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M/G/K/K queue service time and drop/block probabilities for both fixed as well as random velocity of
Drop and Busy probability mobiles. We obtain (approximate) closed form expressions for optimal cell size when the
Picocells velocity variations of the mobiles is small for both non-elastic as well as elastic traffic. We
Mobility conclude from the study that, if the expected call duration is long enough, the optimal
Spatial queues cell size depends mainly on the velocity profile of the mobiles, its mean and variance. It

is independent of the traffic type or duration of the calls. Further, for any fixed power of
transmission, there exists a maximum velocity beyond which successful communication is
not possible. This maximum possible velocity increases with the power of transmission.
Also, for any given power, the optimal cell size increases when either the mean or the
variance of the mobile velocity increases.
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1. Introduction

Since the time 3G technology was designed and deployed, various other technologies have appeared. The ambitious
objectives in terms of quality of service offered by 3G technology turned to be quite expensive, which made the 3G
technology vulnerable to cheaper competing technologies such as WIFI. Picocell technology has been recently proposed as
an alternative that offers some basic connectivity and mobility support, and is yet sufficiently simple so as to be economically
competitive [1,2]. To prevent a large number of handovers that would result from the small size of the cells [3,4], it has been
proposed to group together a number of Picocells in one virtual Macrocell and to restrict the effort of preventing losses due
to the handover only to those handovers that occur between Picocells of the same virtual cell. In between the Picocells some
fast switching mechanisms are proposed such as frequency following mechanism where the frequency used by a mobile
follows it from one Picocell to the next. This requires reserving the same channel for a user in the entire Macrocell.

In this paper we consider a large Macrocell divided into a number of Picocells and study the impact of mobility on such
systems, especially the effect of frequent handovers. We assume that the ongoing call is never dropped at the Picocell
boundary, however base station switching (BSS) at any Picocell boundary requires some fixed amount of information (in
terms of bytes) to be exchanged. There is however a possibility of calls being dropped at Macrocell boundaries. We further
assume that the active users cross Macrocell boundaries at maximum once, i.e., the calls always end before reaching the
second Macro boundary. The handovers at the Macrocell boundaries are modeled as independent Poisson process (this is a
commonly made assumption, for example see [5,6]).
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This paper has several goals. First, to model the system so as to predict its performance measures. We are thus interested
in developing tools using spatial queuing, that take into account not only the instantaneous geometry but also the way it
varies in time. It should thus account for the impact of the speed of the users. We model the Macrocells by various types
of queues and well-known results from queuing theory (for example [7]) are used to obtain performance measures like
expected waiting time, expected service time, drop or blocking probabilities, etc. We shall use these results for preliminary
dimensioning purposes in planning the Picocell network catering to pedestrian and vehicular mobility, typical of urban
and sub-urban areas. We derive closed form expressions of useful performance metrics considering free space path loss,
handover constraints, traffic type etc. We also obtain closed form expressions for optimal cell size, optimal for various
performance metrics, when all the users move at the same fixed velocity. To derive these performance measures, we would
require the moments of the time taken by the system to serve' the customers, which in our case will equivalently be the time
the Macrocell spends on a call. We derive the expressions for these service times, during which the information is exchanged
between the moving user and the set of appropriate base stations (which it encounters during its journey), using variable
rate of transmission. We further simplify the expressions for service time under the following assumption: in a typical
Picocell network, a moving user would have traversed across a number of cells before the completion of call. In this system,
arrivals occur in space and the service time depend on the position, movement of the user and the serving base station(s).
The queues modeling these systems are referred to as spatial queues and have been used in interesting applications [8-11].
We make the following theoretical and or simulation based observations:

(1) Maximum possible velocity: For any fixed power of transmission P, there exists a maximum user velocity Vj;;;(P) and the
users moving at speeds greater than Vj;;;, can not successfully communicate with the BS;

(2) Larger cells for larger velocities: Given P, the optimal cell size increases with an increase in the highest velocity that the
system has to support. This is true as long as the highest velocity is less than Vj;;,, (P). However the system cannot cater
for velocities above the limit Vj;,, (P), even if one increases the cell size indefinitely.

(3) Insensitivity to application: The optimal cell size remains the same for non-elastic (NES) as well as elastic (ES) calls for
large file sizes, when the rest of the parameters remain same.

(4) Two dimensional Manhattan Grid: The one dimensional results can be applied directly to a two dimensional regular street
grid (for example [12,13]).

We extended the analysis to systems, where (negligible number of) call drops can also occur at Pico boundaries, and
obtained some initial results. These results and 2D grid extensions are new in comparison with the WiOpt paper [14]. To
completely avoid call drops at Pico boundaries, one needs a centralized call admission control (a control based on the total
number of calls in the entire Macrocell). This requirement can be relaxed if one can design a system delivering the required
QoS, in spite of (negligible) call drops at Pico boundaries. We consider one such system (with decentralized call admission
control) and obtain closed form expressions for the optimal cell size catering to non-elastic traffic.

In [15], we extended the analysis to a hexagonal 2D cellular structure in which the users can move in any direction
across the cell. The 2D system also considers possible drops at Pico boundaries as well as works with a more distributed call
management system.

Several authors have examined the impact of mobility on the performance of wireless networks. The authors in [ 16], have
shown that mobility in fact increases the capacity in ad hoc networks. In [17], the authors discuss the trade off between delay
and achievable throughput in the presence of mobility in wireless ad-hoc networks. Further, in [18-21], the authors discuss
the impact of inter and intra-cell mobility on capacity, flow level performance, trade-off between throughput and fairness,
etc. They show that mobility tends to increase the capacity with globally optimal as well as fair sharing policies, when the
base stations interact. In conclusion, we see that the mobility (via multiuser diversity, opportunistic scheduling etc.) can in
fact improve the overall performance of the system. However, most of the work assume that the handovers occur without
extra cost. But in reality, each handover requires exchange of some information between the user and the new BS and
has a risk of not finding free resources in the new cell. Our work mainly focuses on these issues which become significant
whenever the frequency of handovers increases, as in the case of Picocell networks.

We describe our system in Section 2 while the service time is discussed in Section 3.1 and is optimized in 3.5. The NES,
ES calls are modeled by the appropriate queuing models and performance measures are derived in Sections 3.7 and 3.8
respectively. The two dimensional regular street grid is studied in Section 4 while the numerical examples are provided
in Section 5. Some initial results on a system with possible call drops at Picocell boundaries and with a decentralized call
admission control are in Section 6. Some lengthy derivations are provided in two appendices (Appendices A and B) placed
at the end of the paper.

2. System model
We consider a Macrocell, [—D, D], divided into a number of Picocells of length L. Each Picocell has a base station (BS)

located at the center and all these BS communicate to a central unit (CU), which controls the entire system. We assume that
there is no interference between any two transmissions.

1 Throughout we use the terms from queuing theory like arrivals, service time etc.
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Traffic types: Define the waiting time as the duration between the arrival of the call and the instant its service starts. We
consider two types of traffic: elastic (ES) and Non-elastic (NES). The two types of calls result from two different types of
applications. The non-elastic traffic (multimedia streaming, voice calls etc.) is very sensitive to the waiting time. These
callers can tolerate some errors in transmission (for example in voice calls the ears cannot distinguish the errors when they
are below a certain perception limit) but are very impatient. They in fact drop the call if not picked up within a small waiting
time. An elastic traffic (e.g., a data call) on the other hand can wait for some time before it is picked up, but is very sensitive
to errors in transmission. In such calls, the natural performance metric is either the expected waiting time or the expected
sojourn time, while the probability of a call being blocked, Pg and the drop probability, i.e., the probability that an ongoing
call is dropped before completion, Pp are important performance measures for NES calls. Systems are designed with more
stringent requirements on Pp than Pg. The two types of users are assumed to be served using independent set of resources.

Arrivals: The two (ES, NES) arrivals are modeled by two independent Poisson arrivals with rates A. Every arrival is associated
with Marks (X, V, S): X € [—D, D] the location of arrival, S the file size requirement and V the user’s velocity, distributed
respectively according to P, x, P, v and P, s with respective densities f; x, fo.v and f, s. Let P, := (Py.x, Pn.v, Pn.s). We assume
symmetry in both directions, i.e., that P,((X, V,S) € A) = P,((X, V,S) € —A) for all Borel sets A. In this paper we thus calculate
and analyze without loss of generality (w.Lg.) for V > 0.

Handovers: In major parts of this paper (except for Section 6), we assume that handovers are completely successful at Picocell
boundaries. However, we do not assume the same for Macrocell boundaries, i.e., a crossover into a new Macrocell results
in a successful handover only if the new Macrocell has free servers. We model each handover into a Macrocell as a Poisson
arrival, stochastically independent of the new call arrivals (as done for example in [5,6]). We further assume that there can
be at maximum one handover, i.e., the calls get finished before reaching the second Macrocell boundary. This simplifies the
analysis to a good extent and is quite a good assumption as the Macrocells are typically large in dimension. We consider
generalization of this assumption in our future work. Lastly in Section 6 we obtain some initial results by relaxing the
’handovers at Pico boundaries are completely successful’ assumption.

Radio conditions: The BS communicates with the mobiles using a wireless link, at a rate that depends upon the distance
between the two. Since our primary focus is on mobility we implicitly consider Picocells deployed outdoors, for example
urban, suburban scenarios. Hence we can assume significant line of sight signal. Further, Picocells being small in size, it will
be sufficient to consider only the direct path for communication. A user located at x communicates with BS of cell m using
unit transmit power (when receiver noise variance is one) at rate? given by,

-B
ﬂx—(mL—S)‘ , (1)

where 8 > 1 represents path loss factor and dy > 0 is a small distance up to which there is no propagation loss. The above
model is valid for systems with low signal to noise ratios, where the rates are directly given by the SNRs.

R m) = 1y i yi<aor + Tixomi b1y G0

3. System analysis

The users are moving continuously with a fixed but random velocity. The Macrocell can handle at maximum K parallel
calls. Transmission always occurs at fixed power P. Since Picocells are small in size, the movement of the users results in
frequent handovers. The number of handovers will be so large that it would be complicated to design a reliable system
without redundancy: We assume that every BS can also handle K parallel calls.? This ensures that, once a call is picked up it
is not dropped at any Picocell boundary: when a user crosses over to a new BS, the new BS would at maximum be handling
K — 1 calls and hence will have at least one free server. However it is important to note that the maximum power used at
any time in the system equals KP. We further assume that:

(1) Every BSS (base station switching at a Picocell boundary) requires fixed B, bytes of information to be communicated
(independent of the user’s velocity), after which the user’s service is resumed by the BS of the cell it just entered.
(2) The user is served by the BS of the Picocell in which it is moving, as it is physically nearest to this BS.

In the following sections up to and excluding Section 6, all the results are derived under the assumption that, no call
drops ever happen at Pico boundaries.

2 The analysis will go through for any other rate functions, for example like R(x; 1) = (1+(x—L/2)2)~#/2[22], R(x; 1) = log[1+(1+ (x—L/2)2)~F/2][22],
R(x; 1) = log[1 + (dg|x —L/217# Tx—1/2>do} + 1{ix—1/21<do})] €tc. Some of the simplifications that we obtain in subsequent sections, may not be possible
with these rate functions. However one can always conduct Monte Carlo simulations to obtain the required inferences.

3 practical systems, each BS will have M backup servers to manage handovers. This means each BS can handle M parallel calls. In general M need not
be equal to K, however M has to be chosen large enough to ensure negligible call drops at Picocell boundaries, taking into consideration the large number
of handover associated with Picocells. With this large enough M the system’s behavior will be close to the system considered in this paper (the case with
M =K).
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Fig. 1. User moving with velocity V along a line.
3.1. Time required for communicating S bytes (B.)

Define by B.(S, X, V) the time required to communicate a packet of length S bytes to a user located at X (when the
service starts) and moving with velocity V. If the user can communicate at a fixed rate r bytes/s then the communication
time would have been S/r. The maximum rate at which a user can communicate with the BS in cell m is given by (1).
This position dependent rate varies: minimum when the user is at the cell edges and increases as the user moves towards
the cell center. This poses a need to calculate the communication time considering the variable rates. The location of
the user (under service) will change according to X(t) = X + Vt (Fig. 1). At time ¢t, if the user is in cell m, i.e. if
X(t) € [(m — 1)L, mL], it communicates with the BS of mth cell. Hence the user gets service at time varying rate given
by

_ , |:(m—1)L—X mL—X:|
R(t; X, V) == PR(X(t); m) ift e .

1% v

Without loss of generality we consider the users, whose communication started in the first Picocell, i.e., with X € [0, L]. The
communication time B, required by the user, i.e., the time required to communicate S bytes satisfies:

Bc
sz/ R(t; X, V)dt. (2)
0

Let,

/A I dr
g :=/ PR(Vt; 1)dt =P/ R(I'; 1)—,
0 0 |4
represent the number of bytes communicated while the mobile traverses interval [0, []. Note that (throughout it is assumed
that L > 2dy: one can easily show that the optimal cell size has to be greater than 2d,),

pdy (> L NP pdy ot L\* ~ 2pd
-0 (7—1) dt+—°/ (l—7> dl+ =2
v Jo 2 V Jipsa \ 2 v

2Pd, < L >"3
—=0 _(p-(—= when g8 > 1
_Jvi-1 2dg (3)

2Pdy
T(log(L/Z) — log(dy)) when 8 = 1.

gl

For any m, the number of bytes communicated as the user traverses through mth Picocell (by change of variable | =
X+ Vt— (m—1)L),
mL—X mL—X L
1% 1% _ P _
R(t; X, V)dt = / PR(X 4+ Vt; m)dt = —/ R(; 1)dl = g(L)
(mfz/)fo Vv 0

(m=1)L—X
14

and thus is independent of m. Out of this number, B, number of bytes are dedicated for BSS. Hence, irrespective of the cell
which the user traverses, g(L) — B, number of bytes are transmitted during the user’s journey via one Picocell. Thus the
communication time can have three components: (1) Time taken in the originated cell: (L — X)/V, (2) Time taken to travel
N full cells, where (with |t ] representing the largest integer in t)

S —(@eb —g(X)))J
g() — By

represents the number of cells traveled during the communication of S bytes and (3) Time taken in the cell in which the call
terminates, i.e., time taken to communicate leftover bytes

Sii=5—(gl) —gX)) —N(g() — Bp).

N=N(,X,V) = {
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Further a call can be handled only if the bytes that can be communicated while traversing through a cell g(L), is greater
than the number of bytes required for BSS By. From (2), the communication time B.(S, X, V) can be calculated as:

1
v e lei(r)gf”{(g(l) —-gX)) =S} ifS < (g(l) —g(X))
B.(S,X, V)= {0 if By > g(L)
L—X

L 1
—— +N— + —arg inf ) — B, >S;} else.
v TNy ty gle(w{g() h > Si)

From (3), g is continuous and monotonically increasing function, so g~! exists and thus:

Theorem 1. Time to communicate S bytes with a user initially located at X and moving with velocity V is,

g S +gX);V)—X

ifS < (gl —gX)

|4
B.(S,X,V) = | o0 B, > g0)
(L—X)+NL+g '(Si+By; V)
else, where
%4
L ~H sv L
— ‘1 — Pdy X _ 1 SU 1 L
2( 62 2) if B Pdg < og(2d0>
L 2dge” o . s i
et . oY,
2+ L if B Pd0>0g 20 +
L L
2+—d010g<2do)—d0 ifB=1 else
_ p—1 .
L s~ 1 AN su(f—1 _ [\ At
- g #jL(f) if B> 1 Lﬂ)<doﬂ+1_(i>
S Pdo 2 Pdj 2
—1
L, (284" swp—n (1Y
2\ A1 pdf 2
— —p+1 —p+1
if B> 1 @B—1 _ B+ (L
Pdg B—1 2
Ldf (=1 (NPT .
2+,8—1<pdg+ 2 —dy B if p>1 else. O

Approximation : In Picocell based systems, a user traverses a large number of Picocells while receiving service. Hence the
communication time can be approximated by the product of number of cells, S/(g (L) — By), and the time taken for traversing
each cell L/V:

S L
B.(S5,X,V)  ——— wheng(L) > By. 4
(SXV) & o g(L) > By (4)
In Fig. 2 we show that this approximation is very good. We plot the expected value of actual communication time
(given in Theorem 1) and the expected value of the approximation (4), for two different velocity profiles. As expected
the approximation is very good, in fact for all velocity profiles (one can hardly distinguish the two lines in the
figure).

Remark 1. If a call is originated at position X and moves with velocity V # 0 then, in case of ES applications, the call
will be picked up at a position X; (=X + VW; W the waiting time) different from X. It is difficult to estimate X; (as W is
unknown) and the time taken to communicate S bytes, B, actually depends upon X; but not on X. However with the above
approximation, B.(S, Xs, V) = B.(S, V), i.e.,, B, does not depend upon the location of the user when its communication
started.

3.2. Maximum velocity handled by the system

Communication time, Be, is finite only if the number of bytes transferred g(L) per cell is strictly greater than the bytes
required for BSS, B,. The system cannot handle velocities for which the communication times are infinite and hence we
obtain (proof in Appendix A.1):
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Fig. 2. Approximation of communication time, B..

Theorem 2. When = 1, for any transmit power P, system can handle all velocity profiles. When 8 > 1, there exists a bound
Vim(P) < oo (increasing linearly with P) on the maximum velocity that can be handled by system, where

2PdypB

Viim(P) = F—1°

O (5)

Henceforth we consider only the velocity profiles that satisfy:

Pn,V(V < Vmax) = 1’ where Vmax < Vlim(P)' (6)

3.3. Service time: the time of the Macrocell spent for user’s service

The user reaches the boundary of the Macrocell starting from a point X in time:

By(X, V) = X (7)
d ) — v .

The Macrocell has to serve the user either until all its S bytes are transmitted (which takes time B, ) or until the user reaches
the boundary. Thus, the overall service time requirement of the user in a Macrocell is Bp := min{(D — X;)/V, B.(V, S)},
where X; (defined in Remark 1) is the user position when its service starts. By Remark 1, B, does not depend upon X;. For
NES applications X; = X the position of arrival. For ES applications, it is difficult to estimate X, instead we approximate
X; with X, i.e,, Bp(X, V,S) =~ min{By(X, V), B.(V, S)}. The error in this approximation is given (with W representing the
waiting time) by:

D—X,

Frr = Whia o) + (Bf - ) 298 <he<23%)

and so for any k,

E[Efr] =< E[Wkl{35>¥—W}]'

The error is small either whenever the number of servers is large (so waiting times are small) or when the Macrocell is large in
size (which usually is the case).

3.4. Macro handovers

Handovers are modeled as Poisson arrivals (as done in [5,6]). In this subsection we derive the other characteristics of the
handover calls.

Distribution of handover call marks (X, S): In general handover densities will be different from the new call densities f, x, fa.s
and f; v. As the users move in either direction with equal probability, P, x the position of handover arrival occurs either at
—D or at D with half probability. If handover occurs at —D the corresponding velocity will be positive, which is the case we
consider w.l.g. We assume f;, s is exponential, i.e., f, s(s) = we™* for some p > 0, in which case by memoryless property,
the handover density fy s = fu.s-

Rate of handovers: With n(L) := Vg(L), let
n(L) — vBy vg(L) — By

v(v,L) = =
(v, L) I I
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Then from (4) and (7),

Pho := Prob(By < Bc) = Eyxv[e #""DC=0/V] 9)

gives the probability that a call is not completed in one Macrocell. This precisely represents that fraction of new arrivals
which get converted into handover calls. So

Ano = APpo

is the rate at which handovers occur.
Speed of handover arrival: A handover call arrives at X = —D with velocity v > 0 only if a new call with velocity v is not
completed before reaching the boundary. Here we use the assumption that handover occurs at maximum at one Macrocell
boundary, i.e., an handover call is not converted to another handover. Let

Pho,y = Prob(By < B|v) = Enx[e™"DP=0/] (10)
represent the conditional probability given V = v. Then the handover speed distribution,

fn,V (V)Ppo,v

fav (@) = P

3.5. Moments of service time

Under assumption (6), the kth moment of By exists (whenever the corresponding for S and V! exist) and equals,
b® = Ex v s[(Bp(X, V, S))¥], where Ey y s is the expectation w.r.t. the (new call and handover call) joint distribution,

APax, Py, Pos) + Ano(Phx,v, Pns)
A=+ Apo )

In Appendix A.2 we obtain (recall E, is expectation w.r.t. P, the new call distribution):

Pxys =

k k
p® — E, Bo(x,v.5)" + Bp(=D. v.9) Phov | (11
14 Py
db® _ [ d (Bo(x,v,9)"+Bp(=D, v, ) Pho,0 (12)
dL ~ "|dL 1+ Py ‘

3.6. Cell size optimizing the moments of the service time

The number of bytes that can be communicated in a cell increases with the increase in cell size: from (3) g is continuous
and monotonically increasing w.r.t. L. For any given velocity there exists a minimum cell size (the smallest cell size at which
one can transmit more than By, bytes per cell), below which successful communication is not possible. When the cell size
is closer to this smallest one, the useful bytes transmitted per cell (g(L) — By) are very small and hence it takes more time
to transmit S bytes, i.e., the communication time B, will be large. As the cell size increases from this smallest size, the
communication time B, starts reducing. However after some point, due to path loss, the number of bytes per cell starts
saturating and hence the gain in terms of useful bytes transmitted per cell will be small in comparison with the extra time
taken to traverse each cell, resulting in increasing the communication time again. Thus there exists an optimal cell size for every
fixed velocity. One can extrapolate similar things even for random velocity. We derive the optimal cell size LZ(I) and relate
the same to the optimizer of more interesting performance measures for ES and NES calls in the subsequent sub-sections.

Define L} (v) = argmax; v(v, L), the maximizer of the function v given by (8). In Appendix A.3 we show that, there
exists an unique L} (v) > O for every velocity v. In the Appendix A.4 we further show that, for fixed velocities (i.e., when
V = v), the derivatives of all the (existing) kth moments of the service time vanish only at L} (v). Thus for fixed velocities, all
the (existing) moments of the service time have unique and common minima:

L = arg mLin b® = arg max v(v,L) =Lj(v) forallk.

The common optimizer L* (for example for § > 1) satisfies

*

dv(D, L) L\ * _
—_— =0 or 2P i L* — n(L*) 4+ vB;, = 0 and therefore.
0

O P
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Theorem 3. For fixed velocity profile, i.e., P, y(V = v) = 1 the optimal cell size for the expected service time is,

2pdf £\
B—1
2| —————— when 8 > 1
Lzm =Ly = (ZPdOﬁﬂI — UBy
iy
2dge 2o when g = 1.

Further, if the kth moment of the service time exists then Ly, = Ly, O

For velocity profiles with small variance, the optimizers of all the moments of the service time will be equal approximately. Hence
when P, y has small variance with mean v then LZm is close to LY (v). From the above it is clear that LZ(U increases when the
mean v increases.

Having obtained the service time, we now turn our attention to model various configurations of the Macrocell with
appropriate queues to further obtain their performance measures.

3.7. ES calls: average waiting time

Each Macrocell can handle at maximum K parallel calls. The CU of the Macrocell keeps a record of the users entered
into the system and serves them in FIFO (first in first out) order via the BSs of the Picocells. When a new user initiates a
call, it is immediately picked up if there are fewer than K active calls in the system. If not the user will have to wait. Its
service will start at the time: (1) when one of the active K users finish their service and exit (2) if there are no other waiting
users arrived before it. The BS nearest to the user, at the time of its service start, will initiate the call. Hence after, its call is
served (by the Macrocell under consideration) as discussed in Section 3.1 either until its service is over or until it reaches the
Macrocell boundary. When it reaches the boundary the call will be transferred to the next Macrocell as a handover call and
the handover call is treated by the new cell similar to that of a new call. Thus each Macrocell can be modeled by a M/G/K
queue with service time Bp and Poisson arrivals at rate A 4+ Apo. This queue has been analyzed to a good extent and the
system is stable only if [23]

()L + }\ho)b(l)
pi=—<1

K
For stable queues, the expected waiting time of a randomly arrived customer can be approximated by [23]:
b b (Kp)" (Kp)" + (Kp)
E[W]k = ; = 1— 13
Wk <2(b(1))2) (K(l —p))( K! )”" o K T ’O); il (13)

where bV, b® are given by (11). If the system is unstable the number of waiting customers grows towards infinity and thus
one should consider only the cell sizes L with p < 1. Hence, the optimal size, which minimizes (13) is

L% = arg min E[W].
ES g{L:p<1} W]k

We saw in the previous section that the optimizer of b® is the same as that of b’ for fixed velocities and will be close to
each other for smaller velocity variances. In a similar way the same thing is true for p, i.e., for fixed velocities,

L* :==arg min p =L%;.
p g{L:p<1}p b

The expected waiting time (13) is continuously differentiable in bV, b® and p. Thus (minimizer of (13) is a zero of its
derivative and E[W]x depends upon L only via bV, b, p),
Theorem 4. Optimal cell size for a system with elastic traffic, with P, vy (V = v) = 11s,
Li. = arg min E[W], =L%,.
ES g o [W]k )
So, LZ(U minimizes both expected waiting time and expected service time. Also, it minimizes the expected sojourn time, as it is the
sum of expected waiting and service times. O

Also from (13), when L;‘m and LZW are close, it is easy to see that the optimizer of E[W ]k will be close to that of the expected

service time, bV. Thus even for low velocity variances,

L' ~arg min bV =L* ...
ES g{L:p<1} b

We see that this is true even for many general velocity profiles in examples Section 5.
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3.8. NES calls: block and drop probabilities

As before the system can handle at maximum K parallel calls. The call is picked up immediately (by the BS of the Picocell
in which the call is originated) only if the Macrocell is serving lesser than K users at the time of its arrival. If all the K
servers are busy it is dropped. When an active customer reaches the boundary of a Macrocell, its call is continued in the next
Macrocell only if the new Macrocell has free servers. Each Macrocell can thus be modeled by an M/G/K /K queue. And its
call block probability is given by the Erlang Loss formula (o was defined in previous section),

DX /K!
oty = LK

> p(D¥/K!

k=0

It is interesting to note that Pz(L) and p are both differentiable w.r.t. L and further that if the derivative dp/dL is zero at
a L* so is the derivative dPg/dL. By taking the second derivative, we can in fact show that their minimizers are the same.
Hence,

Ly =arg min Pg(l) =L%.
Pp 8 Lo sl =1L,
Further at fixed velocities, Ly = L, ;, and so we have,

Theorem 5. The minimizer, LZ(D also minimizes the block probability, P, for fixed velocities. For any velocity profile, L: also
minimizes the block probability. O

Drop probability: Under the assumptions stated earlier, only a new call can reach the boundary and not a call which was
already handed over once. Further, an active call is dropped only when it reaches the Macrocell boundary and the new
Macrocell is busy. By independence of the two events (status of the new Macrocell prior to handover is independent of the
call that is handed over), the drop probability is

Pp(L) = ProPg(L).

One can design an optimal system, catering to NES calls, either by jointly minimizing both the block and drop probabilities
or by minimizing one of the probabilities while placing a constraint on the other. Usually systems are designed with more
stringent requirements on Pp than on Pg. We note from the above calculations that Pp is directly proportional to Pz and will
be smaller than Py by a factor Py,. We make in the rest of this subsection, a commonly made assumption that, the location
of the call arrivals is uniformly distributed, i.e. that X ~ U[—D, D]. Under this assumption:

Pro = Pa(By(X, V) < Bc(V,S5)) = Ensv[Px(D—X < VB.(V, 5))]

. VSL
Ensvy [mm [ZD, D)~V }]
2D

E [1 _ e—H2D(y(D—VB)/VL (1 + W)]

2D

= E, V[e*MZD(’I(U*VBh)/VL] +

1
< E, y[e #2D0W~VB) VLY 4 _
n,V[ ] 2D,u
Thus Py, decreases with 2D, the Macrocell size. Macrocells are large in dimension and hence P, can be ensured to be within
the prescribed limits (the limit is a design parameter) by directly minimizing Py itself. Thus we propose to choose cell size
L to minimize Pz and hence equivalently p:

Li:=L" =arg min L)~ L.
NES » g{L:p(L)<1} o) )

Remark 2. Thus for both ES and NES applications one needs to minimize the first moment of the service time, bV, to obtain
the optimal cell size. This optimal cell size has been discussed in the previous section for fixed velocities and for velocity
profiles with small variances. The general situation is studied in Section 5 via numerical examples.

4. Mobility on a street grid

We assume that users are moving in a rectangular grid overlaying a large area [—D, D] x [—D, D] with grid size b, d as
shown in Fig. 3. This example is typical of urban areas where the streets are in a criss-cross manner (this is a well-known
model, see for example [12,13]) and hence is an interesting example for study.
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Fig. 4. Moments of the service time and the expected waiting time versus L.

In this case, we assume that the location of arrival X is uniformly distributed on the lines, i.e, X ~ U[4], where the grid

D/d d D/b b
g = U[—D,D] X {ld+ 2} UU {lb+ 2} x [-D, D].

i=1 i=1

A one dimensional vector V represents the speed of the vehicle, which is uniformly distributed, i.e., V.~ U[0, Vjuax]. It's
direction depends upon the position of arrival X: it is horizontal if X is on horizontal line and is vertical if on vertical line.
One can easily extend the analysis to include zig-zag paths. In either case we assume it be equi-probable in the two possible
directions; towards left or right in case of horizontal line and towards up or down in case of vertical line.

Any Picocell is a line segment of a street and a base station is placed at the center of this cell (if we neglect the small
number of Picocells that might possibly span across two intersecting streets). The mobiles may change directions as they
take a turn, but the rate they obtain with their BS once again follows periodic pattern as explained in Section 3.1. Hence the
time to reach the boundary Bj, the time to serve S bytes Bs and hence the service time Bp are just the same as those derived
in the previous sections. Thus the analysis and the results of all the previous sections is applicable to the grid structure. So in the
grid structure, the 2 dimensional analysis actually boils down to one dimensional analysis itself.

5. Mobility examples

In the numerical examples of this section, we consider uniformly distributed velocity profiles. The position of arrival X is
also uniformly distributed in the Macrocell [—D, D]. We use Monte Carlo simulations to estimate bV, b® and use exhaustive
search to find the optimizers. In Fig. 4 we plot normalized values of b, b® and E[W ]k versus L. As discussed earlier we
notice that the various performance measures decrease with cell size initially, reach an optimal value and increase again
from then on. In fact, all the performance measures have unique minimum at the same L. We study more details of these
minimizers in the following.

In Fig. 5 we plot the optimal cell size (optimal with respect to the moments of the service time bV, b®, block and drop
probabilities Pg, Pp of NES calls and the expected waiting time E[W ]k of ES calls) versus mean velocity for two different
values of variance. We setdy = 5,A = 0.1,B, = 2,P = 1, u = 5, K = 20 and consider a Macrocell of size D = 1000.
We also plot L}, which is the maximizer of v(E,[V], L). Note that LY is a single curve in the figure while the remaining 5
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Fig. 6. Optimal cell size versus variance of the velocity.

*

optimizers (L), L 5, L, L, and L;y,,) are plotted for two values of variance and hence there are two curves for each
of these 5 optimizers. In fact, L} is not visible separately as it completely coincides with the minimizer L, plotted for
variance equal to 1. For small velocity variance (variance equal to 1), all the minimizers are close to L. For large velocity
variance, we notice that all the minimizers (together) are away from L}, but however are close to each other for most cases.
That is, the minimizers of expected waiting time are the same as that of block as well as drop probabilities and all of them
equal L;(l). This suggests that even for velocity profiles with high variances, it is sufficient to optimize the average service time
b for both ES as well as NES calls and hence the optimal cell size again remains independent of the application. However for high
variance it is not sufficient to minimize v(E,[V1, L), rather one needs to minimize bV directly.

In Fig. 6 we further illustrate the same, by plotting the various optimizers now as a function of velocity variance. We set
mean, E[V] = 10,dy = 5,A = 0.1,B, = 2,P = 1, u = 5, K = 20. We once again note that all the minimizers are close to
each other for many cases. We also note that all the minimizers are close to L for low velocity variances. We further observe
that the optimal cell size increases with increase in the variance also. Thus larger the velocities the system has to support, the
larger are the optimal cell sizes.

We notice that, in both the Figs. 5 and 6 only the optimizer of the second moment Lb<2), is sometimes different from the
rest of the minimizers. However, even when LZ@) is different from L;m, the minimizer L}, (minimizing the expected waiting
time) is equal to L} ;) and thus for both the types of traffic L/, (minimizer of expected service time) gives the optimal cell
size.

*

6. Call drops at Picocell boundaries (NES calls)

So far in our analysis, we have assumed that there are no call drops during handover when the mobile traverses across
Picocells. We hence called it as just BSS (Base station switching). In practice even the handovers at Picocell boundaries can
fail, even though with an extremely small probability. In this section we obtain some initial results considering possible Pico
drops for the special case of uniform arrivals, uniform velocity profile and the networks catering to NES calls. We further
assume that the velocity profile does not include 0 so that E[1/V] < oc.
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Every Pico handover, as before, needs By, bytes to perform the BS switching and in addition has a (small) possibility of
not being successful. We now call the BSS near a Picocell boundary also as a handover. The BS of the Picocell admits a
call (handover or a new one), as before K calls at maximum, however some of the new calls are not picked up to reserve
resources for the handover calls, now to keep the overall Drop probability under the required limit. Further in this case the
call admission control can also be distributed: (1) in a centralized scheme the CU directs the Pico BS as in the previous section,
either to admit or not admit the new calls (base stations possibly are using fewer number of servers); (2) in a decentralized
scheme, the Pico BS always reserves K; servers exclusively for handover calls. That is, in a decentralized scheme, the Pico
BS (independent of the other Picocells) admits a new call if more than K; servers are free while a handover call is admitted
whenever any server is free.

In this paper we consider a call admission control scheme that is decentralized and is different from the above two
schemes. A new call is considered for picking up with probability p independent of everything else. And a call considering for
picking up will be picked up when any one of the servers is free. This scheme is close to the decentralized scheme described
above when p is close to one, i.e., when Kj is close to 0. The centralized scheme (with Pico drops) on the other hand has
to be handled using totally different queuing models and is not considered in this paper. Note that smaller p implies larger
priority to handover calls. In this case each Picocell itself is modeled as a separate M /G/K /K queue.

Remark 3. We considered a simple, analytically tractable and a decentralized call admission control in this section. One can
try to analyze a system which reserves K; servers for the handover calls using priority queues. On the other hand it will be
more difficult to analyze a system with centralized control (with possible Pico drops), in which the CU directs to admit new
calls or not depending upon the total number of calls in the system. One will need the theory of interacting queues for such
a study.

6.1. Service time: time of the Picocell spent for user’s service

The service time B;, now represents the overall time of a Picocell used by the mobile. Thus the service time will be much
smaller in comparison with the previous section and its analysis will be significantly different. There is no more periodicity
while obtaining the service time, however the analysis in this case also simplifies, now due to small values of L. The service
time components B. and B are:

L-—X 1S+gX); V) —X
B;,:T and Bczg ( gE/) ) when B, < B;
with the overall service time as before equal to B, = min{B;, B.}. We use notation B, instead of Bp for service time, to
emphasize that this is the service time of a Picocell of length L. Further,

Pho = Prob(B; < Bc) = Prob(g(L) — g(X) < S) = E[e *ED—2X)] = pre=w" 7™
and Py, , also changes similarly. However it is easy to see that as the cell size decreases towards zero the function inside the
expectation converges to 1 for all the realizations and hence by BCT Py, Pp, ,, (for all v) converge to 1 as L — 0. Thus for
Picocells we approximate Pyq, Py ,, by 1.
The service time in a Picocell with high probability (the probability increasing as L — 0) will be equal to the time taken
to traverse the cell itself, as with high probability the user has to pass through many Picocells before completing his request
and thus:

L—X
Bi(S. X, V) ~ =

6.2. Pico Handovers

Handover arrival rate: There is a major difference in the analysis while calculating the handover rate A;,: now we should
consider that the (Pico) handovers can happen many times (and not at most once as in case of a Macro handover) during
a call’s duration. The calculations though different can easily be carried out. We introduce some new notations for this
purpose. Let P, 5, Pho. 5.y Tespectively represent terms equivalent to Py, and Py, ,, for a call that is already handed over (at
least once). It is easy to see that (when P(V < V};;;(P)) = 1) by BCT again (using Eq. (8)):
Lv(L)
Pho.y = Prob(g(L) < S + By) = E[e *ED~ 8] = E[e™* V'] - 1 asL— 0

and similarly Py, .5 — 1asL — 0(forall v). By Taylor series, e™ ~ 1 — x for small values of x and this is used for obtaining
another approximation for Py, 3 again using BCT:

v(L, V)

(1 — Po,p) — ULE [
This approximation is more appropriate when we consider terms like 1/(1 — Py, ). From (8) for L small using (14),
~ /‘LLV(I_)inm L) 1

T where vjy, == i [H

]—)O asL — 0. (14)



722 V. Kavitha et al. / Performance Evaluation 68 (2011) 710-727

Let, A; := pL)A/D be the effective rate at which the users arrive into the Picocell of interest [0, L]. Note in the above that
LA /D represents the actual rate at which the new calls arrive in [0, L] while A, represent the arrival rate of those sampled
users who are considered for picking up. The handover rate XA, in this case can be calculated as: (1) due to symmetry, the
handovers from Picocell 0 ([0, L]) to cell 1 ([L, 2L]) are stochastically same as those from cell —1 ([—L, 0]) to cell 0; (2) the
same is true for handovers when a mobile travels from right to left; (3) so, the handovers into a cell of interest (cell 0) are
stochastically same as those that go out of the cell 0; (4) thus under the assumption that handovers are Poisson in nature,
the handover rate should satisfy the following fixed point equation:

AnLPho.y + ALPro = Anr-
Using the approximation in Eq. (15),
_ ALPho ~ PViny
1-— Pho,i) Dﬂv(ﬁinv’ L)

ML ) (16)

Remark 4. Note that L} = argmin; Ay = L} (Viny) and that for fixed velocities (when V = v) vip, = v. Thus for fixed
velocities, interestingly %r any value of p, the cell size optimizing the the handover rate Aj; (considering the Pico drops) is
the same one that is optimal for NES as well as ES calls, obtained by neglecting the Pico drops.

Handover speed distribution: Note in Eq. (16) the expectation E[1/V] in the last term is w.r.t. to the distribution corresponding
to the handover calls and hence one needs to calculate these distributions. The handover arrivals are either at O or at L with
half probability and since we are considering the positive velocities without loss of generality the position is always at 0. The
(Pico) handover speed distribution, f, v (v), (after considering the drops at Picocells) once again satisfies another fixed point
equation due to the statistical similarity between the arrivals into and out of the cell 0. In Appendix B, this fixed point
equation is derived and the Pico handover speed distribution is shown to converge to uniform speed distribution as the cell
size L tends to zero. Thus the (Pico) handover arrivals have approximately uniform speed distribution.

6.3. Stability factor
The stability factor p in a Pico queue is calculated in Appendix B using the approximations for small cell sizes and we

obtain:

O A b ApL

- K KDpv (Diy, L)

Pyeo D) (17)
Define

v(v, L)
L ‘= arg max .
v/]_(v) g < i

Thus the optimal cell size for stability factor is,

LZ,prO = arg rnLin lop,'m (L) = L:/]_(f)inv)-

6.4. New call block probability

The Picocell can be modeled by an M /G/K /K queue as in the previous section. Let Pgysy pico represent the probability that
an arrival (a new or an handover call) finds all the K servers busy in the Picocell. This probability can be calculated using the
results from queuing theory as done in the previous section using Erlang Loss formula,

Price DX /K

PBusy,pico (L) = x

3 0y (/K
k=0

A new arrival is not picked up either with probability 1 — p when the BS intentionally does not consider it for picking up or
with probability pPgysy pico When all the servers are busy. Thus, the new call block probability for system when considering
Pico drops will be given by,

PB,pico L=0-p+ pPBusy,pico (L.
From the above the cell size optimizing the block probability Pg ,ic, Will be same as that optimizing Pgusy,pico, Which further

is samfe as Ly ., (using the logic as in Section 3.8). Thus it is clear that, Ly, ., = L7 ; (Vinv) and from (17) this optimizer is a
zero o

dp  2L(n(L) — VinBy) — L' (L)

¥y — 4“1 -

dL (n(L) — VinyBy)?
where c is an appropriate positive constant. Hence we have,

’
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Theorem 6. The cell size optimizing the block probability of the NES calls considering the possible drops at Pico boundaries, when
resources are reserved for handover calls by intentionally dropping some of the new arrivals, is given by,

pdj 651 1
p—1
2| ——5—— when 8 > 1
* T T —
LPB,pica - vapifo - L"/L - <2Pd0[3ﬂl - vianh O
Biny Bp—Pdg
2doe Mo when g = 1.

When this optimal cell size is compared at fixed velocities with that obtained after neglecting the Pico drops (that obtained
in Theorem 3) we find that: (1) when 8 > 1, the two cell sizes matches except for a factor of (8 +1)/(28))"/¥~V; (2) when
B = 1, the difference is in the power of the exponent, an extra —Pd, factor for the cell size with Pico drops. This differences
are negligible only when f§ is close to 1 (but not equal to 1). The two systems use different call admission control mechanisms
and hence the difference. Nevertheless the optimal cell size of the Theorem 6 is valid for a distributed call management system
and further it gives the cell size even for velocity profiles with non zero variance.

6.5. Drop probability

It was straightforward to calculate the drop probability for the previous case (i.e., without Pico drops) as the drop could
have occurred at maximum at one Macro boundary. It is more tedious to calculate the same when drops are also possible
at Pico boundary. This tedious job is carried out in Appendix B, wherein the drop probability is obtained by conditioning on
two events. We obtain (see Appendix B):

P Busy, pico
M(’I(L)_—f'inuBh) + PBusy pico ’

Viny

PD,pico =

It is interesting to see that both the call drop and the new call block probabilities depend upon the busy probability Pgysy, pico
and one can thus design a optimal system (considering Pico drops) by minimizing the busy probability or equivalently the
stability factor p,,,. We thus propose to choose the optimal cell size:

=L*

Pg,pico?

=

*
L p,pico

NES , pico

which is obtained in Theorem 6.
7. Conclusions and future work

We looked at the problem of characterizing the performance of Picocell networks in the presence of mobility. We modeled
various traffic types between base-stations and mobiles as different types of queues. We derived explicit expressions
for expected waiting time, service time and drop/block probabilities for the various queuing models considered for both
fixed as well as random velocity of mobiles. We showed that there exists an optimal cell size for a given velocity profile,
which minimizes the service time for elastic applications as well as the drop and block probabilities of non-elastic
applications. We obtained (approximate) closed form expressions for this optimal cell size when the velocity variations
of the mobiles is very small. We find that if the call is long enough, the optimal cell size depends mainly on the velocity
profile of the mobiles, its mean and variance. It is independent of the traffic type or duration of the calls. We show that
for any fixed power of transmission, there exists a maximum velocity beyond which successful communication between
the mobile and the system is not possible. This maximum possible velocity increases with the power of transmission.
Further, for any given power, the optimal cell size increases when either the mean or the variance of the mobiles velocity
increases.

The mobility models considered in this paper are suitable for modeling users traveling continuously with considerable
speeds (example users traveling in a car). The movement of slower users (e.g., pedestrians) can be better captured by either
Random Walk or Random Way-point model. Still better would be to consider systems with heterogeneous users (slow
moving, fast moving and users that are at rest). We considered two dimensional Picocellular networks in [15] catering to
non-elastic users, in which the users can move in any direction across the cell. In that work, we brought out some issues
while designing the Pico networks that are specific to two dimensional cellular networks. It would be interesting to extend
those results for elastic users and further for heterogeneous users.
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Appendix A. Calculations related to Macro queue

A.1. Proof of Theorem 2

The communication time is finite with probability one if and only if
Prob(B, > g(L)) = P, v(VB, > n(L)) =0, where n(L) := Vg(L).

Note from (3) that 7 is only a function of P, L and hence that this probability depends only upon the velocity profile V, cell
size L and the transmit power P. Because of the path loss, for any fixed P, (L) increases as L increases and finally saturates
(when 8 > 1). Thus for all L (when 8 > 1),

N(L) < neo := lim n(l) < oo.
L—o00

When 8 = 1, no, = 00 and this proves the first statement of the theorem. As Prob(B, > g(L)) = Prob(VB, > n(L)), there
exists a cell size L with P(B, > g(L)) = 0if and only if

Prob (v > 'L”) =o.
By
Thus with a given power P, the system can handle all velocities that are strictly less than

Viim == = .
lim Bh ,3 _1

A.2. Moments of service time and its derivatives
The moments can be rewritten as,

1 (o] D Vimax
b = s / / / [Bo(x. v, 9" + Bo(—D, v, Phors ] foy (v)dufyx (X)clxjue .
0 0 —-D JO

_E Bp(X, v,5)" + Bp(=D, v, 5)"Pho.
- 14 Py '

By the Bounded Convergence Theorem (BCT), all b¥) are continuously differentiable (c.d.) in L and the derivative is
db® _ [ d (Bo(x,v,9)"+Bp(=D, v, ) Pho,0
d — "|dL 14 Ppo

because: (1) Bp is almost surely c.d.; (2) P,y is c.d. everywhere in L; (3) Py, is c.d. and (4) all the derivatives involved are
uniformly bounded almost surely; (4) hence by virtue of mean value theorem, the terms like

|BD(X5 Va s; L + 8) - BD(Xv V» S; L)| |PhO,U(L + 6) - PhOU(L)
) ’ )
can be bounded uniformly by a constant.

etc.

A.3. v has an unique maximizer

From Eq. (3), g and hence n = vg are both concave in L on (0, co) for every v. Thus from (8), for any fixed velocity v, v
has a unique maximum,

Ly (v) := arg max v(v, L),

which satisfies dv /9L = 0 (as clearly L} (v) > 0 for all v).

A.4. Derivatives db® /dL vanish only at L*(v) when V = v

Define ¥ (L) := E,[Bp(X, V, S)¥ + Bp(—D, V, S)¥Py,.v]. Then from (11)
(L)

b® = :
1+ Py
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From (4), B, depends upon L only via the function v given by (8) and hence so is the service time Bp(x, v,s) =
min{B. (v, s), By (x, v)} for all x, v, s. Similarly from (10) and (9), Py, , and P, depend upon L only via the function v. Hence
with

0Ppo. »
OW) = — ho,v — EEnﬁx[(D _X)e—uv(u,L)(D—X)/v].
dv v
db(k) 1 a\)(V, L) BBD(X, vV, S)k aBD(_D7 Vv, S)k apho v )
- P VB (~D,V,S
dL 1+ Pho " |: oL < oV + ho,v v + v D( ) >]
dPy,
———=v()
(1 + Pho)2 dL
1 av(V,L STy o
= E, vv. L) —kBp(X, V, §)k- 12 BV=OXv .}
1+ Py aL v(V, L)2

STisv<2pu(v,1))

— KPhovBp (=D, V, S)K! — Bp(—D, v,S)"@(V))]

v(V, L)?
n 1 W ()E BU(V,L)Q(V)
(14 Ppo)? " oL
SK1isy <D—x)w K15y <2y
vV, L) —kW - kPhO,VW — Bp(—=D, V,SkO V)
- aL 1+ Py
(o) (18)
(] + Pho)2
Thus the derivatives will have the form
b _ g [2V.Dy [rOX,v,s, vv, L] (19)
dL = Eny L n,X,S , Vi, o, vV,
for some functions I"®. Thus for fixed velocities, i.e., when V =
db®  Ju(v,L
= WO D YK, 55 (. D)) (20)

dL aL

Claim. The term E, x s["'® (X, 0, S, v(D, L))] is strictly negative.
Proof of Claim. For any velocity v, Bp(X, v, S) < Bp(—D, v, S) for all (X, S). Thus, for fixed velocities,
W (L) < (14 Pho,p)Ens[Bp(=D, v, 5)"].
Further Pp, = Ep v[Pho.v] = Pho 5. Hence the sum of the last two inner terms of the Eq. (18),
Bp(=D,V,.9OV) w(L)O()
Enxyv|— 5| =
1+ Pho (1 + Pho)

The remaining two inner terms of (18) are always negative and this proves the claim. O

From (20), by the virtue of the claim, derivative db® /dL is zero only at a zero of dv/dL. But 3v/dL has a unique zero at
the maximizer L} (v). Thus L} (v) is the only zero of all the service time moments.

Appendix B. Calculations for Pico queue

B.1. Pico handover speed distribution

In the following the event {0 arrival} = {0} means that the arrival in cell 0 was at the boundary (i.e., it was an handover
arrival from cell —1), the event {int arrival} = {int} meant a new arrival in cell 0 and the event {ho} implies the cell 0
active user has reached the next boundary before finishing his service (i.e, has to be handed over to cell 1). Note that an
handover from cell 0 occurs either due to an already handed over call or new call, whose service could not be completed
before reaching the (other) boundary of cell 0 and thus:

ALPho + AniPho,s

Prob(ho) = Y
L hL
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Note that Prob(ho) — 1asL — 0 (as both Py, Py, 5 converge to 1). With the above notations, the fixed point equation for
the handover speed density can be obtained as:

fov(v) = Prob(V € vdv|ho from cell 0)
= Prob(V € vdv int arrival|ho) + Prob(V € vdv ho arrival|ho)
Prob(hoV € vdv int) + Prob(V € vdv d ho)

Prob(ho)
Prob(holint v)Prob(V € vdvlint)Prob(int)  Prob(ho|d v)Prob(V € vdv|d)Prob(d)
- Prob(ho) + Prob(ho)
_ Propfay(v) A Pho,v,afnv(v)  An

Prob(ho) AL+ AnL Prob(ho) AL+ Apg '
Solving (when f, v (v) = 1/Vpgy for all v < Vi) the handover speed density is,

AL P
Prob(ho) (r +p) Vimax - 10V
_ Pho,v,d
T—An Prob(ho) (h+ApL)

Jav (@) =

Thus as L tends to zero (P, v, Phov.3, Prob(ho), Pn, — 1), the speed of an handover arrival will tend to uniform distribution.
This effect is seen faster if the packet sizes S are larger.

B.2. Pico stability factor

The stability factor p in a Pico queue is given by:

(AL + Ap )b 1
—x - EEV[}»LEX[ES[BL(S, X, V)11 + AnEs[Bi(S + By, 0, V)]]

])»LEX LkEl—])\L LA El
E(L(_ XD + Lan) [V]—K<L2+ hL) |:Vj|

Ppo~1 1—P + 2 2coM L
= LGy +20p) R colay———et TS 0N
1—Ppoy 1—Proy

Ppice (L) =

%

where ¢p = 1/(2K)E[1/V] is a constant independent of L. Using the approximation in (15),

ApL
Pre D) = . (21)
P KDpv (Viny, L)

B.3. Drop probability

The drop probability Pp pic, considering possible Pico drops can be calculated as below:

Pp pico = Prob(Call ever Dropped before completion| Call is picked up)
= Pho(Pho,D(‘l - PBusy,pico) + PBusy,pico) + (] - Pho)(o)

where Py, p is defined as the probability of call drop at any of the future instances of handovers, given that the current
handover (first handover in the context of the above equation) is successful. Because of the memoryless nature of S, this
probability does not depend upon the number of the handover. Probability Py, p can be calculated by first conditioning on
the event that the call is completed in the current cell (call it as €) and then on the event that the call is not picked up in the
next cell (call it as §). Note that P,o(C) = Ppo 5 and Pyo(8|C) = Pho fait = 1 — Ppusy,pico- Thus, by conditioning

Py, (Call dropped N @) + Py, (Call dropped N C°)
0 + Ppo,yPro(Call dropped |C°)
Pho.y (Pro(Call dropped N 8°|C) + Pyo( Call dropped N §|C°))
Pho,{)(Pho,D(1 - PBusy,pico) + 1PBusy.pico)
PBusy,picoPho,‘r)

1-— Pho,a(‘l - PBusy,pico)
PIwPBusy,pico ~ PBusy,pico
1-— Pho,3(1 - PBusy,pico) 1- Pho,i) + PBusy.pico

PBusy,pico PBusy,pico

WG D | p  aOO=ogBy)
Binw + Busy, pico Dinw

Pho,D

%9
<3
=
s

[

and hence,

PD,pico =

. (22)
+ PBusy,pico
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