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Abstract—Recently proposals are made to mount wireless
trans-receivers on periodically moving vehicles. These vehicles
were primarily meant to facilitate human transportation in
places like large universities. The idea was to design economical
data/voice networks using the already existing infrastructure.
The salient feature of these networks is that the wireless server
does not stop, rather provides the service to the users while
on move and as long as the contact is available. Thus the
service of various users waiting on such networks is interlinked.
One cannot model this system with existing continuous/discrete
polling models, as the later assume the server to stop and serve
before resuming with its journey. We obtain the conditions
for stability and then the workload analysis. We also discuss
optimal scheduling policies.

I. INTRODUCTION

In applications like Ferry Based Wireless LANs
(FWLAN), service is offered by a moving server in dis-
tributed fashion, whenever it encounters a waiting customer
on/near its path. The Ferries are originally meant for carry-
ing human beings (or goods) in a cyclic path repeatedly
and the idea was to construct economic communication
networks exploiting its repeated journey. Wireless LANs are
fitted into such ferries which serve the wireless users in the
background. Thus the FWLAN offers the service while on
move, where as in existing polling models ([1], [12] and
references therein) the server stops to attend the encountered
customer. In this paper, we consider the analysis of the
former. Thus our system models the FWLANs realistically.

Of all the polling models, studied so far in literature,
the one closest to the serve on the move (SoM) FWLAN
would be the time limited polling systems. The time lim-
ited polling systems are studied under the assumptions of
exponential visit times (e.g., [10], [5], [6], [8], [9] etc.,),
where as the visit times of the SoM FWLAN hardly exhibit
any memoryless property. In fact they result because of
traversing more or less the same length of interval in all the
cycles and hence the random variations in the visit times

can be better modeled using either constant times, or using
discrete random times or with some functions of uniform
random variables. We consider an autonomous version of
time limited system ([7], [11] etc.,), wherein the server visit
times are independent of the workload conditions in the
queue visited. And this is exactly how a visit to a queue
occurs in the FWLAN.

The performance of SoM FWLAN majorly depends upon
the service intervals of various queues and their inter-
sections. We showed that the system is stable when the
combined load into a set of the intersecting queues is less
than the load drained out per cycle, while the server is
traversing over the combined service interval. We would also
require stability condition of any subset of the intersecting
queues. We further obtain approximate workload analysis of
such general time limited polling systems, and demonstrate
the accuracy of the approximation using simulations.

A. Paper Organization

Stability analysis is obtained in section III while the work-
load analysis is considered in later sections. In Appendix a
g-time limited polling system is described and analyzed.

II. SYSTEM MODEL

A Ferry Based Wireless LAN (FWLAN) is moving along
a closed tour C, of length |C|, repeatedly with constant speed
α and is serving static users that are waiting along/near
its path. It can detect the waiting users, i.e., senses the
existence of their signal, once the user is sufficiently close.
If a favorable scheduling decision is made, it starts serving
the encountered user. It does not stop to serve, rather it
serves the user while on move. Thus the received signal
starts fading away, as the server moves away from the user
and service would be stopped once out of visibility zone.
Thus for every user there exists an interval on the path,
which we refer to as service interval, moving along which



the server can potentially serve the user. Let Lp represent
the service interval of point p on the server path, whose
length equals lp := |Lp|. The users in the visible vicinity of
the path can be projected on to the path.

The server attends the detected user, either when the
previous user completes its service or when it moves out
of the visibility zone of the previous user. It may also
switch over to the new user (the next visible user) either
if the signal strength is significantly higher or if the load is
higher, depending upon the scheduling policy. Thus there is
a possibility that the service of a user might be postponed
to the next cycle. In all, server attends: a) some customers
from previous cycles; b) some from the present cycle.

Arrivals: Every arrival requests for job requirements of size
B and arrives at a random position Q. We have N queues,
and the probability that an arrival lands in queue Qi is given
by:

Prob(Q ∈ Qi) = qi with
N∑
i=1

qi = 1. (1)

The service requests arrive at rate λ per cycle and these
arrivals are modeled either by a Poisson process or as
Bernoulli arrivals. In either case, the rate of arrival (per
cycle) into a queue Qi equals λi = λqi. In case of Bernoulli
arrivals, at maximum one customer arrives in the queue in
any cycle and this happens with probability λi. Alternatively,
the number of arrivals per cycle into queue Qi can be
Poisson distributed with parameter λi. If C is the length of
the path and if the FWLAN traverses the route at speed
α and λ̄ is rate of the Poisson arrivals, then rate per
cycle is given by λ = λ̄|C|/α. Most of our results can
handle random speeds, however we consider fixed speeds
for ease of explanation. For example IID (identically and
independently distributed) speed variations across cycles,
can be modeled as IID service intervals/visit times.

This represents a very commonly prevalent scenario. For
example, the location of points with clustered arrivals can
represent a queue. If there is a set of nearby (almost
inseparable) points with high arrivals, one can again group
them as a queue. Because of ‘Serve on the Move’ (SoM)
nature, the arrivals elsewhere in the path would not alter the
performance of the entire system. Either they are served
immediately (in the same cycle) or the left overs are
completed in the subsequent cycles. This is because, for
sparse arrivals the probability of arrivals at interfering points
(with intersecting service intervals) is negligible. Thus we
concentrate only on clustered arrivals. We discretize the path

(parts of the path with clustered arrivals) into finite intervals,
model each interval as one queue (see [2] for similar details),
which results in arrivals as given by (1).
Service times: Let µ be the service rate per distance per
time. If service is offered for l length while the server moves
at α speed, then (l/α)µ amount of job is completed. We
assume without loss of generality that µ/α = 1, i.e., the
amount of job completed in one cycle equals the length of
the service interval. The job requirements B can depend
upon the queue into which they arrive. The conditional
moments (first and second) of the job requirements, given
that the arrival belongs to Qi, are given by bi and b(2)

i .

Notations: The cycle indices are usually referred by sub-
scripts k or n while the queue indices by subscripts i or j.
The quantities that belong to queue i and for cycle k are
referred by double subscripts k,i (e.g., Vk,i for workload
in Qi at k-th departure epoch) while the corresponding
stationary quantities are referred by single subscript i (e.g.,
Vi for stationary workload in Qi at departure epoch).

III. STABILITY ANALYSIS

We call the system is stable, if there exists a scheduling
policy which renders all the queues stable. We begin with
introducing the required notations. Let Nk,i represent the
number of arrivals into Qi in its k-th cycle time (time
duration between (k−1)-th and k-th departures of the same
queue) and let ξk,i be the corresponding workload:

ξk,i =

Nk,i∑
j=1

Bj,i,

where Bj,i are IID service times of Qi with bi, b
(2)
i as first

and second moments. If there are no intersecting intervals,
then the departure workload Vk,i of any queue Qi evolves
independently of others according to (with li := |Li|):

Vk,i = (Vk−1,i + ξk,i − li)+ for all i. (2)

Then the system is stable if and only if E[ξi] < li for each i.
This is a well known stability condition of the random walks
on half line (see for example [3]). With Poisson arrivals, by
Wald’s lemma for any n ≥ 0

P (Nk,i = n) = e−λi
(λi)

n

n!
and hence E[ξi] = λibi.

With Bernoulli arrivals we again have E[ξi] = λibi, because:

P (Nk,i = 1) = λi = 1− P (Nk,i = 0).

In all, the condition for stability with no intersecting inter-
vals is given by:
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max
i

λibi
li

< 1. (3)

We now consider two queues, say Q1 and Q2, where the
service intervals L1 and L2 intersect for a length δ as in
Figure 1. Recall that the system is stable, if there exists a
scheduling policy which renders all the queues stable and
the stability is ensured under the following conditions:
Theorem 1. The two queues are stable if and only if
E[ξk,1 + ξk,2] < l1 + l2 − δ in addition to (3).

Proof: If E[ξi] > li for any i = 1, 2, clearly the queue is
unstable ([3]) and hence the system is unstable. The two
queues share the server capacity, only while the server is
traversing δ length. Consider a combined system in which
the server can serve any customer of the two queues, while
it is traversing anywhere in the interval of the length l1 +

l2 − δ. The total workload process in the combined system,
is clearly lower than the sum workload Vk,1 + Vk,2 of the
FWLAN1. And the combined system is unstable if E[ξk,1 +

ξk,2] > l1 + l2 − δ, and hence so is our FWLAN.
When ce := E[ξk,1 +ξk,2]−(l1 +l2−δ) < 0, we consider

a scheduling policy in which Q1 is served independently of
Q2, after dividing the shared service interval as below:

lγi = E[ξi] + γδ for i = 1, 2 where

γ := min

{
−ce
2δ

,
l1 − E[ξ1]

2δ
,
l2 − E[ξ2]

2δ

}
.

The server attends Q1 while it is traversing interval of length
lγ1 starting from first end of L1 and Q2 while traversing an
interval of length lγ2 whose end coincides with the end of
L2. Because of their definitions and by the given hypothesis,
the serving intervals of the two queues do not intersect with
each other and thus the two queues evolve independently.
Further, both of them are stable again by the well known
results of random walk on half line ([3]). �

Thus the stability of two intersecting queues is guaran-
teed, once the rate of the combined arrivals into the two
queues is less than the length of the joint service interval.
This is true irrespective of the length (δ) of intersection. Of
course it also demands for individual stability conditions.
One can easily extend the above result to the following:
Theorem 2. Consider M intersecting queues with δi, for
any i < M , representing the length of intersection between
the service intervals Li and Li+1. The M queues are jointly
stable if and only if the following are satisfied along with
(3):

1One needs to use common cycle time for both the queues in this case.

i) E[ξi + ξi+1] < li + li+1 − δi for any i < M and
ii) E[

∑2
j=0 ξi+j ] <

∑2
j=0 li+j −

∑1
j=0 δi+j for any i < M − 1

and so on till
iii) E

[∑
i≤M ξi

]
<
∑M−1
j=0 l1+j − δ with δ :=

∑
i<M δi. �

Henceforth, the stability conditions are assumed to be
satisfied.

IV. QUEUES WITHOUT INTERSECTING INTERVALS

The workload analysis of any queue is independent of the
others. For every i, the server drains out maximum possible
workload of Qi while traversing its service interval, Li. The
departure workload evolution is given by equation (2).

FWLAN with N non intersecting queues can be modeled
by N -queue g-time limited polling system of Appendix. The
walking/switching times of the polling system are given by
the physical time taken by the server to move from one
queue to other, while the cycle times of all the queues are
deterministic and equal |C|/α. The equation (2) resembles
the evolution of waiting times in a fictitious GI/G/1 queue,
wherein the inter-arrival times are deterministic, equal li
and whose IID service times are given by {ξk,i}k. This
observation is the key element in the analysis of the g-
time limited polling systems presented in Appendix. The
stationary analysis of workload at departures (2) can be
obtained once the first two moments of the idle period of
the corresponding fictitious GI/G/1 queue is computed (see
Appendix for more details).

An idle period (in fictitious queue) by definition is the
time interval between the exit of the last customer and the
next arrival, given there is a positive time difference between
the two. In other words, an idle period is a fraction of those
interval arrival periods, in which the exit of the last customer
occurs before the next arrival. These result in two conditions:
a) when the newly arrived workload is finished before the
next arrival (i.e., if li − ξk,i > 0) and when previous epoch
workload, Vk−1,i = 0;
b) or because the newly arrived workload as well as the
left over workload is finished before the next arrival, i.e., if
li − Vk−1,i − ξk,i > 0.
Obviously the possibility of the former event is higher. When
the load factor increases (by decreasing li) the busy period
increases. However the nature of subsequent idle periods,
once the queue is empty, remains the same. Hence as load
factor increases, the fraction of idle periods resulting out
of event (a) increases. Thus, our conjuncture is that the idle
period, with sufficient load factor, can be well approximated
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by the events of the type2 (a). So we approximate the
stationary idle periods of fictitious queue by

Ii = li − ξi conditioned that li > ξi.

Thus with pi := Prob(ξi > 0) = Prob(Ni > 0),

E[Ii] ≈ li(1− pi) + piE[(li − ξi); ξi ≤ li]
(1− pi) + piP (ξi ≤ li)

,

E[I2i ] ≈ l2i (1− pi) + piE[(li − ξi)2; ξi ≤ li]
(1− pi) + piP (ξi ≤ li)

. (4)

Substituting the above directly into equation (12) we obtain
the stationary average of the departure epoch workload.

The arrivals in any queue of FWLAN occur while the
server is traversing a long path of length |C|, while they
are served only when the server passes through the cor-
responding service interval, which is much smaller. Under
stability conditions (3), the expected value of the arrived
workload in one such cycle is smaller than the workload
cleared while traversing the much smaller service intervals.
Thus the load factors are usually large and hence idle period
moments can be well approximated by (4). Further there is a
positive probability (1−pi) of zero arrivals in any cycle and
this probability can also be significant. If the probability of
zero arrivals (1−pi) is significant, one can in fact neglect the
second terms in the numerators of (4) and approximate idle
period by inter-arrival time. We consider this approximation
for the rest of the analysis which results in equation (13)
of Appendix and corresponding formula for the stationary
workload at departure epoch of Qi in the FWLAN equals:

E[Vi] ≈
E[ξ2

i ]− E[ξi]li
2(li − E[ξi])

for any i. (5)

The accuracy of this approximation is demonstrated via
Monte-Carlo (MC) simulations in Table II.

Simulations: We consider a typical queue Qi and gen-
erate a sufficiently long random sequence {ξk,i}k≤N (with
N > 5000000). Using this, we generate the sample path of
the departure workloads {Vk,i}k≤N as given by (2), and
estimate the stationary average departure epoch workload
using the sample mean 1

N

∑
k≤N

Vk,i.

We compare it with two approximate formulae: one obtained
using (4) and the other given by (5). We consider both
Bernoulli and Poisson arrivals and various terms related to
the computations are in Table I. The Poisson arrivals with
probability P (Ni > 1) is close to zero, will have similar

2This conjuncture needs explicit proof and we are working towards it.

terms as that for Bernoulli arrivals and we use the same
approximation. We consider uniformly distributed service
requirements {Bi}.

We notice from Table II that both the formulae (columns 3
and 4) approximate well the stationary workloads estimated
via MC simulations (column 2). Majority of cases, the ap-
proximation error is well within 10%. When the probability
of arrival pi in a cycle is small (.05), the approximation is
good even for small values of ρ (until 0.083 as seen from
the first 4 rows). With moderate values of pi we have good
approximation for larger ρ: e.g., when (pi, ρ) equals one of
(0.4, 0.5), (0.6, 0.9), (0.864, 0.95) for Poisson arrivals or the
pair equals one of (0.5, 0.5), (0.9, 0.9) for Bernoulli arrivals.

In all, the formula (5) is a good approximation for station-
ary departure workloads (under significant load conditions).

Configuration Terms related to Qi
Bernoulli E[ξi] = pibi, E[ξ2i ] = pib

(2)
i

Poisson E[ξi] = pibi, E[ξ2i ] = λib
(2)
i + λ2

i (bi)
2

Bernoulli E[(li − ξi); 0 < ξi ≤ li] = pi
l2i
2b

, for b > li

Uniform([0, b]) and E[(li − ξi)2; 0 < ξi ≤ li] = pi
l3i
3b

TABLE I
SOME TERMS RELATED TO THE FORMULAE

li, λi, MC E[Vi]=(5) E[Vi] ρ pi
P/B =(4) in (12)

.3, .05, P 16.12 16.54 16.54 .83 .05

.3, .05, B 15.76 15.92 15.92 .83 .05
3, .05, P .191 .178 .186 .083 .05
3, .05, B .179 .167 .175 .083 .05

5, .5, B 1.11 .833 1.17 .5 .5
3.5, .5, P 7.18 7.08 7.2 .714 .39
3.5, .5, B 4.16 3.96 4.13 .714 .5

4, .7, P 21.76 21.58 21.81 .875 .5
4, .7, B 9.73 9.33 9.76 .875 .7
5, .9, P 28.25 27.75 28.2 .9 .59
5, .9, B 8.20 7.5 8.65 .9 .9

10.5, 2, P 63.5 61.67 64.35 .95 .864

TABLE II
MONTE CARLO SIMULATIONS WITH Bi ∼ UNIFORM ([0,10])

V. QUEUES WITH INTERSECTING SERVICE INTERVALS

We begin with the scenario of Figure 1, that of two queues
with intersecting service intervals. The evolution of the two
queues depends upon the scheduling policies used. The two
queues evolve as below:

Vk,1 = (Vk−1,1 + ξk,1 −Gk,1)+

Vk,2 = (Vk−1,2 + ξk,2 −Gk,2)+, (6)
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Fig. 1. Two intersecting queues

where the sequences {Gk,1}k, {Gk,2}k are determined by
the scheduling policy used. By scheduling decision, we
mean the allocation of the shared interval to the individual
queues, either dynamic or static. Note that Gk,1, Gk,2 and
Gk,1+ Gk,2 will be upper bounded respectively by l1, l2 and
l1+ l2 - δ, at any time k.

In a naturally used policy, the server first senses the
users of the first queue in the orbit, say Q1, completes their
work requirements to the maximum extent possible (while
traversing L1). It then looks for the users of Q2. Thus the
workload evolution at Q1 is independent of the second one
(as in the case with no intersecting intervals) while that of
the second one depends upon the left overs of the first one:

Gk,1 = l1 for all k and

Gk,2 = (l2 − δ)+ min
{
δ, (l1 − (Vk−1,1+ ξk,1))+} . (7)

With natural scheduling policy the first queue in the orbit is
the favored one, while the second one can suffer, more so if
its load requirements are larger, i.e., if E[ξ2]/l2 > E[ξ1]/l1.

We thus study two more sets of scheduling policies. We
continue with the independent policies of Theorem 2 and
obtain optimal shared interval division. That is, we set

Gk,1 = l1 − γδ and Gk,2 = l2 − (1− γ)δ for all k, (8)

and chose a γ∗ that minimizes the sum of the workloads.
We compare the optimal policy with the natural policy.

If the server can detect the existence of workload in Q2,
while servingQ1, one can do better. We call these as coupled
policies, which attain the better of the two policies discussed
above and obtain optimal division of service intervals. The
results of Appendix can be used as before, if the scheduling
sequences {Gk,1}k, {Gk,2}k are IID. The study of non
IID scheduling policies require the results of Markovian
queueing models, and would be a topic of future research.

We are interested in choosing the optimal policies that
minimize the stationary average workload given by equation

(15) of Appendix. And as observed in the Appendix the only
controllable part of this workload is the stationary average
workloads of the various queues at the departure instances,
E[V1] and E[V2] and hence work directly with these.

A. Natural Policy (7)

In a natural policy the server attends the users, as and
when it senses one and keeps attending them as long as
they are in its visibility zone. Hence it first senses the users
of the first queue in orbit and attends that of the next one
only when the users of first queue are away. Because of
preference, the shared service interval is used by the first
queue whenever it has load. This kind of a policy could be
good as long as the load factor of the first queue is high.
On the contrary if the second queue has much higher load
factor, it might be better to dedicate the shared interval to
the second one. The partial load of the first one, if required,
can be postponed to the next cycle to be served utilizing the
service interval unavailable to the second queue. This helps
drain out the higher load-second queue at faster rate, while
the lower load of the first queue is drained out sufficiently
faster, just using the private service interval.

We analyze the policy (7) under an extra assumption that
ξ1 ≤ l1 almost surely. Under this assumption, the workload
in Q1 is never carried forward to the next cycle, i.e., Vk,1 =
0 almost surely and hence with l̃i := li − δ for i = 1, 2

Gk,2 = l2 − δ + min{δ, (l1 − ξk,1)+}
= l21{ξk,1≤l̃1} + (l̃2 + (l1 − ξk,1))1{ξk,1>l̃1}.

Thus the first scheduling sequence {Gk,1}k is a constant
sequence while {Gk,2}k is an IID sequence and hence the
results of Appendix can be applied. It is easy to see that
E[G1] = l1, E[G2

1] = l21 while with l̃i := li − δ

E[G2] = l2P (ξ1 ≤ l̃1) + E[l̃2 + l1 − ξ1; ξ1 > l̃1]

E[G2
2] = l22P (ξ1 ≤ l̃1) + E[(l̃2 + l1 − ξ1)2; ξ1 > l̃1].

We have E[V1] = 0 and the stationary workload of the
second queue at the departure epoch E[V2] is obtained by
substituting the above into equation (13) of Appendix.

This assumption is satisfied by Bernoulli arrivals (at
maximum one arrival) with Bk,1 ≤ l1 almost surely for
all k. It is also satisfied approximately by Poisson arrivals
when the arrival rate λ1, is small.

B. Independent policies (8)

From (8), we have constant scheduling sequences which
satisfy the assumptions of Appendix. For any fraction γ,
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with lγ1 := l1 − γδ and lγ2 := l2 − (1− γ)δ)

E[Gi] = lγi and E[G2
i ] = (lγi )2, for i = 1, 2.

The stationary workloads E[V1], E[V2] can be computed
using (13) as before, and exactly resemble equation (5) with
li replaced by lγi . Let V̄ I(γ) = EI [V1] + EI [V2] represent
the total workload and let σ2

ξi
:= E[ξ2

i ]− (E[ξi])
2. We have

the following result.

Lemma 1. The total departure epochs workload V̄ I(γ) is
optimized by the division threshold

γ∗ = max {0,min {1, γ̃}} where

γ̃ :=
l1σξ2 − l2σξ1 − E[ξ1]σξ2 + E[ξ2]σξ1 + δσξ1

δ(σξ2 + σξ1)
.

Proof: Let g(γ) represent the derivative of V̄ I(γ):

g(γ) = δ

(
E[ξ2

1 ]− (E[ξ1])2

2(lγ
∗

1 − E[ξ1])2
− E[ξ2

2 ]− E[ξ2])2

2(lγ
∗

2 − E[ξ2])2

)
= δ

(
σ2
ξ1

2(lγ
∗

1 − E[ξ1])2
−

σ2
ξ2

2(lγ
∗

2 − E[ξ2])2

)
If γ̃ < 0, σξ2(l1 − E[ξ1]) − σξ2(l2σξ1 − δ − E[ξ1]) < 0,

and this implies g(0) > 0. The derivative g is an increasing
function of γ, when lγ1 > 0 and lγ2 > 0. These γ render both
the queues stable and hence one needs chose optimal among
these gamma. Thus g(0) > 0 implies g(γ) > 0 for all γ.
Hence V̄ I(γ) is increasing with γ ↑ and therefore γ∗ = 0.

Similarly if γ̃ > 1, then g(1) < 0 as well as g(0) < 0. Thus
V̄ I(γ) decreases with γ ↑ and hence γ∗ = 1.

When 0 < γ̃ < 1, then g(0) > 0 and g(1) < 0 and
g(γ̃) = 0. By differentiating g with respect to γ, one can
see that the second derivative of workload V̄ I(γ) is positive
at γ̃. Thus we have the minimizer at the interior γ̃. �

M intersecting queues: Consider M intersecting queues
in cascade, as in Theorem 2, with δi representing the
intersecting length between Li and Li+1 for any i < M .
For each i, we divide the common service interval δi

optimally between Qi and Qi+1 and consider independent
processing as before. Let Γ = [γ1, · · · , γM−1] represent the
corresponding fractions. The lengths of the service intervals
dedicated for individual queues are:

lΓ1 := l1 − γ1δ1, lΓM = lM − (1− γM−1)δM−1

lΓi := li − (1− γi−1)δi−1 − γiδi, for all 1 < i < M.

The stationary workload for queue Qi is given again by
(5) after replacing li by lΓi . Computing the derivative and
equating it to zero, as done in previous section for case

with interior optimizer, we obtain the optimal division ratios
as Γ∗ = D−1e, where the matrix D and the vector e are
defined in the equation (9) given at the top of the next page.
The boundary optimal points can be obtained as done in
Lemma 1.

λ1, λ2, l1 = l2 γ∗ EN [V ] , EI [V ] ρ1, ρ2

0.97, 0.1, 0.12 0 0.41, 0.43, .97, .56
0.9, 0.1, 0.12 0.116 0.39, 0.41 .93, .57
0.8, 0.16, 0.2 0.217 0.29, 0.32 .86, 52
0.2, 0.23, 0.15 1 1.17 , 0.86 .29, .77

0.24, 0.28, 0.18 1 1.30, 0.87 .34, .78

TABLE III
NATURAL POLICY VERSUS OPTIMAL INDEPENDENT POLICY

C. Comparison of the two policies

We now compare the two policies, natural and optimal
independent policy. The sum workloads are computed for
the example scenario with B2 ∼ Uniform([0,1]) and B1 ≡
l1 and the results are tabulated in Table III. We consider
Bernoulli arrivals at both the queues. When load factor of
the first queue is larger than that of the second, the natural
policy performs better (first three rows of Table III). Under
the converse conditions, the independent policy performs
better (last two rows of Table III). In fact the performance
of the natural policy is significantly inferior (33% in the last
row), calling in the need for better scheduling policies.

D. Coupled Policies

We have seen that the natural policy can be inefficient,
especially when the queues later visited by the server, have
higher load factor. This calls for a policy which forces the
server to stop serving the customers of the closer queues,
even before it moves out of the visibility zone. We found
the optimal switching threshold, while using independent
policies. It would be advantageous to consider dynamic
switching (based on the workload status of the second
queue), in case there is a mechanism to sense the workload
of the second, a priori. In the following we present few
preliminary discussions, while a detailed analysis would be
considered in future. We consider the policies, that depend
only upon the new workload arrived in the latest cycle:

Gk,1 = l1 − δ + δ1{ξk,1>0}1{ξk,2=0}

+γδ
(

1{ξk,1=0}1{ξk,2=0} + 1{ξk,1>0}1{ξk,2>0}

)
Gk,2 = l2 − δ + δ1{ξk,1=0}1{ξk,2>0}

+(1− γ)δ
(

1{ξk,1=0}1{ξk,2=0} + 1{ξk,1>0}1{ξk,2>0}

)
.

The corresponding moments are given by:

E[G1] = l1 − δ + δp1(1− p2) + γδ((1− p1)(1− p2) + p1p2),

E[G2] = l2 − δ + δp2(1− p1) + δ(1− γ)(1− p1 − p2 + 2p1p2).
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D =


−δ1(σξ2 + σξ1) δ2σξ2 0 . . . 0

δ1σξ3 −δ2(σξ2 + σξ3) δ3σξ3 . . . 0
...

...
...

...
...

0 . . . δM−3σξM−1 −δξM−2(σξM−1 + σξM−2) δM−1σξM−1

0 0 . . . δM−2σξM −δM−1(σξM + σξM−1)



e =


l2σξ1 − l1σξ2 − δ1σξ1 + E[ξ1]σξ2 − E[ξ2]σξ1

l3σξ2 − l2σξ3 + δ1σξ3 − δ2σξ2 + E[ξ2]σξ3 − E[ξ3]σξ2
...

lM−1σξM−2 − lM−2σξM−1 + δM−3σξM−1 − δM−2σξM−2 + E[ξM−2]σξM−1 − E[ξM−1]σξM−2

lMσξM−1 − lM−1σξM + δM−2σξM − δM−1σξM−1 + E[ξM−1]σξM − E[ξM ]σξM−1

 . (9)

The stationary workload is obtained by substituting the
above into (13). Computing the derivative and equating
it to zero, we obtain the optimal division ratio for two
intersecting queues, when the optimizer is an interior point:

γ∗ =
−l1σξ2 + l2σξ1 + δσξ2 − δp1(σξ2 + σξ1)

(σξ2 + σξ1)(1− p1 − p2 + 2p1p2)

+
δp1p2(σξ2 + σξ1) + E[ξ1]σξ2 − E[ξ2]σξ1

(σξ2 + σξ1)(1− p1 − p2 + 2p1p2)
.

CONCLUSIONS

Ferry based WLANs offer the service while on move,
where as the existing polling models do not consider this
feature. We obtain approximate analysis of such general time
limited polling systems, and demonstrate that the approxi-
mation is good under high load conditions using simulations.
We show that the controllable part of the stationary average
workload is given by the stationary average workload at
departure epochs. The departure epoch stationary workload
is obtained using the waiting time analysis of a fictitious
GI/G/1 queue. The performance of SoM FWLAN majorly
depends upon the service intervals of various queues and
their intersections. We obtained the stability conditions, con-
sidering the intersecting service intervals. We also discussed
some scheduling policies, which allocate/divide the shared
service interval among the various intersecting queues.
We considered static and few dynamic policies. We also
discussed optimal policy in a given family of scheduling
policies.

As of now, we considered the policies that make inde-
pendent decisions across cycles. We basically considered
policies that depend upon the new workload arrived in the
cycle just before the visit. While a more realistic dynamic
policy would exhibit correlations, depends both upon the
new workload as well as the workload left over at the
previous departure epoch. The study of such policies would
be a topic of future interest.
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APPENDIX: G-TIME LIMITED POLLING SYSTEMS

We consider a time-limited finite polling system, in which
the visit time at any queue is pre-decided and is independent
of the awaiting workload. So far in the literature, these
systems are studied only under exponentially distributed
visit times. While we require the time limits/visit times with
any arbitrary distribution. Hence we call them as g-time
limited polling systems, to indicate that the distribution of
the visit times is general.

We have N -queues, the server visits them periodically in
the same order, every cycle. In the k-cycle it spends time
Gk,i at queue Qi, irrespective of whether or not the later
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Fig. 2. Workload process in a cycle

is empty. This system is similar to the autonomous system,
studied previously in the context of exponential visit times.
The service of any interrupted customer is resumed exactly
at the point left, when the server next visits its queue. We
consider IID visit times {Gk,i}k, for all the queues. The
server spends time Sk,i to walk between the queues Qi and
Qi+1 (modulo addition) during the k-th cycle.

In all the cases we assume that the cycle time is inde-
pendent of the (fractions of the) times spent in individual
queues. For any queue (say Qi) the sequence of workloads
{ξi,k}k, arrived in successive cycle times, is assumed to be
an independent sequence and this is true for each i. Here we
consider queue specific cycle times, the time period between
successive exits by the server, of the same queue.

Each queue is processed independently of the other
queues and hence can be analyzed independently. Let Φk,i
represent the cycle time (time between two consecutive
departures) with respect to queue Qi:

Φk,i =

i−1∑
j=1

(Gk,j + Sk,j) +

N∑
j≥i

(Gk+1,j + Sk+1,j).

The cycle times {Φk,i}k form IID sequence for each i. The
remaining details of the polling system are similar to that
of the FWLAN. With Vk,i representing the total workload
left at Qi when the server leaves the queue for the k-th
time, the system evolution can be written using the following
equation:

Vk,i = (Vk−1,i + ξk,i −Gk,i)+. (10)

Analysis of workload using GI/G/1 queue

The waiting time of the k-th customer of a GI/G/1 queue
can be written in terms of the service time Bk and the inter
arrival times Ak as below ([4]):

Wk = (Wk−1 + Bk −Ak)+.

From [4, equation (6.105)] the average waiting time equals:

E[W] =
E[B2]− 2E[B]E[A] + E[A2]

2(E[A]− E[B])
− E[I2]

2E[I]
, (11)

where I is the idle period and the quantities in the above
equation are stationary averages.

Equation (10) resembles the evolution of GI/G/1 queue,
and hence the stationary average of the departure-workload
process {Vk} can be obtained using the equation (11).
Further for large load factors (as in the case of FWLAN), as
discussed before, we approximate the idle times with inter
arrival times. Thus the stationary average of the workload
at departure epochs of queue Qi is given by (see (10)-(11))

E[Vi] =
E[ξ2i ]−2E[Gi]E[ξi]+E[Gi

2]

2(E[Gi]−E[ξi])
− E[I2i ]

2E[Ii]
(12)

≈ E[ξ2i ]−2E[Gi]E[ξi]+E[Gi
2]

2(E[Gi]−E[ξi])
− E[G2

i ]

2E[Gi]

=
E[ξ2i ]E[Gi]−2E[ξi](E[Gi])

2+E[Gi
2]E[ξi]

2E[Gi](E[Gi]−E[ξi])
. (13)

Time average of workload process

Let Vi(t) represent the workload of queue i at time t. We
already obtained the stationary analysis of the workload at
departure instances, {Vk,i} as given by (10) , where Vk,i =

Vi(Ψk,i) with the cycle end instances Ψk,i :=
∑
n≤k Φk,i.

This is a Markov process, in particular a random walk in
half line, which is stable and for which the law of large
numbers [3, Proposition 17.6.1, pp. 447] is applicable, as
the time limits {Gk,i} are bounded with probability one.

The area under the workload process during k-th cycle
majorly depends upon Vk,i, new arrivals ξk+1,i and their
arrival instances {Un}

Nk+1,i

n=1 as shown in the Figure 2.
For Poisson arrivals the arrival instances {Un}, conditioned
on the cycle length Φk+1,i, are uniformly distributed over
Φk+1,i, while for Bernoulli arrivals these are assumed to be
uniformly distributed.

The computations below can be inaccurate when one or
more arrivals occur while the server is at the queue. Further
the workload decreases linearly when the server is at the
queue, however we neglect this effect too. Given that the
cycle times Φk,i are large compared to visit times Gk,i,
these inaccuracies lead to negligible errors. Barring these
inaccuracies, the required area in k-th cycle equals:

V̄k,i :=

∫ Ψk+1,i

Ψk,i

Vi(t)dt

≈ Vk,iΦk,i +

Nk+1,i∑
n−1

Bn,i(Φk,i − Un). (14)

The above area of the workload, is a function of workload
at departures (10) and new arriving workload ξk+1 and their
arrival instances. The time average of the workload process
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can be obtained by considering the following limit:

v̄i := lim
k→∞

1

Ψk,i

∫ Ψk,i

0

Vi(t)dt = lim
k→∞

∑k−1
n=0 V̄k,i
Ψk,i

.

Using law of large numbers, [3, Proposition 17.6.1, pp 447],
and Wald’s lemma the above limit is almost surely a constant
given by:

v̄i =
E[Vi]E[Φi] + λibi(E[Φi]− E[Φi/2])

E[Φi]

= E[Vi] +
λibi

2
a.s. (15)

The above is obtained by computing the stationary average
of the terms on the right hand side of (14), which in turn
is obtained by conditioning on the cycle lengths Φk,i and
the number of arrivals Nk,i. In case of Poisson arrivals,
by PASTA property v̄i represents the stationary average
workload of the system in queue i. We notice from (15) that
optimizing the stationary average workload v̄i is equivalent
to optimizing the stationary average workload at departure
instances E[Vi] (given by (12)).

The total stationary average workload of the polling
system equals:

v̄ =
∑
i

v̄i =
∑
i

(
E[Vi] +

λibi
2

)
.
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