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Abstract—We discuss the idea of differential fairness in polling
systems. One such example scenario is: primary customers
demand certain Quality of Service (QoS) and the idea is to
utilize the surplus server capacity to serve a secondary class of
customers. We use achievable region approach for this. Towards
this, we consider a two queue polling system and study its
‘approximate achievable region’ using a new class of delay
priority kind of schedulers. We obtain this approximate region,
via a limit polling system with fluid queues. The approximation is
accurate in the limit when the arrival rates and the service rates
converge towards infinity while maintaining the load factor and
the ratio of arrival rates fixed. We show that the set of proposed
schedulers and the exhaustive schedulers form a complete class:
every point in the region is achieved by one of those schedulers.
It is well known that exhaustive service policy optimizes system
performances like unfinished work. In this paper, we show that
it is also optimal from the perspective of individual queues.

We further pose two constrained optimization problems: a) ad-
mission control, wherein the arrival rates of secondary customers
is optimally designed; b) maximizing the revenue considering
the losses when secondary arrival rate is fixed. We finally show
that exhaustive service discipline at each queue turns out to be
optimal.

Index Terms—Polling systems, achievable region, dynamic
scheduling, fluid queues

I. INTRODUCTION

Polling systems are special class of queueing systems where
a single server visits a set of queues in some order and
takes non-zero time to walk/switch between queues. This
special class has acquired significant importance in queueing
theory due to its wide range of applications in communication
systems, production systems, traffic and transportation systems
[1]. Analysis of polling systems started in early 1970’s when
cyclic polling systems was first used to model time sharing
computer systems [2]. A rich literature in this field has
evolved since then. Pseudo-conservation laws [3] are derived
for various scheduling policies. Some dominance relations in
polling systems can be seen in [4]. Extensive research is done
in both discrete and continuous polling models (see [2], [5],
[3], [1] etc., and references therein).

Many problems in wireless communications can be studied
using polling systems. For example, consider a cognitive radio
type scenario in which a network is providing service to
primary customers. We consider a slightly modified approach,
wherein, the primary customers are satisfied as long as their
demands are fulfilled within a guaranteed average waiting
time. The network now can utilize the surplus capacity (the
spectrum, time slots etc.,) to serve a secondary set of users,

while maintaining the QoS requirements of primary customers.
One can model this scenario with polling systems, when it
takes non-zero time to switch the services between the two
classes of customers. Another example scenario is that of data
and voice users utilizing the same wireless network. In this
case, the network needs to maintain the drop probability of
the impatient voice customers (who drop calls if not picked-up
within a negligible waiting times) below an acceptable level.
Alongside, it also needs to optimize the expected sojourn times
of the data calls.

Polling systems can be categorized on the basis of different
queue elements [11]. There are different types of switching
disciplines possible: exhaustive, 1-exhaustive, gated, globally
gated, absolute priority etc. Once server reaches queue there
can be various queue disciplines: FCFS ((First Come First
Serve), LCFS (Last Come First Serve), SJF (Shortest Job
First), random order, processor sharing etc. Switching times
can be random or deterministic and switching order can be
cyclic or random or table based and so on.

Notion of fairness is well studied in literature (see [13],
[14], [16], [17] etc.,). Proportional fairness idea is introduced
by Kelly et. al., in [15] and a recent survey for various aspects
of fairness (for work conserving queuing systems as well as
for polling systems) can be seen in [13]. Here they mainly
discuss the fairness based on the job-size of the customer. Raz
et al., in [20], propose ‘Resource Allocation Queuing Fairness
Measure’ to measure fairness in allocation of system resources.
They argued that LCFS is the least ’fair’ service discipline
while processor sharing the most fair service discipline with
respect to the measure proposed by them. Fairness by giving
priority to low load customers was discussed in [17], in the
context of internet users.

In [22], fairness is achieved for under privileged users
(e.g., users far away from the ‘wireless’ service provider) via
a constrained optimization (the users were guaranteed some
minimum QoS) and is achieved using priority schedulers. The
same idea is applicable even if a certain class of customers
require a QoS larger than what they would have achieved in
a social optimal solution. We refer this idea as differential
fairness, wherein, in a system with N customer classes, n
classes of customers demand/require a certain level of Quality
of Service (QoS) while the performance of the remaining
N −n classes of customers need to be optimized. Differential
fairness concept could be applied in various contexts: a)
application driven, for e.g., voice calls need to be picked within



negligible waiting periods while data calls can tolerate delays;
b) price driven, for e.g., certain class of customers can pay
higher money to get better QoS; c) market driven, for e.g.,
if the plant has to manufacture different varieties of items
priority is given to the items whose demand is more etc. It
is not a completely new concept, and is proposed in several
other contexts (e.g., wireless communications) but here we are
trying to generalize this concept to polling systems.

Achievable region approach is one of the popular techniques
to solve optimization problems (see for e.g., [6], [7], [8], [10],
[21] etc.,). A vast community of researchers have focused
in characterizing the achievable region of mean waiting time
for a work conserving queue. Coffman and Mitrani [6] were
the first to identify such regions when they identified it for
multiclass M/M/1 queue with pre-emptive priority discipline.
Further structure of such achievable region is studied by many
authors [7] [8]. It was identified for work conserving multi
class single server priority queue that achievable region is
bounded and forms a polytope (e.g., [6], [21]). Note that
polling systems are non work conserving queues as server
may not serve any customer while walking. Bertsimas et.al.,
[9] obtained the bounds on performance of an optimal policy
and developed optimal or near-optimal policies for non-work
conserving polling systems, multi-class queuing systems etc.
Achievable region approach has also been used for optimal
control of stochastic systems [10].

A. Main Contribution

We attempt to solve an example differential fairness problem
(utilizing surplus capacity), via achievable region approach.
A new class of parametrized schedulers are proposed, which
determine the switching decision between queues, and with
the motivation of finding the achievable region. These sched-
ulers are inspired by delay priority schedulers proposed by
Kleinrock [18], (see also [19]) for muti-class work conserving
queuing systems. We extend these schedulers to non-work
conserving, polling systems and parametrize them using β =
(β1, β2): βi is the parameter used when switching decision
has to be made while serving at queue i.

We consider well known fluid queues to study this problem
(see for e.g., [10], [12] etc.,). We refer these as steady state
fluid model (SSFM), as these models facilitate steady state
analysis and are useful when the system behaves periodically
as in the example case of polling systems. By SSFM we
refer two queue polling system with continuous, deterministic
arrival and departure flows. Departure flow at a queue is
switched on only when the server is at that queue. We analyzed
these fluid models, when switching policies are given by the
proposed (β1, β2) schedulers. We obtained stability conditions
and closed form expressions of stationary performance mea-
sures for the deterministic fluid model. We also obtained the
achievable region of waiting times which turned out to be
unbounded.

We conjecture that the performance analysis of a random
system (one with discrete arrivals) converges to that of the
SSFM, as the arrival and service rates converge to infinity

while maintaining certain ratios constant. Some initial ideas
are discussed in Appendix B. Thus we have the approximate
achievable region for random systems with large arrival and
departure rates and this fact is illustrated via numerical exam-
ples.

We consider two relevant differential fairness problems. In
both the problems, exhaustive service discipline turns out to
be the optimal policy, which both satisfies the QoS constraint
at the primary queue and optimizes the performance at the
other queue. One of the important conclusions of this study
is that for the systems with high arrival and departure rates
the exhaustive policy turns out to be the optimal solution.
However this may not be the case for systems with moderate
arrival rates, which are drastically different from fluid models.
We already have some initial observations in this direction and
this is the topic of future research.

B. Paper Organization

This paper is organized as follows. Sections II ,III describe
model setting and (β1, β2) schedulers. Section V presents
complete analysis of deterministic fluid queues. We also
discuss stability conditions, stationary performance measure
and achievable region of such system in this section. Some
proofs are available in Appendix.

II. PROBLEM DESCRIPTION: DIFFERENTIAL FAIRNESS

Consider a queueing system offering service to a primary
class of customers. The system is operating in stable regime,
while maintaining certain demanded QoS defined in terms of
average waiting time. Operating in stable conditions implies
the system is under utilizing its capacity (the service rate
has to be less than the arrival rate). The service provider
wants to utilize the surplus capacity to derive additional
income from secondary set of customers and this has to be
done, while maintaining the QoS of the primary customers.
This is a two class scenario in which differential fairness
is to be implemented and we achieve this via the following
optimization problem:

Optimize F(w̄1, w̄2) (1)
Subject to: w̄1 ≤ η1, (2)

where w̄1, w̄2 are the mean waiting times of class 1 and class 2
customers respectively, F is an appropriate function of average
waiting times and the allowed/admissible arrival rates of the
the two classes and some other relevant factors. In this paper,
we consider two examples of the above problem in Section
VI. We assume that it takes non zero time to switch services
from one class to the other and hence study this problem in
the context of polling systems.

III. SYSTEM MODEL AND OUR APPROACH

We consider two queue, (Q1,Q2), single server polling
system. Let λi and µi be the arrival and service rates re-
spectively of Qi; i = 1, 2. Let S denote the random time
required by server to switch from one queue to another. The
sequence of consecutive switching times {Sk}k are assumed to



be an independent and identically distributed (IID) sequence
with mean s. Both the queues have infinite buffer capacity.
FCFS and Non-preemptive queue discipline is used within
a class. Customers leave system only when their service is
completed. Once server reaches a queue, at least one customer
is served. We consider those class of switching/scheduling
policies, which are employed at every departure epoch, which
can possibly depend upon the state of the system and which
are time invariant/stationary. That is, these policies can depend
for example upon the number of waiting customers in each
queue, or the waiting time of the longest waiting customers
etc., but do not depend upon the number of times the server
has visited a queue. The system utilization factor ρ = ρ1 + ρ2

with ρi = λi/µi for each i.
We use achievable region based approach to solve (1).

Achievable region for two queue polling system is defined
as:

A = {(w̄1, w̄2) : β is any stationary scheduling policy}.

And now the problem (1) is equivalent to

Optimize(w̄1,w̄2)∈AF(w̄1, w̄2) s.t. w̄1 ≤ η1.

If a class B of schedulers is complete, i.e., if every pair
(w̄1, w̄2) ∈ A is achieved by a scheduler policy β ∈ B, then
the problem (1) is equivalent to

Optimizeβ∈BF(w̄1(β), w̄2(β)) s.t. w̄1(β) ≤ η1.

Motivated by Kleinrock’s ([18]) delay priority queues, we
introduce a class of priority type schedulers parametrized by
parameter β := (β1, β2), which along with exhaustive policy
will be shown to be complete (in coming sections). Here βi
is delay priority parameter associated with Qi and index −i
represents the label of other queue (when i = 1, −i = 2
and when i = 2, −i = 1). To include exhaustive policies,
we let βi take value in Re = R ∪ {ex}. Let w̃i and w̃−i be
the waiting time of longest waiting customer in Qi and Q−i
respectively. Switching decision is taken at every departure
epoch and it depends upon the queue in which the server is
currently working. When in Qi, switching rule β = (β1, β2)
implies the following scheduling decisions:

1) When βi = ex switch from Qi, when Qi is empty.
2) When βi 6= ex switch from Qi, when w̃iβi ≤ w̃−i.
Note that (ex, β1) is the scheduler where exhaustive policy

is implemented at Q1 while priority type policy is imple-
mented in Q2. Now define:

BP ≡ {β = (β1, β2) : β1, β2 ∈ Re}.

We will show that BP is a complete class of schedulers for
an ‘approximate’ achievable region of the two class polling
system. We also obtain approximate performance (average
waiting times (w̄1, w̄2)) for each scheduler of BP . We argue
that these approximations are achieved asymptotically as the
arrival and service rates increase towards infinity. Considering
two problems of the type (1), that of admission control and
revenue optimization, we obtain optimal scheduling policies
using BP .

IV. CONVERGENCE OF RANDOM SYSTEM

In this paper, we consider scenarios with high traffic and
service rates. Some examples of such scenarios are, road traffic
coming from different directions, manufacturing units for dif-
ferent types of items, packet level arrivals in a communication
systems from higher layers. We obtain the asymptotic analysis
in the limit µ → ∞ with ratios ρ := (λ1 + λ2)/µ and
ν := λ1/λ2 fixed. We will also require the switching times S
to converge towards their mean s as µ→∞. Our conjecture
is that the performance measures of the random system con-
verges towards that of a limit system which is deterministic.
In this section, we discuss the supporting arguments for this
conjecture.

To begin with, we make an observation: the random system
converges towards a limiting and deterministic fluid queue
system. Let {Aλin,i}n represent the successive inter-arrival
times of customers of queue Qi. Let Λλi(t) represent the
number of arrivals in time [0, t] when the arrival rate is λi:

Λλi(t) = sup
k

{
k∑

n=1

Aλin,i ≤ t

}
.

We assume inter arrival times {Aλin,i} are IID with mean
equal to 1/λi. Let Γµ(t) represent the number of uninterrupted
services in time [0, t], i.e., the number of services completed
if service was offered without a break, when the service rate
is µ:

Γµ(t) = sup
k

{
k∑

n=1

ξn ≤ t

}
,

where {ξk}k are IID service times with mean 1/µ. We have
the following:

Theorem 1. With d
= representing the stochastic equivalence,

assume that {Λλ(t); t ≥ 0} d
= {Λ1(λt); t ≥ 0}. Then we as

λ→∞ we have:
Λλ(t)

λ
→ t a.s. for all t. �

If Sλ is a random variable independent of other processes,
depending upon the parameter λ and satisfies the following
additional assumption:

Sλ → s, with s a constant, almost surely as λ→∞.

Then we have:
Λλ(S)

Sλ
→ 1 a.s.

We can have a similar theorem for uninterrupted service
process {Γµ(t); t ≥ 0}. And the assumptions of this theorem
are satisfied by many processes. One can easily see that
Poisson process is one such example. Further we have the
following theorem (proofs in Appendix).

Theorem 2. Consider any IID sequence {A1
n}n with unit

mean, i.e., E[A1
n] = 1 for all n. Then the number of arrivals



{Λλ(t); t ≥ 0} with inter-arrival process {Aλn}k given by:

Aλn =
1

λ
A1
n for each n,

satisfies the assumptions of Theorem 1. �

Thus from Theorem 1 for large µ (which implies large λ1

and λ2 determined by µ because of ratios ρ, ν), random system
is close to a deterministic fluid queue system. This system
has continuous flows of arrivals at each queue as according
to Λλi(t) = λit, i = 1, 2 for all t, and a similar continuous
departure flow whenever service is offered. We call these fluid
queues as steady state fluid model (SSFM).

Our idea is to study first the performance and then the
achievable region of the random system via the corresponding
ones of the SSFM. But that the performances of random
system converges towards that of the limit system requires
an explicit proof. We are currently working towards this for
general systems. In the Appendix B we present an example
proof for a single queue with vacations. At the end of the
next section after deriving the achievable region for SSFM,
we provide a numerical illustration to show that the achievable
region of the random system (even for moderately large values
of µ) has similar structure as that of SSFM.

V. STEADY STATE FLUID MODEL (SSFM)
As shown in the previous section with arrival/departure

rates converging towards infinity, we have continuous flow of
arrivals and departures (when service is offered), resulting in
fluid queues. The SSFM consists of two storage tanks, two
inlets and one outlet pipe. The fluid flows from inlets to the
corresponding storage tanks at a constant rate. Outlet pipe
is controlled by switch to move it from one storage tank to
another. Consider the following notational analogy.

1) Switching time: s units be the time required to move
outlet pipe from one storage tank to another.

2) Service rate: µ1 and µ2 are rate of outflow from tank
1 and tank 2 respectively. We will take µ1 = µ2 = µ
whenever required in later sections.

3) Arrival rate: λ1 and λ2 are rate of inflow in tank 1 and
tank 2 respectively.

4) Switching policy parameters: γ1 and γ2 are delay prior-
ity parameters∗.

Let Q1 and Q2 be the fluid level in tank 1 and tank 2
respectively. Analogous switching rules will be as follows:
• When outlet pipe is in tank i: if γiQi ≥ Q−i then stay

at tank i else switch.

A. Switching Cycle and Stability Condition
Let k1 and k2 be the levels of fluid in tank 1 and tank 2

respectively in steady state, when service just starts. Assume
that oi is the level of fluid in tank −i when service starts in
tank i. Figure 1 illustrates the change in fluid level for one

∗γi and βi are different from each other, as βis were switching parameters
when we considered waiting time of longest waiting customer, while γi are
switching parameters defined on height of fluid in tank, or equivalently number
of waiting customers. We also derive a relation between βi and γi towards
the end of section V.

Fig. 1: Fluid level of deterministic system in one cycle

cycle. Consider the following steps for cycle completion:
Step 1: We start with tank 1. Let’s assume that outlet pipe

is moved after m1 time units. Visit time m1 satisfies:

γ1(k1 +m1(λ1 − µ1)) = o1 +m1λ2 and
k1 = l1 − (λ1 − µ1)m1, (3)

where m1λ1 and m1λ2 are amount of fluid added to tank 1 and
tank 2 respectively, while m1µ1 is amount of fluid removed
from tank 1.
Step 2: During switching time s which is used to move outlet
pipe from tank 1 to tank 2, sλ1, sλ2 amount of fluid gets
added to tank 1 and tank 2 respectively. So the levels of fluid
when outlet pipe reaches tank 2 are:

o2 = k1 +m1(λ1 − µ1) + sλ1, (4)
k2 = o1 +m1λ2 + sλ2. (5)

Step 3: Starting from tank 2, Let’s assume that outlet pipe is
moved after m2 time units. Visit time m2 satisfies:

γ2(k2 +m2(λ2 − µ2)) = o2 +m2λ1 (6)

where m2λ1 and m2λ2 are amount of fluid added to tank
1 and tank 2 respectively, while m2µ2 is amount of fluid
removed from tank 2.
Step 4: During switching time s which is used to move outlet
pipe from tank 2 to tank 1; sλ1 and sλ2 be the amount of
fluid gets added to tank 1 and tank 2 respectively. So the
level of fluid in tank 1 and tank 2 when outlet pipe reaches
tank 1 equals:

k̂1 = (k1 +m1(λ1 − µ1) + sλ1) +m2λ1 + sλ1, (7)
ô1 = (o1 +m1λ2 + sλ2) +m2(λ2 − µ2) + sλ2. (8)

In steady state (if possible to reach) k̂1 = k1 and ô1 = o1, i.e.,
level of fluid after each cycle is constant. This implies (using
equations (7) and (8)):

ρ1 =
λ1

µ1
=

m1

m1 +m2 + 2s
and ρ2 =

λ2

µ2
=

m2

m1 +m2 + 2s
.

(9)
Using the above equations, we obtain the following theorem
whose proof is in Appendix.

Theorem 3. SSFM with (γ1, γ2) scheduler is stable if ρ < 1
and γ1γ2 > 1. �



B. Stationary Performance

Stationary visit times: On solving the linear equations of (9):

m∗1 =
2sρ1

1− ρ
and m∗2 =

2sρ2

1− ρ
. (10)

Average waiting time: Total fluid in a tank during one cycle can
be calculated by determining area under the curve in Figure
1. Total fluid in tank 1 in one cycle equals:

1

2
[(λ1 − µ1)m∗1]m∗1 +

1

2
[λ1(m∗2 + 2s)] (m∗2 + 2s)

+[k1 − λ1(m∗2 + 2s)](m∗1 +m∗2 + 2s).

Under stationarity (k1 = k̂1), (λ1 − µ1)m∗1 = λ1(m∗2 + 2s)
holds and the above equation simplifies to:

1

2
(2k1 − λ1(m∗2 + 2s))(m∗1 +m∗2 + 2s).

Average fluid in tank 1 =
total fluid in tank 1

cycle time

= k1 −
1

2
λ1(m∗2 + 2s). (11)

Using Little’s law we obtain the average waiting time of fluid
in tank 1,

w̄1 =
k1

λ1
− (m∗2 + 2s)

2
.

Using equations (3) and (22) of Appendix, we further simplify:

w̄1 =
1

λ1

(
c1 + γ2c2
γ1γ2 − 1

)
+$1, $1 :=

s(1− ρ1)

(1− ρ)
, (12)

c1 =
sλ1(1− ρ1 + ρ2)

1− ρ
and c2 =

sλ2(1 + ρ1 − ρ2)

1− ρ
.

Similarly, average waiting time of fluid in tank 2

w̄2 =
1

λ2

(
c2 + γ1c1
γ1γ2 − 1

)
+$2 with $2 :=

s(1− ρ2)

(1− ρ)
. (13)

C. Achievable Region

Following theorem characterizes the achievable region with
(γ1, γ2) schedulers (proof in Appendix).

Theorem 4. Achievable region of performance for (γ1, γ2)
scheduler is given by:
AP = {(w̄1, w̄2) : w̄i > $i, i = 1, 2} with $i :=

s(1− ρi)
1− ρ

.�

Recall that (γ1, γ2) scheduler defines the switching rule
using the numbers in queues while (β1, β2) scheduler utilizes
the waiting times of the longest waiting customers. Following
theorem gives us the relation under which the two types
of schedulers achieve the same performance. The proofs of
Theorems 5, 6 are available in Appendix.

Theorem 5. Stability criterion for (β1, β2) schedulers is given
by ρ < 1 and β1β2 > 1. Further, the average waiting time
performance of (γ1, γ2) as well as (β1, β2) schedulers is the
same when they are related according to:

γ1

β1
=
β2

γ2
=
λ2

λ1
. �

Recall that the notation ex implies exhaustive service
discipline. Following theorem characterizes the performance
measure of policies of type (β, ex) or (ex, β).

Theorem 6. When (ex, β) policy, with β ∈ R, is implemented
the average waiting time of customers at Q1 is $1 of Theorem
4. The average waiting time at Q2 takes any value in interval
($2,∞) depending upon β.

Following theorem helps in characterizing the completeness
of achievable region by (β1, β2) scheduler along with exhaus-
tive scheduler, i.e., completeness of BP . This says that to
achieve the performance below the one given by exhaustive
policy one has to made the other queue stable (proof in
Appendix).

Theorem 7. Consider two class polling system where Q1 is
stable and β is any time invariant policy. If w̄1 < $1, then
Q2 is unstable. �

Using the Theorems 4, 5, 6 and 7 we obtain the complete-
ness of BP and summarize it as below:

Theorem 8. Achievable region for SSFM is given by

A = {[$1,∞)× [$2,∞)} (14)

and BP is a complete class of scheduling policies. Similarly,
BPγ := {(γ1, γ2); γi ∈ Re} is another complete class. �

Thus in contrast to the work conserving queuing systems,
we have an unbounded achievable region. However we notice
that the exhaustive service discipline (ex, ex) achieves the
minimum waiting time (($1, $2)) at both the queues. It is
well known that exhaustive is optimal for unfinished workload.
Here we notice that exhaustive is optimal even from the
perspective of individual classes and this is true for high arrival
and departure rates.

Numerical illustration: Random systems with large µ

We build a Monte-Carlo simulator for two class polling
system with β1, β2 scheduler. We also implemented exhaustive
schedulers. We validated the simulator, for the case with
switching time equal to 0, with the theoretical results of delay
priority schedulers of [18].

Fig. 2: Achievable region via simulations for large λ and µ

Simulations are conducted using Poisson arrivals and expo-
nential service times while keeping switching time s = 0.1.



Figure 2 is plotted for rates, λi = 4.5 and µi = 10 for all i.
By Theorem 8, the achievable region for SSFM is unbounded
and is rectangular in shape and we notice a similar shape
in Figure 2. Thus the shape of the achievable region of the
random system is close to that of the SSFM. These simulations
were conducted at a load factor ρ = 0.9 and we have similar
approximation result even for smaller load factors in Table I.

Results of Table I are obtained with λ1/λ2 = 0.5 and ρ =
0.3 and for varying values of µ for two different schedulers
β. We notice that the average waiting times converge towards
that of the SSFM. The performance is considerably close to
that of SSFM, for values of µ greater than 200.

Simulation SSFM
µ β1 β2 w̄1 w̄2 w̄1 w̄2

100 2 4 0.1848 0.1446 0.2245 0.1775
200 2 4 0.2048 0.1615 0.2245 0.1775
500 2 4 0.2169 0.1712 0.2245 0.1775
100 7 17 0.1420 0.1167 0.1484 0.1246
200 7 17 0.1464 0.1228 0.1484 0.1246
500 7 17 0.1478 0.1242 0.1484 0.1246

TABLE I: Performance of Random System and SSFM

VI. OPTIMIZATION

We consider two constraint optimization problems: admis-
sion control and revenue maximization considering the losses.
We consider µ1 = µ2 = µ to simplify the discussions.

A. Admission Control

Consider a two class polling system with primary and
secondary customers, with respective arrival rates λ1 and λ2.
Let P (w̄2) be the price paid by secondary class customers
which depends on its QoS, w̄2. Assume that price function
P (w̄2) is monotonically decreasing in w̄2. The revenue can
be increased by increasing the arrival rate λ2 of secondary
customers, however this has to be done while maintaining the
QoS at Q1. Thus we are interested in the following admission
control problem

P1: max
λ2,β∈BP

λ2P (w̄2) Subject to: w̄1 ≤ η1.

By virtue of Theorem 8, we consider BP in P1. Clearly, for
any λ2 if there exists a β ∈ BP such that w̄1 ≤ η1 then
$1(λ2) ≤ η1

†. By Theorem 8 , $1 is the best achievable
mean waiting time for class 1 (achieved when β1 = ex) and
hence the above is true. Thus the solution for problem P1
is also obtained by maximizing over the following alternate
domain:

Y =

{
(λ2, β) : λ2 > 0,

s(1− ρ1)

(1− ρ)
≤ η1, β = (ex, β2) ∈ BP

}
.

Note that for every fixed λ2, mean waiting time in secondary
class, w̄2, is minimized (i.e., P (w̄2) is maximized) by ex-
haustive scheduling policy at class 2, i.e., β2 = ex. Hence
optimality will not be lost if we optimize over following set:

Z =

{
(λ2, β) : λ2 > 0,

s(1− ρ1)

(1− ρ)
≤ η1, β = (ex, ex)

}
.

†Dependency of $1 on λ2 is explicitly mentioned hence forth.

Substituting the performance at (ex, ex) P1 simplifies to:

max
λ2

λ2P

(
s(µ− λ2)

µ− λ1 − λ2

)
such that

s(µ− λ1)

µ− λ1 − λ2
≤ η1.

By monotonicity of functions involved, the optimizer of the
above problem λ∗2 satisfies the constraint with equality, i.e.,

s(µ− λ1)

(µ− λ1 − λ∗2)
= η1. Simplifying, λ∗2 =

(η1 − s)(1− ρ1)µ

η1
.

Thus when one has to maintain the average waiting time
of a queue below a level, however low the level could be,
exhaustive policy (ex, ex) turns out to be the optimal policy
as long as the QoS demanded is achievable (η1 < $1(λ2) for
some λ2). This is not surprising given the rectangular shape
of the achievable region (14) of Theorem 8.

B. Revenue maximization with losses

We now consider a scenario in which the arrival rate λ2 is
fixed. When λ2 is such that, QoS of the primary customer
can’t be maintained, i.e., when $1(λ2) < η1, then the
service provider can provide service only for a fraction of
the secondary customers. Towards this we assume there is a
limit, B, on the buffer size at Q2 and choose the buffer size B
optimally. Let f be the fraction of customers lost in Q2 with
buffer size B. Then only λ2(1− f) fraction of the customers
are served and hence profit is obtained only from them. Thus
with η1 < $1(λ2), it is appropriate to consider the following
revenue optimization problem‡:

P2: max
B,β∈BP

λ2(1− f)P (w̄2) Subject to: w̄1 ≤ η1.

Fig. 3: Flow of fluid with buffer constraint in Q2

Fraction of losses: Consider SSFM and the notation t for
time at which tank level reaches B after switching from Q2.
Note that

B = l2 + tλ2. (15)

Flow balance equation at Q1 and Q2 gives us (see Figure 3):

tλ2 = m2(µ2 − λ2), m1(µ1 − λ1) = (m2 + 2s)λ1. (16)

In P2 the constraint is w̄1 ≤ η1 and we have $1(λ2) > η1.
One can achieve a smaller average waiting time at Q1 only
when there are losses at Q2. This implies t < m1 + 2s for

‡We again need to establish the completeness of BP , and we are working
towards it.



all B satisfying the constraint. For such B, the fraction of
customers lost equals:

f =
(m1 + 2s− t)λ2

(m1 +m2 + 2s)λ2
.

Using equation (16), and upon further simplification using (15)

f = 1− m2µ2(µ1 − λ1)

(m2 + 2s)λ2µ1
=

2s(1− ρ2)

(B − l2)ρ2 + 2s(1− ρ2)
. (17)

Note that the losses increases with decrease in B, i.e., with
B ↓, f ↑.

Expressions for w̄1 and w̄2: Let z be the level of fluid in
Q2 after time m1. Note that

z = min{B, (m1 + s)λ2 + l2}.

Switching condition gives us

l1 =
z

β1
and l2 =

l1 + (m2 + s)λ1

β2
.

Further solving for l2, we get

l2 =
(µ2 − λ2)l1 + (B + s(µ2 − λ2))λ1

β2(µ2 − λ2) + λ1
. (18)

Following the similar analysis as earlier, we obtain mean
waiting times as

w̄1 =
m2 + 2s

2
+
l1
λ1

=
(B − l2) + 2s(µ2 − λ2)

2(µ2 − λ2)
+
l1
λ1
,

w̄2 =
B − l2

2λ2(1− f)
+

l2
λ2(1− f)

=
B + l2

2λ2(1− f)
. (19)

Note in the above that when Little’s law has to be applied to
get w̄2 we need to divide by λ2(1− f) as this is the effective
rate at which arrivals enter Q2.
Step 1: Optimizer for any fixed B and β2:

With β1 →∞, we have following limits which are smaller
than the corresponding values with β1 finite (note z ≤ B),

l1 → 0 and l2 →
(B + s(µ2 − λ2))λ1

β2(µ2 − λ2) + λ1
.

Clearly from equations (17), (19), the fraction lost f as well
as both the average waiting times w̄1, w̄2 are simultaneously
minimized with β1 = ex (or equivalently letting β1 →∞).

Thus the optimization problem P2 simplifies to:

P2′ : max
B,β2

λ2(1− f)P (w̄2(ex, β2)) s.t. w̄1(ex, β2) ≤ η1.

Step 2: With β1 = ex the required functions become:

w̄1 =
(B − l2) + 2s(µ2 − λ2)

2(µ2 − λ2)
, l2 =

(B + s(µ2 − λ2))λ1

β2(µ2 − λ2) + λ1
,

w̄2 =
B + l2

2λ2(1− f)
, f =

2s(1− ρ2)

(B − l2)ρ2 + 2s(1− ρ2)
. (20)

Consider any B, β2 satisfying the constraint (w̄1 ≤ η1):

B − l2(B, β2) ≤ η′ := η12(µ2 − λ2)(1− 2s).

Then there exists a pair (B′, l′2), with B′ := B − l2(B, β2)
and l′2 := 0 (or equivalently β2 = ex), which still satisfies the
constraint and

f(B′, l′2) = f(B, l2) and w̄2(B′, l′2) < w̄2(B, l2).

Since the price function P (.) increases with decrease in w̄2

we can conclude (via contradiction) that P2 is equivalent to:

P2′′ : max
B

λ2(1− f)P (w̄2(ex, ex)) s.t., w̄1(ex, ex) ≤ η1.

To conclude we have

Theorem 9. The revenue optimization problem P2 is optimized
by exhaustive schedulers β = (ex, ex) and the optimal level
B∗ is obtained by solving the simplified optimization problem:

max
B

Bρ2λ2

Bρ2 + 2s(1− ρ2)
P

(
Bρ2 + 2s(1− ρ2)

2ρ2λ2
2

)
s.t., B ≤ η′.

�

Further optimization of the problem depends upon the
price function P (.). However we again notice that exhaustive
(ex, ex) is the optimal policy.

VII. CONCLUSIONS

We investigated the idea of differential fairness in polling
systems. Here different classes of customers were given dif-
ferent levels of fairness depending either upon the requirement
or upon the price a class pays for the service. We used
achievable region approach for solving two relevant problems.
Towards this, we first proposed and proved that a class of delay
priority kind of schedulers along with exhaustive policy forms
a complete class for two queue polling systems. We obtained
the performance measures and then the achievable region for
a limit system with fluid queues, when it uses the proposed
priority schedulers. Using Monte Carlo simulations we showed
that the performance of the random systems (ones with discrete
arrivals) converges towards that of the analyzed limit system
with fluid queues. We conclude this study with the following
observations for systems with large arrival and departure
rates: a) the achievable region is unbounded; b) exhaustive
service discipline is optimal even from the perspective of
the individual classes. However exhaustive policy may not
be optimal in above sense, for systems with moderate arrival
rates. We have some initial observations in this direction and
this is a topic of future research.
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APPENDIX

Proof of Theorem 1: To prove the result, we need to show
that P (ω : Λλ(t)

λ → t) = 1. Equivalently, we will show that
P (ω : Λλ(t)

λt → 1) = 1. Note that from supposition of theorem
it follows that

P

(
ω :

Λλ(t)

λt
→ 1

)
= P

(
ω :

Λ1(λt)

λt
→ 1

)
.

Note that Λ1(.) is a renewal process with unit mean inter
arrival times. By elementary renewal theorem applied to
process {Λ1(.)}, when λ→∞, we get:

P

(
ω :

Λ1(λt)

λt
→ 1

)
= 1.

So Λλ(t)
λ → t a.s. for all t. �

Proof of Theorem 2: To prove

{Λλ(t); t ≥ 0} d
= {Λ1(λt); t ≥ 0}.

That is, we need to show for any t and x

P (ω : Λλ(t) ≤ x) = P (ω : Λ1(λt) ≤ x).

Note that

Λλ(t) = sup
k

{
k∑
i=1

Aλi ≤ t

}
= sup

k

{
k∑
i=1

A1
i

λ
≤ t

}

= sup
k

{
k∑
i=1

A1
i ≤ λt

}
= Λ1(λt).

So it follows that P (ω : Λλ(t) ≤ x) = P (ω : Λ1(λt) ≤ x). �
Proof of Theorem 3: On solving the system of linear

equations (9):

m1 =
2sρ1

1− ρ
and m2 =

2sρ2

1− ρ
. (21)

Note that m1 and m2 must be positive and finite for stability.
Hence we get ρ < 1 as one of the stability conditions. Apart
from this we will need that the level reached at switching time
must be positive. That is, l1 = k1 − m1(µ1 − λ1) ≥ 0 and
l2 = k2 −m2(µ2 − λ2) ≥ 0. We clearly have

γ1l1 = l2 + sλ2 +m1λ2 and γ2l2 = l1 + sλ1 +m2λ1.

On solving above set of equations for l1 and l2, we get

l1 =
c1 + γ2c2
γ1γ2 − 1

and l2 =
c2 + γ1c1
γ1γ2 − 1

. (22)

Note that c1 = (s + m2)λ1 and c2 = (s + m1)λ2. So for l1
and l2 to be non negative, γ1γ2 > 1.

Proof of Theorem 4: Let average waiting time of fluid
in tank 1, w̄1, be fixed at l + $1 (with some l > 0), we
will prove that one can achieve any value of w̄2 in ($2,∞)
by varying γ1 and γ2 appropriately and keeping w̄1 at level
l+$1. Similar things can be proved for w̄2 and this will prove
the result.

Now, we look at the value of γ1 and γ2 together that achieve
w̄1 = l +$1. Using equation (12),

l =
1

λ1

(
c1 + γ2c2
γ1γ2 − 1

)
(23)

On further simplifying, we get

γ1 =
c1

λ1lγ2
+

1

γ2
+

c2
λ1l

. (24)

From the above equation, (γ1γ2 − 1) = (c1 + γ2c2)/(λ1l).
Now from (13) we have:

w̄2 =
c2 + γ1c1
c1 + γ2c2

λ1l

λ2
+$2. (25)

From (24) when γ2 is decreased, γ1 is increased to maintain
w̄1 at l +$1 and then from (25), w̄2 increases. Large values
of w̄2 are achieved as γ2 → 0 and in this limit γ1 →∞. Thus
we have, w̄2 ↑ ∞ when γ2 ↓ 0.

Again from (24) when γ2 is increased, γ1 is decreased
to maintain w̄1 = l + $1. Then, from (25), w̄2 decreases.
Minimum value of w̄2 is achieved when γ2 → ∞ and then
γ1 → c2

λ1l
(from equation (24)) and then w̄2 ↓ $2.



Proof of Theorem 5: Let ti be the maximum time fluid
waits before completion of mi where fluid arrived but not
removed from the system in current cycles’s mi interval. Note
that ti satisfies

λ1t1 = l1 and λ2t2 = l2 (26)

Switching conditions are satisfied by a (β1, β2) scheduler
at the same instance with (γ1, γ2) scheduler, if following
conditions are satisfied:

β1t1 = t2 + s+m1

where s+m1 is the extra delay which fluid in tank 2 suffers,
while fluid in tank 1 has t1 delay. Similarly

β2t2 = t1 + s+m2

On using equation (26), we get

β1
l1
λ1

=
l2
λ2

+ s+m1 and β2
l2
λ2

=
l1
λ1

+ s+m2 (27)

On substituting the value of l1 and l2 from equation (22), we
get

β1 =
λ1

λ2

(
c2 + γ1c1
c1 + γ2c2

)
+

(
γ1γ2 − 1

c1 + γ2c2

)
(m1 + s)λ1 (28)

β2 =
λ2

λ1

(
c1 + γ2c2
c2 + γ1c1

)
+

(
γ1γ2 − 1

c2 + γ1c1

)
(m2 + s)λ2 (29)

Note that (β1, β2) and (γ1, γ2) schedulers will give same
performance if they are related by above set of equation.
Further by substitution, we observe that when scheduling
parameters are related via following relation, then above set
of equations are satisfied

γ1

β1
=
β2

γ2
=
λ2

λ1
.

Hence statement of theorem follows.

Proof of Theorem 6: Note that exhaustive policy is
implemented at Q1, i.e., server switches to Q2 only when
Q1 is empty (See figure 4).

Fig. 4: Fluid level of deterministic system when Q1 is exhaus-
tive

m1(µ1 − λ1) = k1

Total fluid in Tank1 in one cycle

=
1

2
m1(µ1 − λ1)m1 +

1

2
(m2 + 2s)λ1(m2 + 2s)

Average fluid in tank 1, i.e., w̄1 =
total fluid in tank 1

cycle time

=
1
2m1(µ1 − λ1)m1 + 1

2 (m2 + 2s)λ1(m2 + 2s)

(m1 +m2 + 2s)

Under stationarity m1(µ1−λ1) = (m2 +2s)λ1. On using this
in above equation we get w̄1 = $1. Let l2 be the level of fluid
in Q2 when service ends at Q2. From equation (13) and (22),

we get w̄2 =
l2
λ2

+$2. Switching condition gives us:

γ2l2 = k1 − sλ1 = m2 + sλ1

l2 =
m2 + sλ1

γ2

clearly, on varying γ2 (or equivalently varying β2 from previ-
ous theorem), any value of w̄2 from ($2,∞) can be achieved.
Similar arguments can be made when Q2 is exhaustive.

Proof of Theorem 7: Consider any time invariant
scheduling policy which renders Q1 stable. Number in Q1

for such policies should follow the pattern as in figure 1. That
is, when server reaches Q1 it’s level is k1 and when it leaves
Q1 it’s level is l1, irrespective of the number of visit.

Let m1 and m2 be the times spent respectively in Q1 and
Q2. When Q1 is stable, these visit times will be stationary
(i.e., do not depend upon the number of visit). From flow
balance in Q1, we have l1 = k1 − λ1(m2 + 2s).

Now the average number in Q1 equals (m2 + 2s)λ1/2 + l1
and by Little’s law, we get

w̄1 =
m2 + 2s

2
+
l1
λ1
. (30)

If Q2 were also stable then balance equations are also satisfied
at Q2 and then the visit times m∗1, m∗2 are given by (10).
Recall,

m∗2 =
2sρ2

(1− ρ)
and m∗1 =

2sρ1

(1− ρ)
.

Note that w̄1 < $1 implies m2 < m∗2, as otherwise we have
a contradiction: from (30) w̄1 > (m∗2 + 2s)/2 = $1.

Let lk be the level of fluid in Q2 at the time of switching
in k-th cycle. Clearly, we have

lk+1 = lk −m2µ2 + (m1 +m2 + 2s)λ2. (31)

From flow balance in Q1, we have

m1(µ1 − λ1) = (m2 + 2s)λ2.

On using above expression in equation (31), we have

lk+1 − lk =
m2(µ1λ2 − µ1µ2 + λ1µ2) + 2sµ1λ2

µ1 − λ1
= ζ.

Note that µ1λ2 − µ1µ2 + λ1µ2 = µ1µ2(ρ− 1) < 0 and so

lk+1 − lk >
m∗2(µ1λ2 − µ1µ2 + λ1µ2) + 2sµ1λ2

µ1 − λ1
.



On simplifying the above equation using m∗2 =
2sρ2

1− ρ
we get

RHS equal to 0. Hence

lk+1 − lk > 0 if m2 < m∗2.

Thus level of Q2 will always be increasing under above
mentioned condition, hence Q2 will be unstable. Also note
that the growth rate is linear in k as lk = kζ + l0 where l0 is
the initial level and that ζ is independent of k.

APPENDIX B: SINGLE QUEUE WITH VACATION

Consider a single queue in which the server takes vacation,
when it finds the queue empty (exhaustive service policy).
And consider the arrival rate λ and service rates µ which are
large, converge towards infinity while their ratio ρ = λ/µ
is fixed. We assume IID vacation/switching times {Si} with
mean s = E[S1].

It is well known that this system is stable when ρ < 1 and
we assume the same. The server leaves the queue only when
it is empty. It returns to the queue after a random vacation
time S and would find Λλ(S) number of customers waiting
for service. Let Mµ represents the stationary visit time or the
time spent in the queue in any cycle. Then,

Mµ = inf
t≥0
{Qµ(t) ≤ 0} where (32)

Qµ(t) := Λλ(S) + Λλ(t)− Γµ(t). (33)

In the above Qµ(t) is stochastically equivalent to the number
of customers in the system (under stationarity) at t units of
time, after the server has reached the queue. We will represent
the number of customers at time t by Nµ(t). So, under
stationarity,

Qµ(t)
d
= Nµ(τµk + t) for all k,

where τµk represents the visit epoch of the server to the queue
during the k-th cycle.

By Theorem 1, we have:

Λλ(t)

λt
→ 1 a.s., and

Γµ(t)

µt
→ 1 a.s.

Using conditional expectation we have

Prob(Λλ(S) = k) =

∫
Prob(Λλ(s) = k)dPS(s)

=

∫
Prob(Λ1(λs) = k)dPS(s)

= Prob(Λ1(λS) = k) for all k.

Hence, proceeding as in Theorem 1 and additionally using
bounded convergence theorem we will have:

Λλ(S)

λS
→ 1 a.s.,

Thus from (33) we have the following for all t:

Qµ(t)

µ
= ρS

Λλ(S)

λS
+ ρ

Λλ(t)

λ
− Γµ(t)

µ
→ q(t) := ρs+ ρt− t a.s., as µ→∞,

if the switching times converge towards a deterministic switch-
ing time in the following manner:

Sµ → s a.s., as µ→∞.

We have the following theorem under these assumptions:

Lemma 10. Assume Prob(A1
i > 0) = 1 for all i. Then the

visit time

Mµ =

∫ ∞
0

1{gµ(t)=0}dt with (34)

gµ(t) :=

∫ t

0

1{Qµ(v)≤0}dv.

Proof: Clearly gµ is a monotone function. And so the RHS
of equation (34) equals τg := inft{gµ(t) > 0} and it suffices
to prove that this infimum equals the infimum of equation (32),
i.e., that τg = Mµ. Let

B = {ω : A1
i (ω) > 0, for all i}.

By hypothesis Prob(B) = 1. It is clear to see that Mµ

equals the first time that the queue length Qµ becomes zero
due to a departure. For any ω ∈ B, there exists a small
interval (Mµ,Mµ + ε] during which there is no arrival.
Hence, Qµ(t) ≤ 0 for all t ∈ (Mµ,Mµ + ε] and so,
gµ(t) > 0 for all t > Mµ. Thus τg = Mµ. �

By our previous arguments, Qµ(v) → q(v) for all v and
almost surely. So, by bounded convergence theorem (applied
w.r.t. to Lebesgue measure on [0, t] interval) we have the
following convergence, for any t, as µ→∞

gµ(t) =

∫ t

0

1{Qµ(v)≤0}dv →
∫ t

0

1{q(v)≤0}dv =: g(t).

By Lemma 10, we have for any T > 0

Mµ =

∞∑
k=0

∫ (k+1)T

kT

1{gµ(t)=0}dt.

Every term inside the summation converges by bounded con-
vergence theorem and then the series converges by Monotone
convergence theorem to the following limit:

Mµ →
∞∑
k=0

∫ (k+1)T

kT

1{g(t)=0}dt

=

∫ ∞
0

1{g(t)=0}dt =
sρ

1− ρ
:= m̄

The last equation is obtained using the definition of g(.).
Recall Nµ(t) represents the (random) number of waiting

customers in the system at time t. Then the time average
number of customers in the system equals

n̄µ = lim
t→∞

1

t

∫ t

0

Nµ(t)dt.

By renewal reward theorem (the queue exist times of the
server represent the renewal epochs) this limit is a constant
almost surely. Recall τµk represent the k-th time the server
has reached the queue and let Mµ

k represents the time spent



in queue in k-th cycle. τµk +Mµ
k represent the time epoch at

which it leaves the queue after the k-th visit. When the system
reaches stability, it is easy to see that each Mµ

k is stochastically
equivalent to Mµ and that the trajectory of the number of
customers Nµ during the time interval [τµk , τ

µ
k + Mµ

k ] is
stochastically equivalent to that of Qµ during the interval
[0,Mµ]. And this repeats periodically. One can apply similar
arguments for the vacation period, [τµk +Mµ

k , τ
µ
k+1]. Thus by

renewal reward theorem:

n̄µ =
1

E[Mµ + S]

(
E

[∫ Mµ

0

Qµ(t)dt

]

+E

[∫ Mµ+S

Mµ

(
Aλ(Mµ + t)−Aλ(Mµ)

)
dt

])

=
1

E[Mµ] + s

(
E

[∫ ∞
0

1{t≤Mµ}Q
µ(t)dt

]
+E

[∫ ∞
0

1{0≤t≤S}A
λ(t)dt

])
.

In all the expectations given above, we have already shown
almost sure convergence, as µ → ∞, of the integrands, for
example Qµ(t)/µ → q(t) a.s., for all t. Now the integrals
inside the expectations converge to that corresponding to the
limit trajectories using similar arguments as above (using
bounded convergence theorem and monotone convergence
theroem), i.e., for example:∫ ∞

0

1{t≤Mµ}
Qµ(t)

µ
dt →

∫ ∞
0

1{t≤m̄}q(t)dt =

∫ m̄

0

q(t)dt

= ρsm̄− (1− ρ)m̄2

2
=

s2ρ2

2(1− ρ)

Thus as µ→∞

n̄µ

µ
→ sρ2

2
+ ρ

s(1− ρ)

2
=
ρs

2
.

Thus by Little’s law the average waiting time of the random
system

w̄µ =
n̄µ

λ
=
n̄µ

ρµ
→ s

2
= w̄SSFM , (35)

which equals the average waiting time of the single fluid queue
with vacation, which is derived below as (36). �

A. Steady state fluid model for single queue with vacation

Consider steady state fluid model for single server queue
with vacation where server goes to vacation after serving all
the customers waiting in queue (exhaustive policy). Here s is
the deterministic vacation time. SSFM is as shown in figure
5. In steady state, level of fluid in the beginning of cycle will
be same as the level of fluid at the end of cycle, i.e., k1 =
k2 = λs. Total volume of fluid in one cycle is k1m1

2 + k2s
2 .

Note that k1 = k2 = λs and cycle length is m1 + s.

Average level of fluid =
λs

2
.

	
  

Fig. 5: Fluid level of deterministic system in one cycle for
single class polling system

On using Little’s law, we have

Average waiting time = w̄SSFM =
s

2
. (36)

B. Single queue with vacations and with discrete arrivals

We now obtain the performance of single queue polling
system with Poisson arrivals. This result is well known and
we are reproducing the same to illustrate via an example the
convergence given by (35).

Consider the pseudo conservation law for N-queue polling
system as derived in [3]:
N∑
i=1

ρiE(Wi) = ρ

∑N
i=1 λiβ

(2)
i

2(1− ρ)
+ρ

s(2)

2s
+

s

2(1− ρ)

[
ρ2 −

N∑
i=1

ρ2
i

]

+

N∑
j=1

E(M
(1)
j ). (37)

Here β
(2)
i is the second moment of service time of class i.

s and s(2) are first and second moment of switching time.
E(M

(1)
i ) is the mean amount of work in queue i at the

departure epoch of server from queue i. When the switching
times Sµ → s a.s., s(2) → s2 and E[S] → s (under the
assumption that Sµ, for all µ, are bounded above by an
integrable function). Note that in case of single queue with
vacation N = 1, E(M

(1)
i ) = 0, β

(2)
i = 1/µ2. On using

equation (37) for single queue with vacation, we get

E(W ) = w̄µ =
ρ

2µ(1− ρ)
+
s2

2s
.

When µ→∞ while keeping ρ fixed, E(W )→ s/2 as derived
in equation (35) of Appendix B.


