (6). We now have the following theorems
(whose proofs are in Appendix):

Theorem 1: Any vector u with Lu ≥ u (the compo-
nent wise inequality), satisfies: u∗ ≥ u.

Theorem 2: Any vector u with Lu ≤ u, satisfies:
u∗ ≤ u.

Any vector u that satisfies the constraint, Lu ≥ u,
i.e., when

ut ≤
∑
a

Ct,πt,aPaut+1 for all t and πt ∈ Π, (8)

by Theorem 1, is lower than the value function of risk
MDP, u∗. It is trivial to check that u∗ also satisfies
(8). Thus it is the greatest lower bound among all
vectors that satisfy (8). Hence we have the following
LP for primal. Following similar procedure as in ([6]),
we chose a nonnegative vector α(x), x ∈ X that
satisfies

∑
x∈X α(x) = 1. Using this one can obtain an

equivalent LP, whose solution equals the value function
vector u∗.

Primal Linear Program

max
{{ut(x)}x∈X ,t≤T−1}

∑
x∈X

α(x)u0(x)

subject to: uT−1(x) ≤ bx,a for all x, a,

ut(x)− ert(x,a)
∑
x′∈X

p(x′|x, a)ut+1(x′) ≤ 0

for all a, x and t ≤ T − 2

with bx,a := erT−1(x,a)
∑
x′∈X

p(x′|x, a)erT (x′).

The vector α can be interpreted as the distribution of
initial state, X0. The dual of the above LP, is given by:
Dual Linear Program

min
y={y(t,x,a);t≤T−1,x∈X ,a∈A}

∑
a

∑
x∈X

bx,a y(T − 1, x, a)

subject to:∑
a

y(0, x′, a) = α(x′) for all x′ ∈ X , (9)∑
a

y(t, x′, a) =
∑
a

∑
x

ert−1(x,a)p(x′|x, a)y(t− 1, x, a)

for all 1 ≤ t ≤ T − 1 and x′ ∈ X . (10)



Below we give a series of results connecting the dual LP
(9) and the translated risk MDP (6). Some of the proofs
and results of this section have similar structure as that
given in [6]. However there are significant changes due
to risk sensitive nature of the cost.

A. Feasible region F and the set of risk policies D:

We say that a vector y is feasible if it satisfies the dual
constraints (9), (10) and let F represent this feasible
region. We first show a one to one correspondence
between the two spaces, F and D.

Theorem 3: (i) For any policy Π ∈ D of risk MDP,
there exists a vector yΠ which satisfies all the constraints
of dual LP (9), i.e., yΠ ∈ F . The feasible vector is given
by the equation (see (1)):

yΠ(0, x0, a0) = α(x0)π0(x0, a0) for all x0 ∈ X , a0 ∈ A,
yΠ(t, xt, at)

=
∑

at−1
0 ,st−1

0

α(x0)e
∑t−1

n=0 rn(xn,an) Πt
n=0 q

Π
n (xn, an|xn−1, an−1)

for all xt ∈ X , at ∈ A, and 1 ≤ t < T.

(11)

In the above we define

qπ0 (x0, a0|x−1, a−1) := π0(x0, a0).

(ii) Given a vector y ∈ F , define a policy Πy using the
following rule:

πy,t(x, a) :=
y(t, x, a)∑
a′ y(t, x, a′)

for all x ∈ X , and a ∈ A. (12)

The vector yΠy defined by equation (11) of point (i) is
again in feasible region and equals y.
Proof: The proof is provided in Appendix. �

B. Expectation at optimal policy:

To obtain the connection between risk MDP problem
and the dual LP, one needs to study the connection
between the risk sensitive cost for a given policy Π
and the dual objective function at the feasible point yΠ,
defined using Π. We also require similar connecting be-
tween the feasible point y and the corresponding policy
Πy. Further, we would like to solve constrained risk
sensitive MDP problems (in section IV). The constraints
usually bound the expected value of some function of
the state, action random trajectories. In all, we require
the expression for the expected value of a given function,
in terms of the dual variable y ∈ F . As a first step, we
have the following, with proof in Appendix:

Lemma 1: Let X0 ∼ α. For any feasible point y of
dual LP, integrable function f and t < T∑
x,a

y(t, x, a)f(x, a) = Eα,Πy
[
Ψ−1
t f(Xt, At)

]
with

Ψt := e−
∑t−1

n=0 rn(Xn,An). (13)

Further, for any integrable function f of the last two
states XT−1, XT and the final action AT−1, we have:∑
x,a,x′

y(T − 1, x, a)p(x′|x, a)f(x, a, x′)

= Eα,Πy
[
Ψ−1
T−1 f(XT−1, AT−1, XT )

]
. (14)

�
We have the same result when we replace y, Πy with

yΠ, Π respectively, following exactly similar steps as in
the previous theorem.

Lemma 2: For any policy Π ∈ D of risk MDP and
for any integrable function f , we have:∑
x,a,x′

yΠ(T − 1, x, a)p(x′|x, a)f(x, a, x′)

= Eα,Π
[
Ψ−1
T−1f(XT−1, AT−1, XT )

]
. (15)

�
If we use the above theorem with the function,

f(x, a, x′) = erT−1(x,a)erT (x′),

we obtain the following for any (y,Πy):∑
x,a

y(T − 1, x, a)
∑
x′

p(x′|x, a)erT−1(x,a)erT (x′)

= Eα,Πy

[
e
∑T−1

n=0 rn(Xn,An)erT (XT )
]
.

Note that the LHS is the dual objective (9) at point y
and RHS is the risk cost at policy Πy. This is the basic
element in proving the equivalence of optimal policies
and optimal dual solutions, given below.

C. Optimal policies and the dual solutions

The following theorem shows the relation between the
two optimizers (proof in Appendix).

Theorem 4: (a) If y∗ is an optimal solution of the
dual LP, then Πy∗ defined by (12) is an optimal policy
for risk MDP.

(b) If Π∗ is an optimal policy for risk MDP, then
yΠ∗ is an optimal solution of the dual LP. �

IV. CONSTRAINED RISK MDP

We now consider a constrained MDP problem, with
an additional constraint as given below:

min
Π
J0(α,Π) (16)

Subject to:
∑
t

Eα,Π [ft(Xt, At)] ≤ B,

for some set of integrable functions {ft}, initial distri-
bution α and bound B. The equation (13) of Lemma
1 could have been useful in obtaining the expectation
defining the constraint, but for the extra factor Ψ−1

t , as
seen from the RHS of the equation (13). We propose
to add Ψt as additional state component to the original
Markov chain {Xt} to tackle this problem. We con-
sider a two component Markov chain {(Xt,Ψt)} and



the corresponding probability transition matrix depends
explicitly upon time index as below:

p̃t+1(x′, ψ′t+1|x, ψt, a) = 1{ψ′t+1=ψte−rt(x,a)}p(x
′|x, a).

With the introduction of the new state component, for
any dual LP feasible point y we have:∑
x,ψt,a

y(t, x, ψt, a)ψt f(x, a) = Eα,Πy [f(Xt, At)] . (17)

Thus one can obtain optimal policy of constrained risk
MDP (16) by considering an additional state component
and by adding an extra constraint to the dual LP (9) as
below:

min
∑
a

∑
x

erT−1(x,a)

[∑
x′∈X

p(x′|x, a)erT (x′)

]
y(T − 1, x, a)

(18)

subject to:

y(t, x, a) =
∑
ψt

y(t, x, ψt, a) for all t∑
a

y(0, x, ψ0, a) = α(x)1{ψ0=1} for all x, ψ0∑
a

y(t, x′, ψ′t, a) =∑
a,x,ψt−1

ert−1(x,a)p̃(x′, ψ′t|x, ψt−1, a)y(t− 1, x, ψt−1, a)

for all 1 ≤ t ≤ T − 1 and x′, ψ′t and∑
t

∑
x,ψt,a

y(t, x, ψt, a)ψtft(x, a) ≤ B.

We would like to mention here that ψ0 = 1 is always
initialized to one, Ψ1 can take at maximum |X | × |A|
values while Ψt for any t can take at maximum |X |t ×
|A|t possible values. There will also be considerable
deletions if the concerned mapping

(at0,x
t
0) 7→ e−

∑t
n=0 rn(xn,an)

is not one-one. One needs to consider this time depen-
dent state space while solving the dual LP given above
and we omit the discussion of these obvious details.

V. APPLICATIONS

In [11], we applied LP based approach to solve a
constrained risk sensitive cost that arises naturally in
the context of Delay Sensitive Networks (DTNs). The
probability of message delivery failure with exponen-
tially distributed contacts turns out to have a risk sensi-
tive form. The direct solution to the power constrained
problem works significantly superior in comparison with
the solution obtained for a model with soft constraints.

In this paper we consider another example, which
investigates the effect of risk sensitive cost on optimal
policy. As the risk factor increases, the optimal policies
are no more monotone.

A. Queueing with losses
We consider a queueing system with two possible

service options. The fast service facility offers service
at rate µ1 and is expensive, while the service rate of the
slower one is µ0 with µ0 < µ1. The system can support
at maximum N jobs in parallel and any job arrival that
finds all the N servers busy, leaves the system without
service. Aim is to utilize the fast service facility in an
optimal manner which minimizes the total number of
jobs lost in a given time horizon, while maintaining the
utilization of the fast service facility within a given limit.

We consider a queueing system with Bernoulli ar-
rivals. In every time slot (of unit duration), a customer
arrives with probability δ and there is no arrival with
probability 1−δ. The job demands are exponentially dis-
tributed with parameter µ1 (parameter µ0) when served
by the fast (slow) server. Let Xt represent the number of
customers in the system and let At be the indicator of the
service type used in time slot t. The flag At = 1 implies
faster service facility is used across all the servers, while
At = 0 implies the use of slower service facility. A
customer leaves the system after service completion, in
one time slot with probability 1−ΘAt where

Θa := e−µa , µa := µ11{a=1} + µ01{a=0}.

Thus the transition probability matrix of this controlled
Markov chain is given by

p(x′|x, a)

=



ΘN
a + δNΘN−1

a (1−Θa) if x′ = x = N

δΘx
a1{x<N} if x′ = x+ 1

(1− δ)(1−Θa)x if x′ = 0

δ

(
x

x′ − 1

)
Θx′−1
a (1−Θa)x−x

′+1

+(1− δ)
(
x
x′

)
Θx′
a (1−Θa)x−x

′
if 0 < x′ ≤ x

0 else.

With Gt representing the flag indicating the arrival of
a customer in time slot t, the total number of customers
lost in a total of T time slots is given by:

T∑
t=0

1{Xt=N}Gt

and we are interested in minimizing the corresponding
risk sensitive cost for a given risk parameter γ

J(x,Π) = Ex,Π
[
eγ

∑T
t=0 1{Xt=N}Gt

]
.

Theorem 5: The required risk sensitive cost has a
simpler form as below:

J(x,Π) = Ex,Π
[
eβ

∑T
t=0 1{Xt=N}

]
with

β = ln (δeγ + (1− δ)) . (19)



Proof : Note that the arrivals in the time slots with
Xt = N are lost, because all the servers are busy. These
arrivals does not change the number in the system in the
next time slot Xt+1 and hence are independent of the
system evolution. By conditioning on the Markov chain
trajectory {Xt}Tt=0 and because of the independence just
discussed above, we have:

J(x,Π) = Ex,Π
[
gδ

∑T
t=0 1{Xt=N}

]
with gδ := E

[
eγGt

]
.

Let β := ln(gδ), so that eβ = gδ. �
We would like to optimize the above risk sensitive

cost under the following constraint for a given utilization
bound B:

Ex,Π

[
T∑
t=0

1{At=1}Xt

]
≤ B.

Basically when fast facility is chosen as option in any
time slot, Xt number of servers are using fast facility
and hence the above constraint.

Numerical analysis

We obtain the optimal policy for the above queueing
based control problem,

min
Π
Ex,Π

[
eβ

∑T
t=0 1{Xt=N}

]
such that

Ex,Π

[
T∑
t=0

1{At=1}Xt

]
≤ B,

by solving the corresponding LP (18), where β depends
upon the risk parameter γ as given by Theorem 5. We
did most of the coding in Matlab except for the LP part.
We used AMPL to model the LP and Gurobi solver to
solve the LP. The solution y∗ of the LP provides the
optimal policy Πy∗ as given by equation (12).

In Figure 1, we consider a system with 3 servers. We
plot the optimal policy for two values of γ. The optimal
policy with x = 0 (i.e., with no customers in the system)
has no impact as the server(s) are not utilized. With both
values of γ, the optimal policy with one customer in the
system, i.e., with x = 1, is to switch off the fast serve
facility at all time slots. But there is a big difference
for the remaining two states x = 2, 3 and these policies
are plotted in the figure. We plot the probability of fast
service, as dictated by optimal policy, with states x =
2 and x = 3 across the time slots. When γ = 0.001,
the optimal policies are threshold type. With x = 2 it
switches off the fast facility at 5th time slot, while with
x = 3 it switches off at the 2nd time slot. The risk cost is
close to the linear cost with small values of risk factor γ,
the optimal policies are well understood to be threshold
type for linear control and this explains the figure for
the case with γ = 0.001.

With γ = 2, the risk optimal policies are no more
threshold. In fact they are not even monotone as seen

2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Time epochs

Pr
ob

ab
ili

ty
 o

f f
as

t s
er

vi
ce

, a
t Π

*

 

 

π*
t
(2,1), γ = 2

π*
t
(3,1), γ = 2

π*
t
(2,1), γ = 0.001

π*
t
(3,1), γ = 0.001

γ = 0.001

 γ = 2

Fig. 1. Optimal policy with T = 10, N = 3, µ1 = 0.3, µ0 = 0.1
and B = 2.5. For x = 1 optimal policy always uses slow server.

from the Figure 1. Further, the probability of fast service
is higher at smaller states (x = 2) with small γ, while the
opposite is true when γ = 2. With larger importance to
risk cost, the policy is more cautious at the points of high
risk, i.e., when x = 3. We estimate the average number
of customers lost, at optimal policy, using Lemma 1 as
below:

Ex,Π
∗
[Nlost] = Ex,Π

∗

[∑
t

1{Xt=N}Gt

]
=

∑
t

∑
x,a,ψt

y∗(t, x, a)ψt1{x=N}δ.

The average number lost equals 1.37 and 1.45 respec-
tively at γ = 0.01 and 2. This is obvious because with
high risk factor, the importance is drifted away from the
average number lost.

We considered many more numerical examples and
found similar characterization of the optimal policies.

CONCLUSIONS

We consider a finite horizon risk MDP problem and
establish the connections between the DP and LP ap-
proaches. We show that the solution of the unconstrained
risk MDP problem (3) can be obtained via the solution of
any one of the two LPs, a primal and a dual. The primal
solution provides the value function while the dual
solution directly provides the risk optimal policy. It is not
straightforward to extend the solution to the constrained
risk MDP problem. We augment the state space with
a suitable component, that at any time slot captures
the effect of the risk cost until that slot. We propose
a third LP using the augmented state space transitions,
which provides the solution to the constrained risk MDP
problem.

We apply the results so obtained, to study the server
selection problem in the context of Bernoulli queues with
losses. Our aim is to minimize the number of customers
lost, i.e., returned without service. We consider mini-
mizing the risk version of the cost and optimize it under



a fast server utilization constraint. The optimal policy
is a threshold policy when the risk factors are close to
zero. It is well known that the risk MDP is close to the
linear MDP with small risk factors and hence a threshold
policy is anticipated. However, with large risk factors
the risk optimal policy is no longer threshold type. The
policies are not even monotone. Further we notice that
the probability of choosing fast server is higher at larger
states. With higher preference to risk cost, the policy
emphasizes utilization of the fast server at high risk
states, the larger states.

Thus the proposed LPs are useful in obtaining the
solutions of the constrained/ unconstrained finite horizon
risk MDPs.
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APPENDIX: PROOFS

The proofs of this section follow similar structure as
given in [6]. However there are significant changes due
to risk sensitive nature of the cost.

Proof of Theorem 1: Consider any vector u satisfying
u ≤ Lu. Consider any policy Π′ = [π′0, π

′
1, · · · , π′T−1].

By definition of the operator L

u0 ≤ inf
π0

{∑
a0

C0,a0,π0Pa0u1

}
(20)

≤
∑
a0

C0,a0,π
′
0
Pa0u1

≤
∑
a0

C0,a0,π
′
0
Pa0

∑
a1

C1,a1,π
′
1
Pa1u2

...
≤
∑
aT−1
0

C0,a0,π
′
0
Pa0C1,a1,π

′
1
Pa1 · · ·CT−1,aT−1,π

′
T−1

PaT−1uT

= J0(Π′) with J0(Π′) :=


J0(1,Π′)
J0(2,Π′)
...
J0(N,Π′)

 . (21)

This is true for any policy Π′. Thus

u0 ≤ inf
Π′

J0(Π′) = u∗0.

Following exactly similar logic one can show for all 1 ≤
t < T that

ut ≤ u∗t . �

Proof of Theorem 2:
Let us consider any vector u which satisfies u ≥ Lu.
By definition of L:

u0≥ inf
π0

{∑
a0

C0,a0,π0
Pa0u1

}
(22)

Consider any ε0 ≥ 0, by definition of infimum there
exists a policy π′0 such that:

u0 ≥
∑
a0

C0,a0,π′0
Pa0u1 − ε0

By boundedness of the matrices (finite states and actions)
involved and further choosing the policies π′1, π′2 etc.,
inductively we obtain the following for any increasing
sequence of {εi} and with ε = εT−1:

u0≥
∑
a0

C0,a0,π
′
0
Pa0

∑
a1

C1,a1,π
′
1
Pa1u2 − ε1

...
≥
∑
aT−1
0

C0,a0,π
′
0
Pa0C1,a1,π

′
1
Pa1 · · ·CT−1,aT−1,π

′
T−1

PaT−1uT − ε

Note in the above that, for example, ε1 is chosen such
that (for appropriate choice of ε′1):

ε1 ≥
∑
a0

C0,a0,π′0
Pa0ε

′
1 + ε0.

Thus as in the proof of the previous theorem,

u0

≥
∑
aT−1
0

C0,a0,π
′
0
Pa0C1,a1,π

′
1
Pa1 · · ·CT−1,aT−1,π

′
T−1

PaT−1uT − ε

=J0(Π′)− ε with Π′ = [π′0, π
′
1, · · · , π′T−1].

Thus

u0 ≥ J0(Π′)− ε ≥ inf
Π

J0(Π)− ε = u∗0 − ε.

Thus for any ε > 0 one can chose appropriate increasing
sequence of {εi} such that

u0 ≥ u∗0 − ε.

Since ε > 0 is arbitrary, consider the limit ε → 0 and
hence

u0 ≥ u∗0.

Following exactly similar logic one can show for all 1 ≤
t < T that

ut ≥ u∗t . �

Proof of Theorem 3:
It is easy to see that the defined point yΠ satisfies the
first constraint (9), as by definition for all x0∑

a0

yΠ(0, x0, a0) =
∑
a0

α(x0)π0(x0, a0) = α(x0).

Define

∆t
Π :=

t∏
n=0

qΠ
n (xn, an|xn−1, an−1)e

∑t−1
n=0 rn(xn,an).

Note that ∆t
Π depends upon the vectors at0,x

t
0. Using

the above definition, we can rewrite



yΠ(t, x, a) =
∑

at−1
0 xt−1

0

α(x0)∆t
Π.

To simplify the notations, we represent the action state
pair by zt := (xt, at), for every t. Considering the right
hand side (RHS) of the second constraint (10):

∑
zt−1=(xt−1,at−1)

ert−1(zt−1)p(xt|zt−1)yΠ(t− 1, zt−1)

=
∑
zt−1

ert−1(zt−1)p(xt|zt−1)
∑

zt−2
0 =(at−2

0 xt−2
0 )

α(x0)∆t−1
Π

=
∑
zt−1
0

ert−1(zt−1)α(x0)∆t−1
Π

∑
at

πt(zt)p(xt|zt−1)

=
∑
at

∑
zt−1
0

α(x0)

(
ert−1(zt−1)∆t−1

Π qΠ
t (zt|zt−1)

)

=
∑
at

∑
zt−1
0

α(x0)∆t
Π =

∑
at

yΠ(t, zt).

Hence the point yΠ satisfies the second constraint (10).

Part (ii): Consider any y ∈ F , the policy Πy defined as
in (12) and then the point yΠy defined using policy Πy

as in (11). Aim is to prove that

y(t, zt) = yΠy(t, zt) for all t ≤ T − 1, xt ∈ X , at ∈ A.

Fix (t, zt). As in previous proof, define

∆k,t
Π :=

t∏
n=k

qΠ
n (zn|zn−1)e

∑t−1
n=k rn(zn)

now including the starting time k. Since y ∈ F , it
satisfies (9) and by definition (12) of Πy we have:

yΠy (t, zt) =
∑
zt−1
0

α(x0)∆0,t
Π

=
∑
zt−1
0

∆1,t
Π α(x0)er0(z0)πy,0(z0)

=
∑
zt−1
0

∆1,t
Π α(x0)er0(z0) y(0, z0)∑

a′0
y(0, x0, a′0)

; using (12)

=
∑
zt−1
0

∆1,t
Π er0(z0)y(0, z0); using (9).

Further expanding ∆1,t
Π = ∆2,t

Π er1(z1)qΠ
1 (z1|z0) and

simplifying as before, we reduce one pair of elements

(z0) in the summation:

yΠy (t, zt) =
∑
zt−1
1

∆2,t
Π er1(z1)

∑
z0

er0(z0)qΠ
1 (z1|z0)y(0, z0)

=
∑
zt−1
1

∆2,t
Π er1(z1)πy,1(z1)

∑
z0

er0(z0)p(x1|z0)y(0, z0)

=
∑
zt−1
1

∆2,t
Π er1(z1)πy,1(z1)

∑
a′1

y(1, x1, a
′
1); using (10)

=
∑
zt−1
1

∆2,t
Π er1(z1) y(1, z1)∑

a′1
y(1, x1, a′1)

∑
a′1

y(1, x1, a
′
1); using (12)

=
∑
zt−1
1

∆2,t
Π er1(z1)y(1, z1).

Proceeding in a similar way, we reduce one more pair
of elements z1 = (x1, a1) summation, that is:

yΠy (t, zt) =
∑
zt−1
2

∆3,t
Π er2(z2)

∑
z1

er1(z1)qΠ
2 (z2|z1)y(1, z1)

=
∑
zt−1
2

∆3,t
Π er2(z2)πy,2(z2)

∑
z1

er1(z1)p(x2|z1)y(1, z1)

=
∑
zt−1
2

∆3,t
Π er2(z2)πy,2(z2)

∑
a′2

y(2, x2, a
′
2);

using (10)

=
∑
zt−1
2

∆3,t
Π er2(z2) y(2, z2)∑

a′2
y(2, x2, a′2)

∑
a′2

y(2, x2, a
′
2)

=
∑
zt−1
2

∆3,t
Π er2(z2)y(2, z2).

Repeating exactly the same steps, we eliminate all the
terms till and including (zt−2), to obtain the following
(note that ∆t,t

Π = qΠ
t (zt|zt−1)):

yΠy(t, zt)

=
∑
zt−1

qΠ
t (zt|zt−1)ert−1(zt−1)y(t− 1, zt−1)

= πt(zt)
∑
zt−1

ert−1(zt−1)p(xt|zt−1)y(t− 1, zt−1)

=
y(t, zt)∑

a′t
y(t, xt, a′t)

∑
a′t

y(t, xt, a
′
t); using (10)

= y(t, zt).

This is true for all t ≤ T − 1. �
Proof of Lemma 1: By Theorem (3), y(t, zt) =

yΠX
(t, zt) for any t < T . Further, using the definition

of yΠX
(t, zt) from (10), one can rewrite left hand side



(LHS) of (13)∑
zt

y(t, zt)f(zt)

=
∑
zt

yΠX (t, zt)f(zt)

=
∑
zt

f(zt)
∑
zt−1
0

α(x0)

t∏
n=0

qΠ
n (zn|zn−1)e

∑t−1
n=0 rn(zn)

=
∑
zt0

(
f(zt)e

∑t−1
n=0 rn(zn)

)
α(x0)

t∏
n=0

qΠ
n (zn|zn−1)

=EΠy

[
e
∑t−1

n=0 rn(Xn,An)f(Xt, At)
]

for any t < T.

One can get the second result (14) in exactly similar
lines. �

Proof of Theorem (4): We begin with proof of (a).
Let g(y) represent the dual objective (see (9)), for any
y ∈ F , i.e.,

g(y) :=
∑
aT−1

∑
xT−1

erT−1(zT−1)

[ ∑
xT∈X

p(xT |zT−1)erT (xT )

]
y(T − 1, zT−1).

Let y∗ be an optimal solution of the dual LP, and let Πy∗

be the corresponding policy given by (12). By optimality
and because of equation (15), for any Π ∈ D:

Eα,Π
[
e
∑T−1

n=t rn(Xn,An)+rT (XT )
]

= g(yΠ)

≥ g(y∗)

= Eα,Πy∗
[
e
∑T−1

n=t rn(Xn,An)+rT (XT )
]
,

establishing the required optimality.
Part (b) can be proved in a similar way. �
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