
A Viral Timeline Branching Process to study a
Social Network

Ranbir Dhounchak,
IEOR, IIT Bombay, India

Veeraruna Kavitha
IEOR, IIT Bombay, India

Eitan Altman
UCA, INRIA, France; and LINCS, Paris, France.

Abstract—Bio-inspired paradigms are proving to be useful
in analysing propagation and dissemination of information
in networks. In this paper we explore the use of multi-type
branching processes to analyse viral properties of content in
a social network, with and without competition from other
sources. We derive and compute various virality measures,
e.g., probability of virality, expected number of shares, or the
rate of growth of expected number of shares etc. They allow
one to predict the emergence of global macro properties (e.g.,
viral spread of a post in the entire network) from the laws
and parameters that determine local interactions. The local
interactions, greatly depend upon the structure of the time-
lines holding the content and the number of friends (i.e.,
connections) of users of the network. We then formulate a
non-cooperative game problem and study the Nash equilibria
as a function of the parameters. The branching processes
modelling the social network under competition turn out to be
decomposable, multi-type and continuous time variants. For
such processes types belonging to different sub-classes evolve
at different rates and have different probabilities of extinction
etc. We compute content provider wise extinction probability,
rate of growth etc. We also conjecture the content-provider wise
growth rate of expected shares.

I. INTRODUCTION

In beginning of 2017, the average number of mo-
bile YouTube videos exceeded 1,000,000,000 views, and
Google’s annual revenue generated from YouTube reached
$4,000,000,000.1 The huge growth in the activity of the
content industry on the internet has generated a wide
interest in understanding content propagation in the In-
ternet and on how the propagation can be accelerated.
Previously peer to peer (P2P) networks (e.g., [11, 3]), have
played an important role, while of late there has been a
lot of interest in content propagation over social networks
(e.g.,[1, 2, 4, 5] etc). The P2P networks pull the required
information from their peers, while in viral marketing (e.g.,
[1, 2]) the information is pushed for marketing purposes.
In P2P networks break files into chunks which adds to
the complexity of modelling and analysing them, in social
networks we have extra complexity due to the timelines.
In viral marketing scenarios one needs to keep pushing
information by passing on the information regularly to seed
nodes to keep the flow going on. In this paper we consider
content propagation over social networks like facebook,
twitter etc., where the information (called post) is again
pushed, but involuntarily. Here the post is forwarded to few
initial seeds which propagate/get viral because of enormity
of the network and based on the interest generated by
the post. More importantly, these networks have extra
complexity due to timelines (TLs), the inverse stacks, one
dedicated for each user. A post (that we are interested in)
on a TL is shifted down by one level with every new post

1See Facts on youtube https://fortunelords.com/youtube-statistics/

(forwarded), the post can shift down to a considerably
lower position and the user can miss it. One needs to
consider these aspects for a realistic study. To the best
of our knowledge such a study has not been considered
in any viral marketing or other related literature. The goal
of this paper is to develop a branching processing based
modeling of social networks which will allow us to derive
analytical performance measures and will provide insights
for competition over visibility, popularity and influence.

Our approach and contribution: An important approach
for modelling information diffusion in these networks has
been branching processes (BPs), (see [1, 2, 3, 11]) as they
are powerful enough to describe many phenomena that are
characteristic to content diffusion (e.g., phase transition-
epidemic threshold) and yet provide explicit expressions
for many important performance measures. Authors in
[4, 6, 5] etc., have shown that the branching process can
well fit the content propagation trajectories collected from
real data. In majority of Branching processes any parent
produces IID (identically and independently distributed)
offsprings. When one models a social network with a
branching process, any parent should produce identical
number of offsprings (identical to the previous parents) and
independent of the offsprings produced previously. Further
when it explodes, the parents keep producing offsprings.
This is possible only when the social network has infinite
population. One can assume the huge networks have infi-
nite population (unbounded number of users), users have
identically distributed number of friends, and then the BPs
can model the content propagation over social networks.
This simplifies modelling and analysis. Further we use
Multi-Type Branching Processes (MTBPs) (e.g., [13, 12]) to
model the influence of TL structure on content propagation
in social networks. These processes can mimic most of
the phenomenon that influence the content propagation.
For example, one can model the effects of multiple posts
being forwarded to the same friend, multiple forwards of
the same post etc. A post on a higher level in TL has better
chances of being read by the user. Influence of the quality
of a post, influence of post-title (or content seen without
opening the post) can be considered. Posts of similar nature
appearing at lower levels on the TL have smaller chances
of appreciation etc. To study these influences, one needs to
differentiate the TLs that have the ‘post’ at different levels
and this is possible only through multi-type BPs.

The IID friends can be a limitation, in reality friends
of two neighbours can be correlated. But this can be in-
accurate only for users close to each other, while majority
of pair of users are ‘faraway’ and hence will mostly have
independent friends. We aim to improve upon this aspect



in future work. Our approach has several advantages: a)
Using the well known results of MTBPs, we obtain closed
form expressions for some relevant performance measures.
For others we either have approximate closed form ex-
pressions or simple fixed point equations, whose solutions
provide the required performance. These provide insight
for competing over visibility, popularity and influence.
b) We study the influence of various network structural
parameters on content propagation; c) We study the effects
of posts sliding down the TLs due to network activity; d)
We have a good approximation of the trajectories of the
content propagation in almost sure sense, after sufficiently
large time. We also establish that the content propagation
has a certain dichotomy, either the post disappears or gets
viral (i.e., number of forwards grows exponentially), as is
the case for irreducible MTBPs ([14, 13] etc). Finally we
consider relevant optimization problems.

We then study viral properties of competing content
generated by various content providers (CPs). The resulting
MTBPs (with competition) turn out to be decomposable
(generator matrix is reducible, e.g., [9, 10]), and there is no
dichotomy. Different types of population can have different
viral chances, as well as different growth rates when viral.
We obtain joint extinction probability of all types belonging
to a ‘super type’, e.g., that of a CP. In [9], the authors show
that the extinction probabilities of a super type are the
minimal fixed point (FP) solution of a set of equations,
obtained after appropriate constraints. While, we provide
two sets of FP equations, which need to be solved one after
the other and whose unique solution will be the vector
of extinction probabilities corresponding to a super type.
We also derive FP equations to obtain performance mea-
sures specific to one super type. This facilitates to derive
interesting performance metrics (e.g., expected number of
shares or growth rate of expected number of shares etc)
related to virality of content of a particular CP in a social
network, influenced by competing content from other CPs.
We formulate non-cooperative games and analyse the Nash
equilibrium (NE) as a function of system parameters. The
CPs optimally chose the quality factor of their posts, which
greatly influences the content-propagation. The trade-off
being the cost incurred for ensuring the required quality.

We prove that the expected value of the total shares (is
different from total progeny) corresponding to a single CP
grows exponentially fast with time in viral scenarios, with
the same rate as that of the unread posts. We conjecture
using partial theoretical arguments that the expected shares
corresponding to one CP grow exponentially fast with time
(if viral), even in the presence of competition (i.e., for
decomposable MTBPs). We verify the same numerically.
In fact the virality chances of a content is greatly influ-
enced by the competition, however once viral, the growth
rate of expected shares remains the same as that without
competition. This is true for many scenarios, while for
other decomposable MTBPs we have non-standard growth
patterns for the expected shares (sum of two exponential
curves).

We observe that TL structure has significant impact on
the analysis and conclusions. The analysis without con-
sidering TL structure indicates an inflated virality chances
and inflated virality rate. More importantly we observe that

a more active network can deteriorate the performance.
Basically the post shifts down the TL fast and is lost
more often. As the mean number of friends increases, the
network activity increases, and the virality chances improve
initially as anticipated. However we find an optimal mean
number of friends, beyond which the virality chances
actually deteriorate.

Related work: There is a vast literature that studies
the propagation of content over social networks. Many
models discretize the time and study content propagation
across the discrete time slots (e.g., [4]). As argued in [6]
and references therein, a continuous time version (events
occurs at continuously distributed random time instances)
is a better model ([1, 2] etc) and we consider the same. In
majority of the works, that primarily use graph theoretic
models, information is spread at maximum to one user at
any message forward event (e.g., [4, 6, 5] etc.). However
when a user visits a social network (e.g., facebook, twitter
etc.), it typically forwards multiple posts and typically (each
post) to multiple friends. Authors in ([1, 2] etc) study
viral marketing problem, where the marketing message is
pushed continuously via emails, banner advertisements, or
search engines etc. This scenario allows multiple forwards
of the same post, and is analysed using BPs. However they
do not consider the influence of other posts using the same
medium, and the other effects of TLs. As already discussed
these aspects majorly influence the analysis.

Branching processes have been used in analysing many
types of networks, such as, polling systems ([7]) which have
been used to model local area networks and P2P networks
([8]) etc. We use branching processes not only to study time
evolution of content (extinction and viral growth) but also
to provide a spatio-temporal description of the timeline
process. We model the evolution of the number of timelines
that have a given content at a given level of the timeline
(e.g. top of the timeline). The analysis of this type of an
object can be used to study the influence of content, since
the level of a content in a timeline has an influence on its
visibility.

II. SYSTEM DESCRIPTION AND BACKGROUND

We consider an online social network with a large
number of users, like facebook, twitter etc. We represent
each user by a Timeline (TL), which is an inverse stack
containing posts. The TLs are assumed to be of finite size
N either because they are really of finite size, or because
majority of the users do not scroll much (e.g., facebook,
twitter etc). When a user visits its TL, it views posts on
its TL and shares ‘interesting’ post(s) to some/all of its
friends. Whenever it shares a post, the post appears on
the top of the TLs of the friends with whom the content
is shared. And every share shifts down the existing content
of the TL by one level. It can share as many posts as it
wants. The number of shares of a particular post to friends
depends upon the extent to which the user likes the post.
We assume that the number of friends F of a typical user is
random, and this number is independently and identically
distributed (IID) across various users.

In facebook, a user can ‘like/share/comment’ a post. In
case of like/comment operations some/all friends of that
user get notified, but the TLs of the friends are not affected.



Facebook also allows to share content to a list of friends,
and then the content appears on the TLs of the recipients.
In twitter the same is done via the retweet button. In all,
we study those operations, which affect the TLs of the users
which in turn have major impact on the propagation of the
commercial content. We assume only the user can share the
contents of its TL.

Content Propagation and Branching process

The propagation of content in such a social network is
as follows. A user visits2 its TL and views the posts. If some
title attracts the attention, it reads the post and then may
share the same to a random number of users (amongst
its friends). Now the post, call it post-P, would be placed
on the top of the TLs of the shared users. And this post
shifts below if some other post(s) are also shared with
those shared users. For instance when one more post is
shared after the post-P to the same shared user then the
post-P resides on the second level of the corresponding
TL. When any one of the shared users visits its TL, it
follows the same protocol of viewing, reading and sharing
the posts. In particular if they read post-P, they may share it
to their friends. And this continues. Majority of dynamics
related to the propagation process can be well captured
by a continuous time branching process (CTBP). Below
we describe a typical CTBP (e.g., [13]) and also discuss
the aspects of the CTBP that well fit the post-propagation
process:

� A CTBP starts say at time 0, with initial population
X (0). Say we start observing the propagation of post-P at
time 0, X (0) be the number of unread3 TLs with post-P at
time 0.
� Any user among the initial population of the CTBP can

‘die’ after a time period that is exponentially distributed
with parameter say λ. The ‘death’ times of the particles
are independent of the others and hence the first death
occurs after a time period that is exponentially distributed
with parameter X (0)λ. Just before the death, the user gives
birth to a random non-negative number (say ζ) of new
offsprings, which join the existing population. Thus the
size of population immediately after the death of the first
particle changes to X (0)−1+ζ.

In a similar way the number of unread TLs (NU-TLs),
with post-P, may change when one of the initial X (0)
users visits its TL. The visit times of different users are
independent of the others. If we assume memoryless visit
times, then the users visit their TLs at intervals that are
exponentially distributed as in a CTBP. Further every visit
can potentially change the NU-TLs with post-P. If post-P
is read by the user upon visit, it may share it to a random
number of friends. If the post is not read by the user it is
not shared. Thus any visit results in 0 shares (let ζ= 0 then)
when the post is not read and a random number of shares
(ζ ≥ 0) otherwise. If this sharing process is independent
and identical across various users, one can view the overall
number of these shares as IID offsprings. And immediately
after the first visit by one of the X (0) TLs, the NU-TLs with
post-P are exactly like that in the CTBP.

2We say a user visits its TL, when it views the contents of its TL.
3Users not yet visited their TL, hence unaware of the post on their TL.

� The population dynamics of the CTBP continues with
new population in exactly the same way as before. The
exponential random variable is memoryless and hence the
CTBP changes again after exponentially distributed time,
but now with parameter (X (0) − 1 + ζ)λ. And again the
dying particle adds a random number of offsprings to the
existing population which is independent and identically
distributed as ζ. And this continues. Similarly, the NU-TLs
with post-P can change if one of the existing TLs with post-
P visits its TL.

However the CTBP just described above does not cap-
ture some aspects related to the modelling of the post-
propagation process. There is a possibility that the post-
P disappears from some of the TLs, before the visit by
the corresponding users. For example, the post-P would
disappear from a TL with N−l+1 or more shares, if initially
post-P were at level l . In all the propagation of content in a
social network is influenced by two factors: a) the evolution
of individual TLs (with post–P) when some other posts are
shared to them (content on the TL shifts down); and b) the
sharing dynamics (of post–P) between different TLs.

The CTBP described before considers population of sin-
gle type, in that, all the particles have same death rate and
offspring distribution. However the disappearance of post-
P from a TL depends upon the level at which the post is
available. Further we will see that many more aspects of
the dynamics depend upon the level at which the post-P
resides. Thus clearly the single type CTBP is not sufficient
and we will actually require a multi-type continuous time
branching process (MTBP). An MTBP describes the pop-
ulation dynamics in the scenarios with finite number of
population-types. All the particles belonging to one type
have same death rate and offspring distribution, however
these parameters could be different across different types.
To model the rich behaviour of the propagation dynamics
we will require (details in later sections) one type to
produce offsprings of other types. This modelling feature
is readily available with MTBPs. We will show that the
propagation dynamics can be well modelled by a MTBP,
where for any l ≤ N , all the TLs with post-P in level l form
one type of population.

Content providers and their goals

The content providers (CPs) use social network (e.g.,
Facebook, Twitter etc) to propagate their posts. The
purpose could be advertisement of a particular prod-
uct/service, or could be spread of a particular post that
could improve their reputation etc. The CPs would gain if
their posts get viral (i.e. their number increase fast with
time) by inherent sharing of the post by the users of
the social network. We will precisely discuss the event
of virality, and obtain the expression for the probability
of virality. In the scenarios with positive probability of
virality, which we would refer to as viral scenarios, the
CPs might be interested in the rate of virality (the rate
at which the number of copies of the post increases
with time). In the extinction scenarios, i.e., when the post
completely disappears from the social network after some
time, the CPs might be interested in the expected number
of shares before extinction. One might also be interested in
a performance measure that captures the number of shares



of a post till time t in viral scenarios. We consider all these
aspects in this paper. We shall provide explicit expressions
for some relevant performance measures as a function of
controllable parameters, while some more are represented
as the solution of appropriate FP (fixed point) equations.
We use these results for system and user optimization.

Assumptions and applications

We study the true indigenous branching part, for exam-
ple the number of shares generated by the users themselves
sharing the post, while influenced by the quality of post.
We assume a TL with posts of the CPs under study is not
written4 with the post of the same CP or the competing
CP again. We consider a huge social network and the
probability that a particular user with one such post is
again written with the same post (or a competing post) is
very small. Further, one can find applications that satisfy
such assumptions. As an example, consider few organiza-
tions that plan to advertise their products using coupon
system. Also, consider that these coupons can be shared
with friends. But a user with one or two such coupons can’t
be shared with another coupon at a later point of time.
In order to avoid multiple shares to the same user, there
is a control mechanism. Any user sharing the coupons to
its friends, needs to declare the recipients in a list which
disables the share of coupons to the same recipients.

The other assumptions are mentioned as and when
required. We conclude with another assumption about the
model, which is actually not restrictive. We track only the
most important information, that of the (top-most) level
that first contains the post of the CP(s).

We consider two important scenarios in this paper. We
first consider a single CP and propagation of its post.
As already explained we will model this with an N -type
MTBP and obtain the performance analysis in the next two
sections. From section VI onwards, we study the posts of
two competing CPs, and the game theoretic aspects. We
will use an MTBP with number of types more than 2N to
model this two CP scenario.

III. SINGLE CONTENT PROVIDER, MODELLING DETAILS

We consider a single CP and refer its post briefly as the
CP-post. The TLs also contain the other posts, and the
movement of these posts can also affect the propagation
of the CP-post. However our focus would be on CP-post.
We say a user is of type l , if its TL contains the CP-post
on level l and if the top l − 1 levels do not contain the
CP-post. Let Xl (t ) represent the number of unread users
of type l at time t . We will show below that the N -vector
valued process X(t ) := {X1(t ), X2(t ), · · · , XN (t )} is an MTBP
under suitable conditions.

Modelling aspects and State transitions

To model this process by an appropriate branching
process, one needs to specify the ‘death’ of an existing
parent (a TL with ‘unread’ CP-post in our case) and the
distribution of its offsprings. A user of type l is said to ‘die’
either when its TL is written by another user or when the
user itself wakes-up (visits its TL) and shares the post with

4We say a TL is written when a friend of it shares a post which changes
its content.

some of its friends. In the former event exactly one user of
type (l +1) (if l < N ) is ‘born’ while the latter event gives
birth to a random number of offsprings of types 1 or 2 or
· · ·N . If i −1 (with i ≤ N ) posts are shared with the same
user, after the CP-post, then the CP-post is available on the
i -th level and we will have an i -type offspring. We assume
that a user produces offsprings of type i with probability
ρi and that ρ1 > 0. Note that

∑
i ρi = 1. Some times, users

have lethargy to view/read all the posts. We represent this
via a level based view probability, rl , which represents the
probability that a typical user views the post on level l . It
is reasonable to assume r1 ≥ r2 · · · ≥ rN . We thus have two
types of transitions that modify the MTBP, which we refer
to as shift and share transitions respectively.

In a CTBP, any one of the existing particles ‘dies’ after
exponentially distributed time while in a discrete time
version all the particles of a generation ‘die’ together. The
continuous version mimics a social network scenario better
and hence a CTBP can model more accurately than the
discrete time version. In fact when the number of copies
of CP-post grows fast (i.e., when the post is viral), the time
period between two subsequent changes decreases rapidly
as time progresses. This is also well captured by CTBP as
will be seen below.

Let G1 represent the subset of users with CP-post at some
level, while G2 contains the other users. We assume the
social network (and hence G2) has infinitely many users
and note G1 at time t has, X (t ) := ∑

l≤N
Xl (t ), (1)

number of users. Group G2 has infinite number of agents
and this remains the same irrespective of the size of G1,
which is finite at any finite time. Thus the transitions
between G2 and G1 are more significant and one can
neglect the transitions within G1. It is obvious that we are
not interested in transitions within G2 (users without CP-
post). We thus model the action of these groups in the
following consolidated manner:

� any user from G1 wakes up after exp(ν) (exponentially
distributed with parameter ν) time to visit its TL and writes
to a random (IID) number of users (predominately) of G2;

� the TL of any user of G1 is written by one of the users
of G2, and the time intervals between two successive writes
are exponentially distributed with parameter λ.

The state of the network, X(t ), changes when the first of
the above mentioned events occurs. At time t we have X (t )
(see equation (1)) number of users in G1 and thus (first)
one of them wakes up according to exponential distribution
with parameter X (t )ν. Similarly, the first TL/user of group
G1 is written with a post after exponential time with
parameter X (t )λ. Thus the state X(t ), changes after expo-
nential time with parameter X (t )λ+X (t )ν. Thus with viral
posts, X (t ) grows rapidly and hence the rate of transitions
increase as time progresses. Considering all the modelling
aspects mentioned so far, the IID offsprings generated by
one l-type user are summarized as below (w.p. implies with
probability):

ξl =


el+11l<N w.p. θ := λ

λ+ν and

ζei w.p. (1−θ)rlρi ∀i ≤ N
0 w.p. (1−θ)(1− rl ).

(2)

where el represents standard unit vector of size N with
one in the l -th position, 1A represents the indicator, ζ is



the random number of friends to whom the post is shared
and rl is the probability the user views a post on level
l . Recall that users (offsprings) of type i are produced
with probability ρi during the share transitions. From (2)
the offspring distribution is independent of time t (i.e.,
independent of the time the users wake-up), ζ can be
assumed independent across users, and hence ξl are IID
offsprings from any type l user. Further all the transitions
occur after memoryless exponential times, and hence X(t )
is an MTBP with N - types (e.g. [13]).
PGFs and post quality factor: Let fF (s,β) be the probability
generating function (PGF) of the number of friends, F, of
a typical user, parametrized by β. For example, fF (s,β) =
exp(β(s − 1)) stands for Poisson distributed F, fF (s,β) =
(1 − β)/(1 − βs) stands for geometric F. Let m = f ′

F (1,β)
represent the corresponding mean. When a user reads a
post it shares the same to some or all of its friends (ζ of
equation (2)), based on its quality. The better the quality,
the more the number of shares. Let η represent the quality
of the CP-post. We assume that the mean of the number of
shares is proportional to this quality factor. In other words,
m(η) = mη represents the post quality dependent mean of
the random shares. Let f (s,η,β) represent the PGF of ζ.
For example, for Poisson friends the PGF and the expected
value of ζ are given respectively by:

f (s,η,β) = fF (s,ηβ) = exp(βη(s −1)) for any s and m(η) = ηβ.

For Geometric friends, one may assume the post qual-
ity dependent parameter βη = (1−β)/(1−β+βη) which
ensures m(η) = ηβ. And then the PGF of ζ is given by
f (s,η,β) = fF (s,βη) = (1−βη)/(1−βηs). One can derive such
PGFs for other distributions of F. Further, most of the
analysis does not depend upon the distribution of F.

Let s := (s1, · · · , sN ) and f(s,η) := ∑N
i=1 f (si ,η,β)ρi . The

post quality factor dependent PGF, of the offspring distri-
bution of the overall Branching process, is given by (see
equation (2)):

hl (s) = θ (
sl+11l<N + 1l=N

)+ (1−θ)rl f(s,η)+ (1−θ)(1− rl ) . (3)

A. Generator Matrix

The key ingredient required for analysis of any MTBP
is its generator matrix. We begin with the generator for
MTBP that represents the evolution of unread TLs with
CP-post. We refer to this process briefly as TL-CTBP, the
Timeline Continuous Time Branching Process. The gen-
erator matrix, A, is given by A = (alk )N×N , where alk =
al

(
∂hl (s)/∂sk

∣∣∣s=1 − 1{l=k}

)
and al represents the transition

rate of a type-l particle (see [13] for details). For our case,
from previous discussions al =λ+ν for all l . Further from
(3), the matrix A for our single CP case is given by (with
c := (1−θ)mη, cl = cρl )

A = (λ+ν)


c1r1 −1 c2r1 +θ · · · cN−1r1 cN r1

c1r2 c2r2 −1 · · · cN−1r2 cN r2
...

c1rN−1 c2rN−1 · · · cN−1rN−1 −1 cN rN−1 +θ
c1rN c2rN · · · cN−1rN cN rN −1

 .(4)

The largest eigenvalue and the corresponding eigenvectors
of the above generator matrix are instrumental in obtain-
ing analysis of TL-CTBP ([13]) and the following lemma
establishes important properties about the same. We also

prove that the resulting TL-CTBP is positive regular5, which
is an important property that establishes the simultaneous
survival/extinction of all the types of TLs.

Lemma 1. i) When 0 < θ < 1, the matrix e At for any t > 0,
is positive regular.
ii)Let α be the maximal real eigenvalue, of the generator
matrix A. Then
α ∈

(
r.c − 1, r.c − 1 + θ

)
(λ+ ν) where inner product r.c :=∑N

i=1 ri ci . When the view probabilities have special form
rl = d1d l

2 (for some 0 ≤ d1,d2 ≤ 1), then

α→ (r.c−1+θd2) (λ+ν) as N →∞.

iii) The left and right eigenvectors u, v corresponding to α

satisfy the following equations (with σ :=α/(λ+ν)+1)
c1r.u = σu1, c1r.v =σvN ; and (5)

ul =
l−1∑
i=0

ρl−i

ρ1

(
θ

σ

)i
u1, vl =

N−l∑
i=0

(
θ

σ

)i rl+i

rN
vN ∀l ≥ 2.

Proof: The proof is provided in Appendix A. ■
IV. PERFORMANCE ANALYSIS FOR SINGLE CP CONTENT

If the CP invests sufficiently in advertisement, and en-
sures a good quality post, the post can get viral. The CP
would be interested in many related performance mea-
sures, as a function of post-quality factor: a) the exact
probability of extinction; b) the rate of explosion or the
rate of virality; and c) a measure of total number of shares.
We begin with the probability of extinction.

A. Extinction Probabilities-Virality chances

The CP-post is said to be extinct, when it disappears
completely from the social network. None of the N -length
TLs contain the CP-post eventually (as time progresses
towards infinity).
With positive regularity given by Lemma 1.(i), either all the
types belonging to TL-CTBP survive or all die together (e.g.,
[14]). Let ql be the probability with which the process gets
extinct, when TL-CTBP starts with one TL of type l ,

ql := P
(
X(t ) = 0 for some t > 0

∣∣X(0) = el
)
.

Let q := {q1, q2, · · · , qN } represent the vector of extinction
probabilities.

Under positive regularity conditions of Lemma 1.(i) when
a BP is not extinct, the population grows exponentially fast
to infinity ([14, 13] etc). This fact is established for our TL-
CTBP in Theorem 1, provided in the later subsections. Thus
we have dichotomy: the post gets viral with exponential rate,
when it is not extinct. And hence the extinction probability
actually equals one minus the probability of virality.

Depending upon the context of the problem, for instance
an awareness campaign, the CP may be interested in
knowing the chances of dissemination of its information
to a large population, i.e. virality of its post. Thus, it is
important to know the extinction probability in the context
of social networks, whose properties are provided below.

Lemma 2. Assume 0 < θ < 1 and E [FlogF] < ∞ with
F log(F) := 0 when F= 0. Then clearly E [ζlogζ] <∞ for any

5A matrix B is called positive regular (irreducible) if there exists an n
such that the matrix Bn has all strict positive entries. A BP is positive
regular when its mean matrix is positive regular. With A as generator, the
positive regularity is guaranteed if e A is positive regular (e.g. [13]).



post quality factor η. Hence we have the following:
(i) If α≤ 0, extinction occurs w.p.1, i.e., q = 1 = (1, · · · ,1);
(ii) If α > 0, then6 q < 1. In this case, the extinction
probability vector q is the unique solution of the equation,
h(s) = s, in the interior of [0,1]N .
Proof follows from [13, Theorems 1-2] and by Lemma 1. ■

It is easy to verify that the hypothesis of this lemma are
easily satisfied by many distributions. For example, Poisson,
Geometric etc satisfy E [FlogF] <∞.
Virality Threshold: By Lemma 2.(ii) the CP-post gets viral,
i.e., the TL-CTBP survives with non-zero probability, when
α > 0. We hence call α as virality threshold. When N is
sufficiently large, by Lemma 1.(ii) and Lemma 2.(ii),

α≈ ((mη(1−θ)ρ.r−1)+θd2)(λ+ν) = (mηρ.r−1)ν− (1−d2)λ. (6)

It is well known that the BPs survive with positive proba-
bility, if the expected number of offsprings is greater than
1. We have an (almost) equivalent of the same, i.e., process
can survive when mη(1−θ)ρ.r > 1 (see term 1 of (6)), for a
BP pitted against the shifting process, the TL-CTBP. Hence
the virality chances are influenced by post quality η, shift
factor (1-θ), by the types of posts produced as given by ρ
and the view probabilities r. In effect the virality chances
are influenced by factor, (1−θ)ηρ.r.
No-TL case: Majority of works (e.g., [2, 1]) consider study of
content propagation without considering TL structure and
as mentioned this is an incomplete study. We would like to
compare our conclusions with the case when the effects of
TLs were neglected. We say it is No-TL case when N →∞
(i.e., post is never lost) and more importantly when rl = 1
for all l (i.e., post at any level on TL is viewed with same
interest). For this case (d2 = 1 in (6)),

αNo−T L ≈ (mη−1)ν for any ρ,

the post gets viral when mη> 1. Thus neglecting the effects
of TL, one might conclude that the virality chances are
influenced only by η (the post quality factor), while in
reality the influence is summarized by factor (1−θ)ηρ.r. In
other words (1−θ)ρ.r captures the influence of TLs while
η is due to post-quality.

By Lemma 2.(ii), the extinction probabilities are obtained
by solving h(s) = s, i.e., by solving (see (3) and for any l ):

ql = θ
(
ql+11{l<N } + 1{l=N }

)
+ (1−θ)rl f(q,η)+ (1−θ)(1− rl ), (7)

The above simplifies to:

qN−l = (qN −1)
l∑

i=0
θl−i rN−i

rN
+1 for any 1 ≤ l < N . (8)

Solving (7) for No-TL case, ql = θN−l+1 + f(q,η)(1−θN−l+1)
and then with N → ∞, ql ≈ q j for any l , j . For example,
the extinction probability is almost the same either you
start with one CP-post on level 1 or on level 9. This is
again a wrong interpretation and the solutions of (8)/(7)
provide the correct extinction probabilities which considers
the influence of TLs.
Influence of mean number of friends m = E [F]: When
the mean number m increases, network becomes more
active as the sharing of different posts becomes more
pronounced. The TLs are flooded with different posts
rapidly, so do the TLs containing post-P, and one might

6Vector q < s if qi < si for all components i .
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anticipate an increase in its virality chances. These TLs also
receive the other posts rapidly, resulting in rapid shifts to
their content. Thus with increase in m, the λ increases,
and so does θ. We observe an interesting phenomenon in
Figure 1, with respect to the virality chances qρ :=∑

l qlρl ,
when λ is set proportional to mean m. To begin with
the virality chances qρ improve (decrease) with mean m,
as anticipated. However if one increases m further, we
notice an increase in qρ . Basically increased m implies
more shares of post-P to new users, but it also implies
post-P is missed more often. Thus this phenomenon is
mainly observed because of time-line structure: if there
were infinite TL levels and if any user views all the posts
with equal interest, one would not have noticed this. There
seems to be an optimal number of mean friends, which is
best suited for post propagation.

B. Exponential growth and its rate in viral paths

Under the assumptions of Lemma 2, the TL-CTBP satis-
fies the hypothesis of [13, Theorem 1] and hence we have:

Theorem 1. Let (Ω,F ,P) be an appropriate probability
space and let {Ft } be the natural filtration for TL-CTBP
X(.), i.e., for each t , Ft is the σ-algebra generated by
{X(t ′); t ′ ≤ t }. The process {u·X(t )e−αt ; t ≥ 0}, with u,α as
in Lemma 1, is a non negative martingale (with natural
filtration)

and lim
t→∞X(t ,ω)e−αt =W (ω)u for almost all ω, (9)

where W is a non negative random variable that satisfies7:
Pl (W = 0) = ql , El [W ] = vl for each l , if u′.v = 1. ■
The CP-post gets extinct for the sample paths with W = 0,
and it gets viral in the complementary paths (when W >
0) ([13]). For viral paths we have: a) growth rate: all the
components of TL-CTBP grow with time, at the same rate
which is given by eα; and b) the fraction of unread TLs
with post at level l : from (9) eventually (after long time)
equals ul /(

∑
i ui ). We observe here that the growth rate

exactly equals the virality threshold, and again (6) more
accurately describes the growth rate, and not αNo−T L .

C. Viral scenarios: Number of shares till time t

In a social network, it is important to know the spread
of post i.e. total number of shares a post gets in a given
time-frame (e.g. number of shares in Facebook). Let Y (t )
be the accumulated number of shares till time t and let Y =
limt→∞ Y (t ) (can also be infinity) be the eventual number
of shares. It is important to observe here that this number
is different from total progeny of the underlying BP, as the
former is due to ‘share’-offsprings while the latter is due to
both ‘share’ as well as ‘shift’ offsprings. Also we consider the
total shares, irrespective of the level at which the shares are
produced. We have the following result (proof in Appendix):

7We use El and Pl to represent the conditional expectation and proba-
bility respectively when TL-CTBP starts with one l-type TL.



Lemma 3. Let y(t ) := [y1(t ) · · · , yN (t )] with yl (t ) :=
El [Y (t )] = E [Y (t )|X(0) = el ], the expected number of shares
till time t when started with one l -type TL, for each l . If
α> 0, we have

y(t ) = e At
(
1+ (λ+ν)A−1k

)
− (λ+ν)A−1k (10)

where k = [1−θ,1−θ, · · · ,1−θ,1]T . �

Proof. Proof is in Appendix A.

From [13, Equation(45)] (10) can be approximated (large
t ):

y(t ) ≈ eαt vu′
(
1+ (λ+ν)A−1k

)
− (λ+ν)A−1k, (11)

where v, u are eigen vectors of Lemma 1 such that v′.u = 1.
Thus the expected number of shares grow exponentially with
time, for viral scenarios. Further the growth rate α is the
same as that for the unread posts and equals the virality
threshold of (6). From (11), for large t , the expected shares
when started with one l -type particle:

yl (t ) ≈ el ,0eαt with el ,0 = vl

N∑
i=1

ui

(
1+ ν

α

)
+ vl

λ

α
uN . (12)

In Figure 3, we compared the theoretical trajectories with
simulation based trajectories, and they match very well.

D. Non-viral scenarios: Expected number of shares

The population gets extinct w.p.1 and then the
expected number of total shares is finite. One can directly
obtain the expected number of shares, by conditioning on
the first transition event:
yl := El [Y ] = θyl+11{l<N } + (1−θ)rl

(
mη+mηy.ρ

)
, for all l ≤ N . (13)

On simplifying the above system of equations backward
recursively, we obtain the following for any l ≤ N

yl = (1−θ)mη(1+y.ρ)
N−l∑
i=0

θN−l−i rN−i (14)

Summing the above over l after multiplying with ρl we
obtain:

y.ρ=
N∑

l=1
ρl yl = (1−θ)mη(1+y.ρ)

∑
l
ρl

N−l∑
i=0

θN−l−i rN−i .

Thus the FP equation for y.ρ is linear and hence
we have a unique FP solution for y.ρ whenever (1 −
θ)mη

∑
l ρl

∑N−l
i=0 θ

N−l−i rN−i < 1. If

(1−θ)mηr.ρ−1+θ = r.c−1+θ < 0,

from Lemma 1.(ii) α< 0 and the process would be extinct
w.p.1. In this scenario:

(1−θ)mη
∑

l
ρl

N−l∑
i=0

θN−l−i rN−i

≤ (1−θ)mη
∑

l
ρl rl

N−l∑
i=0

θN−l−i

= (1−θ)mη
∑

l
ρl rl

1−θN−l−1

1−θ
= mηr.ρ< 1

because r1 ≥ r2 · · · ≥ rN . We can similarly show, using the
limit of the eigenvalue α of Lemma 1, that when the
process is extinct w.p.1 the above condition is always

satisfied asymptotically. To be more precise the condition
is satisfied for all N bigger than a threshold N̄ , whenever
the process is extinct w.p.1.

We thus have the following unique FP for y.ρ, under the
conditions discussed above:

y.ρ=
(1−θ)mη

∑
l ρl

∑N−l
i=0 θN−l−i rN−i

1− (1−θ)mη
∑

l ρl
∑N−l

i=0 θN−l−i rN−i
, (15)

One can substitute the above in equation (14) to obtain
yl for all l and it is easy to verify that the FP is unique by
uniqueness of the FP solutions for y.ρ.

Special case: Say ri = d1d i
2, ρi = ρ̃ρi (with

∑
i ρi = 1)

for all i , one can easily simplify the above. We have the
following

∑
l
ρl

N−l∑
i=0

θN−l−i rN−i = d1ρ̃
∑

l
ρl

N−l∑
i=0

θN−l−i d N−i
2

= d1ρ̃
∑

l
ρl d l

2

N−l∑
i=0

θN−l−i d N−l−i
2

= d1ρ̃
∑

l
ρl d l

2

N−l∑
i=0

θi d i
2

= d1ρ̃
∑

l
ρl d l

2
(1− (θd2)N−l+1)

1−θd2

= d1ρ̃

1−θd2

(
ρd2

N−1∑
l=0

ρl d l
2 −d2(θd2)Nρ

N−1∑
l=0

ρlθ−l

)

= d1ρ̃

1−θd2

(
ρd2

1− (ρd2)N

1−ρd2
− (d2)N+1ρ

θN −ρN

θ(θ−ρ)

)
.

Substituting this into (15) and under the limit N →∞, we
obtain the following compact expression (where ρ̃ = (1−
ρ)/ρ is now the limit):

y.ρ≈ Omean

1−Omean
with Omean := (1−θ)mη

(1−ρ)d1d2

(1−θd2)(1−ρd2)
. (16)

And then (with rl = 1 for all l ) Omean,No−T L = mη.

V. OPTIMIZATION

So far we have obtained the probability of extinction
{ql }, as well as the coefficient of explosion α in the event
of virality. The first measure captures the probability of the
virality event, while the second one provides the rate of
explosion during virality. We also obtained the expected
number of shares till time t .

All the performance measures improve with post quality
factor η. However, there is a cost for improving the post
quality which would be proportional to η. We now discuss
the optimal post quality factor by optimizing, C (η) =
pm ±ψη2, where pm represents one of the performance
measures, ψ is the trade-off factor for cost of post quality.

A CP may be interested in optimizing the virality chances
of its post. In such scenarios the CP wants to optimize the
survival chance. So, we minimize q.ρ+ψη2 or q1 +ψη2. A
CP might have a goal of reaching out to at least B users,
it might be interested in optimizing the probability of the
total number of shares raising above B, P (Y > B). It is easy
to verify that P (Y > B) ≥ (1−q), the probability of virality,
and that P (Y > B) → (1−q), as B →∞. Thus optimizing the
probability of reaching a goal is approximately the same
as optimizing the survival chances.



The CP might be interested in optimizing, the growth
rate of the expected shares, by maximizing log(y1(t ))/t −
ψη2. In Figure 2, we compare these optimizers with op-
timizers of extinction probability. From the figure, when
importance is for growth rate, rather than the virality
chances, one needs better quality posts. When m < 1, one
can also maximize y1 −ψη2.

VI. BRANCHING WITH COMPETING CONTENT

We now consider the scenario with two competing
content providers. The competing CPs are operating in
similar kind of business. So they have similar kind of posts,
for example posts related to advertising products by e-
commerce organisations when CPs operate in e-commerce
business. We track the posts of both the CPs and as before,
the process is influenced by dynamics of other posts. In
general different CPs have different reputations, one CP can
be more influential than the other. The users can respond
more actively to the posts of a more influential CP. Let
w j (≥ 1) be the influence factor of CP- j with j = 1 or
2, and we assume that the post quality factor of CP- j is
given by w jη j . Thus the CP with high influence factor can
obtain good results with lower post quality. To simplify the
notation we use η j to represent w jη j and with the new
notation, η j ∈ [0,1/w j ]. As before number of friends, F, is
parametrized by β with E [F] = m. The expected number
of random shares ζ j of CP- j equals mη j and with best
acceleration, E [ζ j ] = m/w j .
A. Modelling Details

This can again be modelled by an MTBP, most of the
modelling details are same as before and we discuss the
differences. We have additional types of TLs and the group
G1 is further divided into three sub groups, as below:
Mixed types are the TLs having the posts of both the CPs.
Let Xl ,k (t ) denote the number of users with CP1-post on
the l -th level and CP2-post on the k-th level of their TLs at
time t . Such TLs are referred as (l ,k) type TLs. In this paper
we consider the analysis with initial TLs having the posts of
both the CPs on the top levels i.e. we begin with either (1,2)
or (2,1) type TLs. It is not difficult to start with other types
of TLs, but the expressions become complicated and we
would like to explain the results in a simpler manner. With
a shift transition, a (1,2) type (a (2,1) type) gets converted to
a (2,3) type ((3,2) type resp.), which further gets converted
to (3,4) ((4,3) resp.) type with another shift and so on. We
thus have 2(N −1) mixed types, which at time t are given
by, Xmx (t ) = (Xmx1(t ), Xmx2(t )) with

Xmx1(t ) := {X1,2(t ), X2,3(t ), · · · , XN−1,N (t )},

Xmx2(t ) := {X2,1(t ), X3,2(t ), · · · , XN ,N−1(t )}.

Exclusive CP types comprises all the users with post of
only one CP. Let X1

ex (t ) := {X1,0(t ), · · · , XN ,0(t )} and X2
ex (t ) :=

{X0,1(t ), · · · , X0,N (t )} represent the numbers of exclusive CP1
and CP2 type TLs at time t . The group G2, as before, has
all the other TLs without the post of either CP.

Transitions Recall that a ‘shift’ transition occurs when
a user of G2 writes to the top level of a user/TL of G1.
Exclusive CP TLs are changed in same way as in single
CP case. While for mixed types, the position of each post
slides down by one level. For example an (l ,k) type TL
(with either l = k +1 or k −1) gets converted to (l +1,k +1)
type when l ,k < N , while (N − 1, N ) and (N , N − 1) type

TLs get converted to exclusive CP types (N ,0) and (0, N )
respectively.

Share transition protocol of exclusive CP types is same
as in single CP case. While a mixed type TL, say (l , l +1),
undergoes the following changes, when subjected to ‘share’
transition

i) The user first views the CP1-post w.p. rl and shares
the same to some of its friends, as before;

ii) The CP2-post is below CP1-post and recall the posts
are of similar nature. The motivation of the users to read the
second post of similar nature would be lesser. We assume
that the user views the second post w.p. δ;

iii) When user views/reads both the posts, it can share
CP1-post alone to some of its friends, CP2-post alone to
some others and both the posts to some more. Other
wise, only CP1-post is shared. TLs of exclusive types are
produced when it shares only CP1-post or CP2-post. While
mixed type TLs are produced when it shares both the posts;
and

iv) When only one CP-post is shared, e.g., CP1-post,
it can produce type (i ,0) w.p. ρ̄i where 1 ≤ i < N , with∑N−1

i=1 ρ̄i = 1. It can’t produce (N ,0) type as the user has
already discarded one post, that of CP2. Recall a TL of
type i is produced when (i −1) more posts are shared to
it after the CP-post. When both the posts are shared to
the same friend, mixed types (i +1, i ), (i , i +1) (with i < N )
are produced respectively w.p. pρ̄i and (1−p)ρ̄i . With high
probability CP1-post is shared first followed by sharing of
CP2-post, as we start with (l , l +1) parent. Hence the order
of the posts in the recipient TLs would be reversed with
high probability and hence p would in general be larger
than (1−p).

We have similar transitions with (l +1, l ) type TLs.

B. PGF and the generator Matrix

The PGF for the two-CP case can be obtained using the
above modelling details. The random number of friends, to
whom both the posts are shared, is parametrized by η1η2,
while the number of shares of exclusive CP1-post or CP2-
post is parametrized by η1(1−η2) or η2(1−η1) respectively.
For example if the number of friends F is Poisson with
parameter β, then random (sampled) number with whom
both the posts are shared would be Poisson with parameter
βη1η2. With s := {s1

ex ,s2
ex ,smx1,smx2}, smx1 = {sl ,l+1}, smx2 =

{sl+1,l } and ḡ
(
s′,η

)
:=∑N−1

i=1 f
(
s′i ,η,β

)
ρ̄i , the PGF for (l , l +1)

and (l +1, l ) type equals (see (3)),
hl ,l+1(s) = θ

(
sl+1,l+21l<N−1 + sN ,01l=N−1

)+ (1−θ)(1− rl )

+(1−θ)rl

[
(1−δ)ḡ

(
s1

ex ,η1

)
+δ

((
(1−p)ḡ

(
smx1,η1η2

)+ pḡ
(
smx2,η1η2

))
ḡ
(
s1

ex ,η1(1−η2)
)

ḡ
(
s2

ex ,η2(1−η1)
))]

,

hl+1,l (s) = θ
(
sl+2,l+11l<N−1 + s0,N 1l=N−1

)+ (1−θ)(1− rl )

+(1−θ)rl

[
(1−δ)ḡ

(
s2

ex ,η2

)
+δ

((
pḡ

(
smx1,η1η2

)+ (1−p)ḡ
(
smx2,η1η2

))
ḡ
(
s1

ex ,η1(1−η2)
)

ḡ
(
s2

ex ,η2(1−η1)
))]

.

The pgf for exclusive types is as in single CP case, e.g.,
hl ,0(s) = hl (s1

ex ) of (3). The generator matrix A has the
following block structure,

A=
 Amx A1

mx,ex A2
mx,ex

0 A1
ex 0

0 0 A2
ex

 , (17)



where: a) matrices A j
ex for j = 1,2 are same as in (25),

with constant c replaced by c j := (1−θ)mη j and represent
the transitions within exclusive CP types; b) matrix Amx

corresponds to transitions within the mixed types and is
given by the following when types are arranged in the order
(1,2), (2,1), (2,3), (3,2), · · · , (N −1, N ), (N , N −1),

Amx =



z′1r1 −1 z1r1 θ+ z′2r1 . . . z′N−1r1 zN−1r1
z1r1 z′1r1 −1 z2r1 . . . zN−1r1 z′N−1r1
z′1r2 z1r2 z′2r2 −1 . . . z′N−1r2 zN−1r2
z1r2 z′1r2 z2r2 . . . zN−1r2 z′N−1r2

...
...

...
. . .

...
...

z′1rN−2 z1rN−2 z′2rN−2 . . . θ+ z′N−1rN−2 zN−1rN−2
z1rN−2 z′1rN−2 z2rN−2 . . . zN−1rN−2 θ+ z′N−1rN−2
z′1rN−1 z1rN−1 z′1 · · · z′N−1rN−1 −1 zN−1rN−1
z1rN−1 z′1rN−1 z2rN−1 . . . zN−1rN−1 z′N−1rN−1 −1


,

where with cmx := δ(1 − θ)η1η2m, z ′
i := (1 − p)cmx ρ̄i and

zi := pcmx ρ̄i for all i ; and c) matrices A j
mx,ex for j = 1,2

represent the transitions from mixed to exclusive CP types
and are defined using the following constants

c j
mx := (1−θ)

[
(1−δ)mη j +δm(1−p)η j (1−η− j )

]
, where

− j := 11{ j=2} +21{ j=1} is the usual game theoretic notation.

Because of 0 sub-matrices of (17), A is not positive
regular, TL-CTBP is decomposable (e.g., [10, 9]) and the
analysis is drastically different. We carry out the analysis
by first identifying, analysing the independent population
types of our TL-CTBP.

C. Analysis of Mixed population

From the block structure of generator matrix A (17) (see
also the PGFs), it is clear that the sub group of types corre-
sponding to mixed populations,

{
(l ,k) : l ≥ 1,k ≥ 1 and l =

k+1 or k = l+1
}
, survive on their own. A mixed type can be

produced only by another mixed type, the mixed types can
produce exclusive CP types, but not the other way round
(see (17)). Thus the extinction/virality analysis of the mixed
population can be obtained independently. To begin with
we have the following result (proof in Appendix B):

Theorem 2. i) If 0 < θ, p < 1, matrix e Amx t for any t > 0, is
positive regular.
ii) Let αmx be the largest eigenvalue of the generator matrix
Amx . Then αmx ∈ (

(cmx r.ρ̄−1), (cmx r.ρ̄−1+θ)
)
(λ+ν), where

r is redefined as (r1 · · ·rN−1). When rl = d1d l
2 for all l :

αmx → (cmx r.ρ̄−1+θd2)(λ+ν), cmx := δ(1−θ)η1η2m as N →∞.

iii) Further the left eigenvector umx = (umx,1, · · · ,umx,2N−2)
corresponding to αmx satisfies for any l ≤ N −1:

umx,2l−1 =
l−1∑
i=0

ρ̄l−i

ρ̄1

(
θ

σ

)i
umx,1;umx,2l =

l−1∑
i=0

ρ̄l−i

ρ̄1

(
θ

σ

)i
umx,2.

iv) The process {umx ·Xmx (t )e−αmx t } is a non-negative mar-
tingale, lim

t→∞Xmx (t ,ω)e−αmx t =Wmx (ω)umx for almost all ω. ■
From (ii) the mixed TLs get viral when cmx r.ρ̄ > 1, and

the rate of explosion on viral paths equals αmx . Important
point to note here is that mixed population can get extinct,
i.e.,

P
(
Xmx (t ) = 0 for some t > 0

∣∣∣Xmx (0) = el ,k

)
= 1 for all (l ,k)

(when αmx < 0), but can leave out few exclusive CP types
which can get viral (if α j > 0). This is always possible
because αmx is mostly less than each α j . For example,
consider the case with ρl = ρ̄l = 1{l=1} and as N → ∞
α j → (1 − θ)mη j − 1 + θd2 while αmx → cmx − 1 + θd2 =
(1−θ)δmη1η2 −1+θd2.
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1,0mη1αλ
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1η

2
2α

2
λ

+

(
(1−θ)2(1−δ)2mη1η2(1−η2)

)
e1

1,0mη1αλ

1− (1−θ)2(1−δ)2mη2
1η

2
2α

2
λ

,

e1
2,1 = (1−θ)(1−δ)mη1αλ
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1,2η2
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Fig. 3: Time evolution of expected shares, y1
l ,k (t ) ≈ e1

l ,k eα1t .

VII. CP WISE PERFORMANCE MEASURES UNDER

COMPETITION

Mixed types keep producing exclusive type TLs as well
as mixed types till their extinction i.e. when none of the
TLs contain both the CP posts. Once mixed types get
extinct, the left over exclusive CP-types don’t influence
each other (see (17)). Nevertheless, their survival/growth
depends upon the effects created by mixed-types before
death. When mixed gets viral, total CP population is clearly
influenced by mixed-types. In all, the evolution of popu-
lation corresponding to a particular CP depends upon the
competition, whether or not the source of the competition
dies (eventually). Recall TL-CTBP is not positive regular,
population corresponding to a particular CP can get extinct
w.p.1 while the other can get viral with positive probability.
Further, they can have different growth rates, when viral.
Thus we require individual CP-wise performance measures.

A. CP-wise extinction probabilities

By Lemma 1 sub-matrix A j
ex of (17) is irreducible, thus all

exclusive types of one CP survive/die together. By Theorem
2, matrix Amx is irreducible. We say CP- j is extinct when
all the mixed, exclusive CP- j types gets extinct and define
its probability as (for any l ,k = l +1 or l −1 and where el ,k

is unit vector with one only at l ,k position):

q
j
l ,k = P

(
X

j
ex (t ) = 0, Xmx (t ) = 0 for some t > 0

∣∣∣X(0) = el ,k

)
.

Let q j := {q j
ex ,q j

mx1,q j
mx2} with q j

ex := {q j
l ,0}l , q j

mx1 := {q j
l ,l+1}l

and q j
mx2 := {q j

l+1,l }l . By again conditioning on the events

of first transition we obtain q1
mx1 via FP equations:

q1
l ,l+1 = θ

(
q1

l+1,l+21{l<N−1} + 1{l<N−1}q1
N ,0

)
+ (1−θ)(1− rl )

+(1−θ)rl

[
δ

(
pḡ

(
q1

mx2,η12

)
+ (1−p)ḡ

(
q1

mx1,η12

))
ḡ
(
q1

ex ,η1(1−η2)
)

+(1−δ)ḡ
(
q1

ex ,η1

)]
, with ḡ

(
s′,η

)
:=

N−1∑
i=1

f
(
s′i ,η,β

)
ρ̄i , η12 := η1η2.

One can write FP equations for q1
mx2, q2

mx1 and q2
mx2 in

a similar way and extinction probabilities starting from
exclusive CP types q j

ex are same as that of the single CP.
The FP equations have unique solution (proof in Appendix
B):

Lemma 4. When q j
ex < 1 = (1, · · · ,1), we have unique so-

lution in the interior of [0,1]2N−2, i.e., q j
mx1 < 1, q j

mx2 < 1.

When q j
ex = 1, (q j

mx1,q j
mx2) = 1 is the unique solution, under

extra assumption that ρN = 0 and ρ̄i = ρi for all i < N . ■



B. CP-wise expected number of shares

Let Y j
l ,k (t ) be the total number of shares of CP- j post till

time t and let y j
l ,k (t ) represent its expected value, when

started with one (l ,k) where k = l + 1 or l − 1 type TL.
These include mixed shares as well as exclusive CP shares
belonging to CP- j . The time evolution of expected shares
depends upon many factors in this competitive scenario,
we have some initial results which we discuss here.
Exclusive types can get viral (α j > 0), mixed TLs get
extinct w.p. 1 (αmx < 0): In this case our conjecture is that
the CP-wise expected shares of CP- j grows at rate α j . We

initially assume that each y j
l ,k (t ) has the form

∑N ′
i e j

l ,k,i eᾱi t

for any finite positive sequence {ᾱ1, ᾱ2, · · · , ᾱN ′ } and ap-
propriate sequence of constants {e j

l ,k,i } and then write
down the FP equations in Appendix C. When we solve
the FP equations for the case with αmx < 0, we notice
that the co-efficient e j

l ,k,i is non-zero (in fact positive) only
when the corresponding ᾱi = α j or 0 else. In Appendix
C we simplified the above mentioned FP and the required
coefficients are solution of the linear equations of Appendix
C.

Let Y j (t ) be the total number of shares of CP- j post
till time t and let y j (t ) represent its expected value, when
started with one (1,2) and one (2,1) type TLs and hence

y j (t ) = y j
1,2(t )+ y j

2,1(t ) when N = 2.

We obtain closed form expressions for {e1
l ,k } for the

special case of N = 2, r1 = r2 = ρ1 = 1, ρ2 = 0 in Appendix
C and the same are provided in the right hand side of
Figure 3. These results require theoretical justification, we
currently provide a simulation based justification in Figure
3. We obtain the estimates of expected shares at ten
different time points, of one CP operating in competitive
(curves without markers) as well as single CP (curves with
markers) environment, using Monte-Carlo simulations. We
basically generate many sample paths of TL-CTBP (7500
samples) and compute the expected shares using sample
averages. We also plot the theoretical estimates, using
formula (12) for single CP case and the formula provided
in figure itself for competitive environment, at the same
points. We observe a very good match in both the sets
of curves. An important observation: from the expressions
provided in Figure 3, the co-efficient e j

1,0 > e j
1,2 but the

growth rate remains the same in competitive as well as
single CP environment.
When exclusive as well as mixed can get viral: we
conjecture that (see Appendix C)

y
j
l ,k (t ) ≈ el ,k eα j t+gl ,k e

α∗
j t
,
α∗

j

λ+ν = cmx
∑
l
ρ̄l

N−l−1∑
i=0

θi rl+i−1 ≤ αmx

λ+ν .

Thus the expected shares grow like a sum of two exponen-
tial curves, when mixed can also survive.

C. Expected Number of Shares for non-viral scenarios

With m < 1, any post gets extinct w.p. 1. Basically we have
a moderately active network. We obtain the total expected
shares (before extinction) when started with one TL of
various types, {y j

l ,k } with y j
l ,k := E [limt→∞ Y j (t )|X(0) = el ,k ].

These can again be obtained by solving appropriate FP
equations (see Appendix D). Let y j

mx1 := {y j
l ,l+1}, y j

mx2 :=

{y j
l+1,l } and y j

mx := y j
mx1 + y j

mx2. For the special case with

ρ̄l = ρ̄l /
∑N−1

i=1 ρ̄i , rl = d1d l
2 and as N →∞, the FP equations

are solved to obtain (Appendix D):

y
j
mx ·ρ̄ →

(
2c j δ

[
(1+y

j
ex j .ρ̄)(1−η− j )+η− j

]
+ c j (1−δ)(1+y

j
ex j .ρ̄)

)
Omx

1− cmx Omx

with

Omx → d1d2(1− ρ̄)(
1−d2ρ̄

)
(1−θd2)

and where − j := 21{ j=1} +11{ j=2}.

Here y j
ex j is given by (13)-(15), and {y j

l ,k } with k = l +1 or

l −1 can be computed uniquely using y j
mx .

VIII. GAME THEORETIC ASPECTS

Competition between CPs can be significant and we
study its effects using game theoretic approach. Each CP
has profit in form of various performance measures, while
will have to pay for post quality. CPs like to optimize their
own cost,

C j (η j ,η− j ) = pm j (η j ,η− j )±ψw2
j η

2
j with η j ∈

[
0,1/w j

]
∀ j , (18)

which is influenced by the post of the other and hence we
have a non-cooperative game. The performance pm j (�, �)
could be the expected number of shares or the probability
of virality. Well known Nash Equilibrium (NE) is a solution
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concept. NE is an equilibrium strategy, to be precise a pair
of post quality factors (η∗1 ,η∗2 ) one for each CP, deviating
unilaterally from which neither of the CPs would benefit.
Existence and uniqueness would be a topic of future
research. We compute NE using gradient and best-response
dynamics based numerical algorithm for Poisson friends, F.

We begin with pm j = q j
1,2q j

2,1 in (18), the extinction
probability when started with one (1,2) and one (2,1) TL.
We plot the NE and extinction probability at NE in Figure
4. The system parameters are indicated in the figures.
We consider two CPs with respective influence parameters
w1 = 1, w2 = 1.2. We study NE as function of the shift
parameter θ. For small values of θ, the losses due to
shifting (post lost before the user visits the TL) are less
and hence we notice that NE (η∗1 ,η∗2 ) is close to (1,1/w2).
In fact, when ψ = .12 is small (curves with markers) the
NE equals (1,1/w2) for all θ less than .75. As θ increases
η∗2 corresponding to less influential CP, decreases below
1/w2, in fact it is close to 0. While we notice that the more
influential CP has η∗1 = 1 till η∗1 = 0.9. Interestingly there is
a jump in extinction probability of CP1 at the transition



point of η∗2 (see Fig. 4). This is because the competition
has reduced suddenly and CP1 has much better benefit.

In Fig. 5 we plot NE corresponding to expected shares.
The behaviour is similar. Here again we notice a big jump in
CP1 performance (solid line in right sub-figure) at ψ= 0.4.
Thus in presence of competition the returns are limited
even for more influential CP1 (beyond ψ = 0.6, expected
shares ≈ zero). If CP1 is willing to invest more (ψ small) it
can suppress the competitor (CP2 here) and enjoy absolute
monarchy. There exists a range of trade-off factors (e.g.,
ψ ∈ [0.4,0.6] in figure) for which this is possible.
No-TL case: We again set N → ∞ and rl ≡ 1. With this
αmx ≈ (mη1η2δ− 1)ν, which again indicates an inflated
growth rate as well as the virality chances of mixed popula-
tion. Even the influence of competition, inherent only due
to time-line structures, can not be considered appropriately
as this majorly depends upon the response8 of a typical
user based on the levels at which the competing posts
reside. Currently we consider only (l , l +1) or (l +1, l ) type
TLs, but one can easily generalize our study to consider all
the combinations.

CONCLUSIONS

We say a post gets viral in a social network, if the number
of users shared with the post grow fast with time. The users
shared with the post, can share the same to some of their
friends and if this continues rigorously the post gets viral.
The propagation of a post is influenced by the activity of
the network: the post on a TL (time-line) gets shifted down
by one level with every new share and can disappear before
the owner of the TL visits the network. Thus the post can
get extinct (eventually zero users with post) either due to
excessive shifts or because of lack of interest. The com-
petition can further reduce survival chances. For example
consider two agents of similar business/agenda advertising
their information using the same social network. The users
of the network may not be interested in viewing and
subsequent sharing of two posts of similar type and hence
may neglect one of them.

We modelled the propagation of content over a huge
social network using multi-type branching processes. One
important observation is that, either the post gets extinct
or it gets viral (in fact users with post grow exponentially
fast with time). We obtain the probability of virality, based
on post-quality and network local parameters like the view
probabilities at different TL levels, distribution of friends
of a typical user etc. We also showed that the expected
number of shares, which are different from expected total
progeny, due to presence of TLs, grow at the same rate as
the number of unread posts.

The multi-type branching processes resulting from com-
petitive scenario are decomposable. As a result the virality
probability, the growth rate of expected shares etc., are dif-
ferent for different types of TLs. However the performance
remains the same for all the types belonging to one content
provider. We derived closed form expressions or fixed
point equations to obtain the these common performance
measures. We formulated non-cooperative game problem
using the CP-wise performance measures and study the
influence of system parameters on NE.

8For example, parameters like δ can capture these effects.

So far in literature, we did not find a work that con-
siders the influence of structure of time-lines on post-
propagation. We compared our results with the results that
one would obtain without TLs. The two sets of conclusions
are drastically different: a) study without TLs shows that
even less interesting posts can get viral; b) it also indicates
very large growth rates in comparison with the results
obtained by considering the structure of TLs; c) More in-
terestingly we observed that viral chances can get reduced
when the network gets more active; d) study without TLs
cannot capture accurately the competition prevalent in
the propagation of posts of competing content providers,
which occurs due to the inherent structure of time-lines.

This just opened up many more open questions, both
related to branching processes and the application (social
network) and our future work would be towards answering
these questions. One needs to estimate the parameters
(e.g., view probabilities) from real data to derive more
useful conclusions from this study. This would be a topic of
future research. However, the theoretical study has already
provided good insights, which were missing when one
neglects the influence of the structure of TLs.
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APPENDIX A: SINGLE CP RELATED PROOFS

Proof of Lemma 1: i) The matrix e At for any t > 0 is positive regular iff e A is ([13]), because A+I has only non-negative
entries. Thus it is sufficient to prove e A is positive regular. Without loss of generality we can drop the multiplier λ+ν.
Then the matrix A can be written in the following way A = A1 + A2, where

A1 =


c1r1 c2r1 +θ · cN−1r1 cN r1

c1r2 c2r2 · cN−1r2 cN r2

· · · · ·
c1rN−1 c2rN−1 · cN−1rN−1 cN rN−1 +θ

c1rN c2rN · cN−1rN cN rN

 .

and the matrix A2 = Di ag (−1). Thus e A = e A1 e A2 = e−1e A1 since matrices commute. For any i , one can express

e Ai = I + Ai +
A2

i

2!
+ A3

i

3!
+·· · , (19)

where I is the identity matrix. Also e A2 = e−1I commutes with e A1 . A matrix is positive regular if there exists an n such
that An has all positive entries. If cl > 0 and rl > 0 for all l , then A1 is trivially positive regular and hence e A is also
positive regular.

Consider a general case, where some of the constants can be zero, in particular consider the case with cl = 0 ∀l > 1
and c1 > 0. For this case:

A1 =



c1r1 θ 0 0 · 0 0 0 0
c1r2 0 θ 0 · 0 0 0 0
c1r3 0 0 θ · 0 0 0 0
c1r4 0 0 0 · 0 0 0 0
· · · · · · · · ·

c1rN−3 0 0 0 · 0 θ 0 0
c1rN−2 0 0 0 · 0 0 θ 0
c1rN−1 0 0 0 · 0 0 0 θ

c1rN 0 0 0 · 0 0 0 0


Then it is clear that

A2
1 =



c2
1 r 2

1 +θc1r2 θc1r1 θ2 · 0 0
c2

1 r1r2 +θc1r3 θc1r2 0 · 0 0
...

...
...

...
...

c2
1 r1rN−2 +θc1rN−1 θc1rN−2 0 · 0 θ2

c2
1 r1rN−1 +θc1rN θc1rN−1 0 · 0 0

c2
1 r1rN θc1rN 0 · 0 0


(20)

The third power A3
1 = A2

1 A1 will have first three columns positive because the first two columns in A2
1 is have strict

positive terms and the first 2×3 sub matrix of A1 [
c1r1 θ 0
c1r2 0 θ

]
has at least one positive entry in every column. Continuing this way one can verify that AN

1 has all positive entries by
induction. Basically once An

1 has first n columns with only positive entries, because the first n×(n+1) sub-matrix of A1

has atleast one positive entry in every column, the matrix An+1
1 = (An

1 )× A1 will have its first n +1 columns with only
positive entries. Further An has only non negative entries for any n ∈N. From (19) it is direct that e A1 is positive regular
and so is e−1e A1 .

For the general case, when only some of {cl } are non-zero, since terms are non-negative the positive regularity follows
from above case and expansion (19). The result is true as long as c1 > 0.

Proof of parts (ii)-(iii): We proved that e A is positive regular. By Frobenius-Perron theory of positive regular matrices:
a)there exists an eigenvalue, call it eα, of matrix e A whose algebraic and geometric multiplicities are one and which
dominates all the other eigenvalues in absolute sense. In fact α would be real eigenvalue of matrix A and it dominates
the real components of all other eigenvalues of the matrix A; b) there exists a left eigenvector u and a right eigenvector
v, both with all positive components, corresponding to α. Fix one such set of left and right eigenvectors u, v.

Note that the eigenvectors of matrices A and e A are the same. Any left eigenvector of α, in particular u, satisfies
uA =αu and hence we get the following system of equations relating u and α

(λ+ν)c1r.u− (λ+ν)u1 =αu1 or in other words c1r.u = α+λ+ν
λ+ν u1, and similarly

cl r.u+θul−1 = α+λ+ν
λ+ν ul , l ≥ 2. (21)



Simplifying the above we obtain the following relation among various components of left eigenvector u: for any l ≤ N

ul =
l−1∑
i=0

ρl−i

ρ1

(
θ

σ

)i

u1;
N∑

i=1
ui =

N∑
l=1

ρl

ρ1

N−l∑
i=0

(
θ

σ

)i

u1 where σ := α+λ+ν
λ+ν . (22)

Following exactly similarly procedure we obtain the relation among various components of right eigenvector v as given
by (5). This completes the proof of part (iii).

Fix u, v as before, and consider the following linear function of σ′:

P (σ′) := (r.c)r.u+θ
N−1∑
i=1

ri+1ui −σ′r.u (23)

where r.c :=∑N
i=1 ri ci etc. Multiplying either side of the equation (21) with rl and then summing over l we notice that σ

is a zero of P (.). In other words, eigenvalue α= (σ∗−1)(λ+ν), where σ∗ is a zero of P (.) Because ui > 0 for all l , r.u > 0
and similarly r.c > 0. Thus σ is the only zero of P (.). It is clear that

P (r.c) = θ
N−1∑
i=1

ri+1ui > 0.

Since ri s are monotonic, i.e., because r1 ≥ r2 ≥ ·· · ≥ rN ,

P (r.c+θ) = θ
N−1∑
i=1

ri+1ui −θr.u < 0.

Thus the only zero of P (.) lies in the open interval interval
(
r.c, r.c+θ

)
. Thus α ∈

(
r.c−1, r.c+θ−1

)
(λ+ν).

Consider the special case with rl = d1d l
2, where d1 and d2 ≤ 1 are constants, then clearly the only root of equation

(23) σ equals

σ= r.c+θd2

∑N−1
i=1 ri ui

r.u
= r.c+θd2

(
1− rN uN

r.u

)
.

Now we study the convergence of σ as N →∞. It is obvious that the eigenvectors/eigenvalues corresponding to different
N would be different. We would normalize them by choosing the eigenvector u with u1 = 1 for any N . With such a
choice, it is clear from (22) that uN remains bounded even when we let N →∞. Thus as N →∞

σ= r.c+θd2

(
1− rN uN

r.u

)
→ r.c+θd2 as N →∞ ∵ (rN → 0) .

Thus, as the number of TL levels increase the largest eigenvalue, α of matrix A converges to (r.c+θd2 −1)(λ+ν). ■



Proof of Lemma 3: Let jx = {jx1 , jx2 , · · · , jxN } be the number of TLs of type 1,2, · · · , N respectively and y be the total

number of shares. It is easy to observe that y ≥∑
i jxi . We write it in short form as y ≥ jx. Define sjx

x :=Πi s
jxi
xi

then the
PGF of TL-CTBP can be written as

F1(s, t ) =
∞∑

jx=0

∞∑
y≥jx

P(e1,1)→(jx,y)
(
t
)
sjx

x s y
y and,

δF1(s, t )

δt
=

∞∑
jx=0

∞∑
y≥jx

P ′
(e1,1)→(jx,y)

(
t
)
sjx

x s y
y .

This is obtained by conditioning on the events of the first transition, noting that the populations generated by two
parents evolve independently of each other and the procedure is similar to the standard procedure used in these kind
of computations (e.g., [12]). Let ξξξ= (

ξ1,ξ2, · · · ,ξN
)

represent the offsprings produced by one parent and let ξ̄ :=∑
i ξi . Via

backward equation P ′
1k (t ) =∑

j q1 j P j k (t ), in our case it is

δF1(s, t )

δt
= (

λ+ν)(
(1−θ)r1

∑
ξξξ

∞∑
jx=0

∞∑
y≥jx

P1(ξξξ)P(
ξξξ,ξ̄+1

)
→(jx,y)

(
t
)
sjx

x s y
y +θF2(s, t )−

∞∑
jx=0

∞∑
y≥jx

P(e1,1)→(jx,y)
(
t
)
sjx

x s y
y + (1−θ)(1− r1)sy

)
δF1(s, t )

δt
= (

λ+ν)(
(1−θ)r1

∑
ξξξ

P1(ξξξ)ΠN
i=1

( ∞∑
jx=0

∞∑
y≥jx

P(ei ,1)→(jx,y)
(
t
)
sjx

x s y
y

)ξi
sy +θF2(s, t )−F1(s, t )+ (1−θ)(1− r1)sy

)
δF1(s, t )

δt
= (

λ+ν)(
(1−θ)r1sy f1

(
F(s, t )

)
+θF2(s, t )−F1(s, t )+ (1−θ)(1− r1)sy

)
where F(s, t ) := {F1(s, t ),F2(s, t ), · · · ,FN (s, t )}. Similarly we can write for any l

δFl (s, t )

δt
= (

λ+ν)(
(1−θ)rl sy fl

(
F(s, t )

)
+θ

(
1l<N Fl+1(s, t )+ sy1l=N

)
−Fl (s, t )+ (1−θ)(1− rl )sy

)
.

Let ẏl (t ) = δ2Fl (s,t )
δtδsy

|s=1 ∀l = {1,2, · · · , N } represent the time derivative of number shares when started with a type l
progenitor, till time t . Then we have the following expression for ẏ1(t )

ẏ1(t ) =
(
λ+ν)(

(1−θ)r1 f1(1)+ (1−θ)r1

N∑
i=1

δ f1(F(s, t )

δFi (s, t )

δFi (s, t )

δsy

∣∣∣s=1 + (1−θ)(1− r1)1

+ θ
δF2(s, t )

δsy

∣∣∣s=1 − δF1(s, t )

sy

∣∣∣s=1

)
= (

λ+ν)(
(1−θ)r1 + (1−θ)(1− r1)+ (1−θ)r1mη

N∑
i=1

ρi yi (t )+θy2(t )− y1(t )
)

= (
λ+ν)(

1−θ+ r1

N∑
i=1

ci yi (t )+θy2(t )− y1(t )
)
.

Similarly we can write the above for any l

ẏl (t ) = (
λ+ν)(

1−θ+ rl

N∑
i=1

ci yi (t )+θyl+1(t )1l<N − yl (t )+θ1l=N

)
. (24)

In matrix form the above can be written as
ẏ1(t )
ẏ2(t )

...
ẏN−1(t )

ẏN (t )

 = (λ+ν)


c1r1 −1 c2r1 +θ · · · cN−1r1 cN r1

c1r2 c2r2 −1 · · · cN−1r2 cN r2
...

c1rN−1 c2rN−1 · · · cN−1rN−1 −1 cN rN−1 +θ
c1rN c2rN · · · cN−1rN cN rN −1




y1(t )
y2(t )

...
yN−1(t )

yN (t )

+ (λ+ν)


1−θ
1−θ

...
1−θ

1

 .

Solving the above set of equations we obtain:
y1(t )
y2(t )

...
yN−1(t )

yN (t )

 = e At


y1(0)
y2(0)

...
yN−1(0)

yN (0)

+e At
∫ t

0
e−As (λ+ν)


1−θ
1−θ

...
1−θ

1

d s (25)

= e At


y1(0)
y2(0)

...
yN−1(0)

yN (0)

+e At A−1(I −e−At )(λ+ν)


1−θ
1−θ

...
1−θ

1

 (26)



With y(t ) := {y1(t ), y2(t ), · · · , yN (t )}, we can represent the above as:

y(t ) :=


y1(t )
y2(t )

...
yN−1(t )

yN (t )

 = e At
(
1+ (λ+ν)A−1k

)
− (λ+ν)A−1k with k := [1−θ,1−θ, · · · ,1−θ,1]T

y(t ) = e At
(
1+ (λ+ν)A−1k

)
− (λ+ν)A−1k

≈ vu′eαt
(
1+ (λ+ν)A−1k

)
− (λ+ν)A−1k

≈ eαt
(
v

N∑
i=1

ui + λ+ν
α

vu′k
)
− (λ+ν)A−1k

≈ veαt

(∑
i

ui

(
1+ λ+ν

α
(1−θ)

)
+ λ+ν

α
uN

)
− (λ+ν)A−1k

≈ veαt
∑

i
ui

(
1+ 1−θ

r.c−1+θd2

)
− (λ+ν)A−1k.

�

APPENDIX B: MIXED POPULATION PROOFS

Proof of Theorem 2: Here the generator matrix Amx is

z′1r1 −1 z1r1 θ+ z′2r1 . . . z′N−1r1 zN−1r1
z1r1 z′1r1 −1 z2r1 . . . zN−1r1 z′N−1r1
z′1r2 z1r2 z′2r2 −1 . . . z′N−1r2 zN−1r2
z1r2 z′1r2 z2r2 . . . zN−1r2 z′N−1r2

...
...

...
. . .

...
...

z′1rN−2 z1rN−2 z′2rN−2 . . . θ+ z′N−1rN−2 zN−1rN−2
z1rN−2 z′1rN−2 z2rN−2 . . . zN−1rN−2 θ+ z′N−1rN−2
z′1rN−1 z1rN−1 z′1 · · · z′N−1rN−1 −1 zN−1rN−1
z1rN−1 z′1rN−1 z2rN−1 . . . zN−1rN−1 z′N−1rN−1 −1


. (27)

First we prove that e Amx is positive regular for any 0 < θ, p < 1. As in the case of Lemma 1, we prove the result for
special case with zl = z ′

l = 0 ∀l > 1 and z1 > 0, z ′ > 0. The result again follows for general case because all the terms
involved are non-negative. For this special case the matrix Amx + I has the following form with all zl rk or z ′

l rk terms
being strictly positive because 0 < p < 1:

Amx + I =



z′1r1 z1r1 θ 0 . . . 0 0 0 0
z1r1 z′1r1 0 θ . . . 0 0 0 0
z′1r2 z1r2 0 0 . . . 0 0 0 0
z1r2 z′1r2 0 0 . . . 0 0 0 0

...
...

...
...

. . .
...

...
...

...
z′1rN−2 z1rN−2 0 0 . . . 0 0 θ 0
z1rN−2 z′1rN−2 0 0 . . . 0 0 0 θ

z′1rN−1 z1rN−1 0 0 · · · 0 0 0 0
z1rN−1 z′1rN−1 0 0 . . . 0 0 0 0


;

Positive regularity of a matrix is determined by existence of all positive terms in some power of the given matrix. Since
the matrix Amx + I has only non-negative entries it is sufficient to check zero, non-zero structure (the location of zero
and non zero terms in the given matrix and not the exact values) of the resulting powers of the matrices (Amx + I )n .
The matrix (Amx + I ) is exactly similar in zero non-zero structure as the second power A2

1 given by (20) of the single CP
matrix. Thus positive regularity follows in exactly similar lines.

Proof of parts (ii)-(iii): We follow exactly the same procedure as in the proof of parts (ii)-(iii) of Lemma 1. Hence
we mention only the differences with respect to that proof.

Let umx = {umx,1,umx,2, · · · ,umx,2N−3,umx,2N−2} be the left eigenvector of Amx , corresponding to largest eigenvalue
αmx , both of which exist because of positive regularity given by part (i).

On solving umx Amx =αumx we have the following system of equations:

z1r.umx,e + z ′
1r.umx,o = σmx umx,1, zl r.umx,e + z ′

l r.umx,o +θumx,2l−3 = σmx umx,2l−1; ∀l ≥ 2

z ′
1r.umx,e + z1r.umx,o = σmx umx,2, z ′

l r.umx,e + zl r.umx,o +θumx,2l−2 = σmx umx,2l ; ∀l ≥ 2. (28)

where r.umx,o :=∑N−1
i=1 ri umx,2i−1, r.umx,e :=∑N−1

i=1 ri umx,2i and umx,−1(umx,−2) := 0. Recall cmx = δ(1−θ)mη1η2, the above
equations can be rewritten as



cmx ρ̄1
(
pr.umx,e + (1−p)r.umx,o

) = σmx umx,1, cmx ρ̄l
(
pr.umx,e + (1−p)r.umx,o

)+θumx,2l−3 = σmx umx,2l−1; ∀l ≥ 2

cmx ρ̄1
(
(1−p)r.umx,e +pr.umx,o

) = σmx umx,2, cmx ρ̄l
(
(1−p)r.umx,e +pr.umx,o

)+θumx,2l−2 = σmx umx,2l−2; ∀l ≥ 2

Now on multiplying with ri and adding all even and odd term equations separately. We have the following

cmx r.ρ̄
(
pr.umx,e + (1−p)r.umx,o

)+θN−1∑
i=1

ri umx,2i−3 =σmx r.umx,o ; for odd terms,

cmx r.ρ̄
(
(1−p)r.umx,e +pr.umx,o

)+θN−1∑
i=1

ri umx,2i−2 =σmx r.umx,e ; for even terms.

Further on adding above equations we have the following linear equation

P (σmx ) = cmx r.ρ̄
(
r.umx,o + r.umx,e

)+θN−1∑
i=1

ri
(
umx,2i−3 +umx,2i−2

)−σmx
(
r.umx,o + r.umx,e

)
, (29)

and σmx = (αm x +λ+ν)/(λ+ν) would be the only zero of it. Now P
(
cmx r.ρ̄

) > 0 and P
(
cmx r.ρ̄+θ) < 0 (again using

monotonicity of the reading probabilities). And due to similar reasons as in in singe CP case the largest eigenvalue lies
in the interval αmx ∈ (

cmx r.ρ̄−1, cmx r.ρ̄+θ−1
)

(λ+ν).
Let us assume rl = d1d l

2, once umx,2N−2 +umx,2N−3 are both bounded for any N . Thus the root of equation (29) for this
special case

σmx = cmx r.ρ̄+θd2

∑N−2
i=1 ri

(
umx,2i−1 +umx,2i

)(
r.umx,o + r.umx,e

) cmx r.ρ̄+θd2

(
1− rN−1

(
umx,2N−2 +umx,2N−3

)
r.umx,o + r.ue

)
,

converges to the following because rN = d1d N
2 → 0,

σmx → cmx r.ρ̄+θd2 as N →∞.

So, as the number of TL levels increases the largest eigenvalue, αmx of matrix Amx converges to
(
cmx r.ρ̄+θd2 −1

)
(λ+ν).

Now we write the expression of umx,2l−1 and umx,2l in terms of umx,1 and umx,2 receptively as done before in single
CP and is given below for any l ≤ N −1, after simplifying equations (28)

umx,2l−1 =
l−1∑
i=0

ρ̄l−i

ρ̄1

(
θ

σmx

)i
umx,1;umx,2l =

l−1∑
i=0

ρ̄l−i

ρ̄1

(
θ

σmx

)i
umx,2.

■
Proof of Lemma 4: Existence: We consider q1

ex a constant vector, as explained below. We have a continuous mapping
from [0,1]2N−2 into [0,1]2N−2 i.e. over compact set. By Brouwer’s fixed point theorem there exists a solution to the given
system of equations.

Uniqueness: The exclusive CP1 types evolve on their own and by Lemma 2 we have unique solution to the relevant
fixed point equations in unit cube [0,1]N which provide the extinction probabilities of CP1 population when started
with one of its exclusive types. That is, we have unique q1

ex = {q l
l ,0}l which represents the extinction probabilities for

any given set of system parameters. We treat them as constants while studying the fixed point equations of the other
equations that provide the extinction probabilities when started with a mixed population, (qmx1qmx2). One can rewrite
the fixed point equations corresponding to this set of the extinction probabilities as below for any l < N , after suitable
simplification:

q1
l ,l+1 = K1l (pgmx1 + (1−p)gmx2)ḡ

(
q1

ex ,η1(1−η2)
)+K2l (1−δ)ḡ

(
q1

ex ,η1
)+K3l +θN−l q1

N ,0

q1
l+1,l = K1l

(
(1−p)gmx1 +pgmx2

)
ḡ
(
q1

ex ,η1(1−η2)
)+K2l (1−δ)+K3l +θN−l (30)

where

K2l = (1−θ)
N−l−1∑

i=0
θi rl+i ; K3l = (1−θ)

N−l−1∑
i=0

θi (1− rl+i )

K1l = K2lδ

gmx1 = ḡ
(
qmx1,η1η2

)
; gmx2 = ḡ

(
qmx2,η1η2

)
.

Consider the following weighted sum over l , of terms f (q1
l ,l+1, η1η2, β) and f (q1

l+1,l , η1η2, β)

N−1∑
l=1

ρ̄l f (q1
l ,l+1) and

N−1∑
l=1

ρ̄l f (q1
l+1,l ),



and note that these precisely equal gmx1 and gmx2 respectively. Thus using the right hand side (RHS) of equation (30),
we have the following two dimensional equation, Ψ= (Ψ1,Ψ2), whose fixed point provides (gmx1, gmx2):

Ψ1(g1, g2) =
N−1∑
i=1

f
(
θN−i q1

N ,0 +K1i
(
pg1 + (1−p)g2

)
ḡ
(
q1

ex ,η1(1−η2)
)
+K2i (1−δ)ḡ

(
q1

ex ,η1

)
+K3i , η1η2, β

)
ρ̄i

Ψ2(g1, g2) =
N−1∑
i=1

f
(
θN−i +K1i

(
(1−p)g1 +pg2

)
ḡ
(
q1

ex ,η1(1−η2)
)
+K2i (1−δ)+K3i , η1η2, β

)
ρ̄i .

It is easy verify for any l that

K1l +K2l (1−δ)+K3l = K2l +K3l = (1−θ)
N−l−1∑

i=0
θi =

(
1−θN−l

)
;

and hence that

θN−l +K1l +K2l (1−δ)+K3l = 1.

Thus for any q1
ex ≤ 1 we9 have:

θN−l+ K1l ḡ
(
q1

ex ,η1(1−η2)
)+K2l (1−δ)+K3l ≤ 1 (31)

θN−l q1
N ,0+ K1l ḡ

(
q1

ex ,η1(1−η2)
)+K2l (1−δ)ḡ

(
q1

ex ,η1
)+K3l ≤ 1.

Case 1 When q1
ex < 1: When q1

ex < 1, ḡ
(
q1

ex ,η1
)< 1 as well as ḡ

(
q1

ex ,η1(1−η2)
)< 1 and so we have strict inequality in

(31) and thus Ψj (1,1) < 1 for each j . Consider j = 1 without loss of generality. Thus Ψ1(1, g2) < 1 for any g2 ≤ 1. Consider
the one-variable function g →Ψ1(g , g2), represented by

Ψ
g2
1 (g ) :=Ψ1(g , g2),

for any fixed g2, which is clearly a continuous and monotone function. Let i d(g ) := g represent the identity function. From
the definition of Ψ clearly Ψ

g2
1 (0) > 0 for any g2. Hence Ψ

g2
1 (0)− i d(0) > 0 while Ψ

g2
1 (1)− i d(1) < 0. Thus by intermediate

value theorem as applied to the (continuous) function Ψ
g2
1 (�)− i d(�), there exists at least one point at which it crosses

the 45-degree line, the straight line through origin (0,0) and (1,1). Note that the intersection points of this 45-degree
line and a function are precisely the fixed points of that function.

It is easy to verify that the derivative of the function Ψ
g2
1 (partial derivative of Ψ1 with respect to the second variable)

is positive. Thus Ψg2
1 (�) for any fixed g2 is continuous increasing strict convex function. If Ψg2

1 (�) function were to cross
45-degree line more than once before reaching Ψ

g2
1 (1) < 1 at 1, then it would have to cross the 45-degree line three

times (recall Ψg2
1 (0) > 0). However this is not possible because any strict convex real function crosses any straight line

at maximum twice. Thus there exists exactly one point in interval [0,1] at which Ψ
g2
1 (�) crosses 45-degree line, which

would be its unique fixed point.
Thus for any g2 there exists a unique fixed point of the mapping Ψ

g2
1 (�) in the interval [0,1] and call the unique fixed

point as g∗(g2). It is easy to verify that this fixed point is minimizer of the following objective function parametrized by
g2:

min
g∈[0,1]

Φ(g , g2) with Φ(g , g2) := (
Ψ1(g , g2)− g

)2 .

The function Φ is jointly continuous, convex in (g , g2) and the domain of optimization is same for all g2. Further for each
g2 by previous arguments there exists unique optimizer in [0,1]. Thus by [15, Maximum Theorem for Convex Functions],
the fixed point function g∗(.) is continuous, and convex function.

We now obtain the overall (two dimensional) fixed point via the solution of the following one-dimensional fixed
equation

Γ (g ) :=Ψ2(g∗(g ), g ).

f
(
θN−i +K1l

(
(1−p)g1 +pg2

)
ḡ
(
q1

ex ,η1(1−η2)
)+K2l (1−δ)+K3l , η1η2, β

)
Let K4l := θN−l +K2l (1−δ)+K3l and K5l := K1l ḡ

(
q1

ex ,η1(1−η2)
)
. With these definitions:

Γ (g ) =
N−1∑
l=1

f
(
K4l +K5l

(
(1−p)g∗(g )+pg

)
, η1η2,β

)
ρ̄l

9Here ≤ represents the usual partial order between two Euclidean vectors, i.e., a < b if and only if ai < bi for all i and a ≤ b if ai ≤ bi for all i .



Consider any 0 ≤ γ, g , g ′ ≤ 1 and by convexity of g∗ and monotonicity of Ψ2 we have

Γ (γg + (1−γ)g ′) =
N−1∑
l=1

f
(

K4l +K5l

(
(1−p)g∗(γg + (1−γ)g ′)+p

[
γg + (1−γ)g ′

])
,η1η2,β

)
ρ̄l

≤
N−1∑
l=1

f
(
K4l +K5l

(
(1−p)

[
γg∗(g )+ (1−γ)g∗(g ′)

]
+p

[
γg + (1−γ)g ′

])
,η1η2,β

)
ρ̄l

=
N−1∑
l=1

f
(
K4l +K5l

(
γ
[

(1−p)g∗(g )+pg
]
+ (1−γ)

[
(1−p)g∗(g ′)+pg ′

])
,η1η2,β

)
ρ̄l

By convexity of f
≤

N−1∑
l=1

(
γ f

(
K4l +K5l

[
(1−p)g∗(g )+pg

]
, η1η2,β

)
+(1−γ) f

(
K4l +K5l

[
(1−p)g∗(g ′)+pg ′

]
, η1η2,β

))
ρ̄l

= γΓ (g )+ (1−γ)Γ (g ′).

This shows that Γ is convex, further we have Γ (1) < 1 and Γ (0) > 0. Note here that g∗(0) > 0 because Ψ1(0,0) > 0.
Thus using similar arguments as before we establish the existence of unique fixed point g∗

2 for function Γ . Therefore
(g∗(g∗

2 ), g∗
2 ) represents the unique fixed point, in unit cube [0,1]2, of the two dimensional function Ψ. This establishes

the existence and uniqueness of extinction probabilities (g12, g21).

The uniqueness of other extinction probabilities is now direct from equation (30).

Case 2 When q1
ex = 1: Consider that we begin with one of the following three TLs: one exclusive type (l ,0), one mixed

type (l , l +1) or one mixed type (l +1, l ). Consider the scenario in which the CP-1 population gets extinct at the first
transition epoch itself, when started with one (l ,0) type. This can happen (see (7)) if one of the following two events
occur: a) the TL does not view CP1-post (w.p. rl ); or b) the TL shares CP1-post to none (0) of its friends. In either
of the two events the CP-1 population gets extinct even when started with mixed TLs (l , l + 1) or (l + 1, l ). Thus the
event of extinction at first transition epoch starting with one (l ,0) TL implies extinction at first transition epoch when
started with either one (l , l +1) TL or one (l +1, l ) TL. Say the number of shares at first transition epoch were non-zero
and say they equal xi of type (i ,0) for each i when started with one (l ,0) type TL. This proof is given under extra
assumption that ρN = 0 and that ρ̄i = ρi . We assume the following is the scenario under assumption. When we start with
mixed type (l , l +1) (or (l +1,1) type respectively), CP1-post is shared with

∑
i xi number of Friends as when started

with exclusive (l ,0) type. Out of these some are now converted to mixed TLs because the parent TL also shares CP-2
post. And a converted type (i ,0) offspring becomes (i , i +1) offspring w.p. p (w.p. (1−p) respectively) and (i +1, i ) w.p.
(1−p) (w.p. (1−p) respectively). When started with mixed type (l +1, l ) it is possible that some out of

∑
xi shares of

CP1 post are discarded (w.p. δ) because the TL would have viewed the CP2-post first and would be discouraged to
view CP1-post. Thus in either case, with or without extinction at first transition epoch, the resulting events are inclined
towards survival with bigger probability when started with one exclusive (l ,0) type than when started with either of
the mixed type TLs. Basically the aforementioned arguments can be applied recursively to arrive to this conclusion and
hence the probabilities of extinctions satisfy the following inequalities:

q1
l ,0 ≤ q1

l ,l+1 and q1
l ,0 ≤ q1

l+1,l for any l < N −1.

Further with q1
ex = 1, it easy to verify that Ψi (1,1) = 1 for i = 1 as well as 2. Thus we have unique extinction probabilities,

qmx1 = 1 and qmx2 = 1. ■

APPENDIX C: TIME EVOLUTION OF EXPECTED NUMBER OF SHARES IN COMPETITIVE SCENARIO

Let τ represent the time period at which the first transition occurs to the TL-CTBP and note that τ is exponentially
distributed with parameter λ+ν. Without loss of generality consider CP-1, neglect the superscript 1 in the following
computation. We represent the largest eigenvalue of Lemma 1 corresponding to CP-1 by α1. From (12), when started
with exclusive CP types we have following structure: yl ,0(t ) = yl (t ) = dl ,0 + el ,0eα1t . The co-efficients {dl ,0} {el ,0} are
(approximately) provided in (12).

To begin with, we assume the following structure for fixed point waveform, yl ,k (t ) = dl ,k +el ,k eα1t + gl ,k eᾱt for all l ,k
and we will show that gl ,k = 0 under certain conditions. We will require a term proportional to eα1t . Basically without
this term, because of exclusive CP terms the waveform can’t be a fixed point waveform.

Conditioning on the events of the first transition, as before, and now conditioning also on the time instance of the



first transition and then taking the expectation, we obtain the following FP equations:

yl ,l+1(t ) = 1l<N−1θ

∫ ∞

0
yl+1,l+2(t −τ)(λ+ν)e−(λ+ν)τdτ+ 1l=(N−1)θ

∫ ∞

0
yN ,0(t −τ)(λ+ν)e−(λ+ν)τdτ+ (1−θ)(1−δ)(1− rl )0

+(1−θ)(1−δ)rl mη1

(
1+

∫ ∞

0

∑
i<N

ρ̄i y1
i ,0(t −τ)(λ+ν)e−(λ+ν)τdτ

)

+(1−θ)δrl mη1η2

(
1+

∫ ∞

0

∑
i<N

ρ̄i

(
(1−p)y1

i ,i+1(t −τ)+py1
i+1,i (t −τ)

)
(λ+ν)e−(λ+ν)τdτ

)

+(1−θ)δrl mη1(1−η2)

(
1+

∫ ∞

0

∑
i<N

ρ̄i yi ,0(t −τ)(λ+ν)e−(λ+ν)τdτ

)
+ (1−θ)δ(1− rl )0.

Since, for example∫ ∞

0
yl ,k (t −τ)(λ+ν)e−(λ+ν)τdτ =

∫ ∞

0

(
dl ,k +el ,k eα1(t−τ) + gl ,k eᾱ(t−τ)

)
(λ+ν)e−(λ+ν)τdτ= dl ,k +el ,k eα1tα1λ+ gl ,k eᾱt ᾱλ with

ᾱλ := λ+ν
λ+ν+ ᾱ and α1λ := λ+ν

λ+ν+α1
, (32)

the above equation simplifies to:

yl ,l+1(t ) = 1l<N−1θ
(
dl+1,l+2 +el+1,l+2eα1tα1λ+ gl+1,l+2eᾱt ᾱλ

)
+ 1l=(N−1)θ

(
dN ,0 +eN ,0eα1tα1λ

)
+(1−θ)(1−δ)rl mη1

(
1+ ∑

i<N
ρ̄i

(
di ,0 +ei ,0eα1tα1λ

))

+(1−θ)δrl mη1η2

(
1+ ∑

i<N
ρ̄i

(
(1−p)

(
di ,i+1 +ei ,i+1eα1tα1λ+ gi ,i+1eᾱt ᾱλ

)
+p

(
di+1,i +ei+1,i eα1tα1λ+ gi+1,i eᾱt ᾱλ

)))

+(1−θ)δrl mη1(1−η2)

(
1+ ∑

i<N
ρ̄i

(
di ,0 +ei ,0eα1tα1λ

))
.

Recall c1 = (1−θ)mη1 and define the following:

d̄mx1 := c1

(
1+

N−1∑
i=1

(
δ(1−η2)di ,0 +δη2(1−p)di ,i+1 +δη2pdi+1,i + (1−δ)di ,0

)
ρ̄i

)
= c1 + c1

(
δ(1−η2)+ (1−δ)

)
dex + cmx

(
(1−p)dmx1 +pdmx2

)
, and

ēmx1 := c1

N−1∑
i=1

(
δη2(1−p)ei ,i+1 +δη2pei+1,i

)
ρ̄i ,

:= cmx
(
(1−p)emx1 +pemx2

)
,

ḡmx1 := cmx
(
(1−p)gmx1 +pgmx2

)
,

ēex,1 = c1

(
δ(1−η2)+ (1−δ)

)
eex where

dmx1 :=
N−1∑
i=1

di ,i+1ρ̄i dmx2 :=
N−1∑
i=1

di+1,i ρ̄i and dex :=
N−1∑
i=1

di ,0ρ̄i

emx1 :=
N−1∑
i=1

ei ,i+1ρ̄i emx2 :=
N−1∑
i=1

ei+1,i ρ̄i

gmx1 :=
N−1∑
i=1

gi ,i+1ρ̄i gmx2 :=
N−1∑
i=1

gi+1,i ρ̄i and eex :=
N−1∑
i=1

ei ,0ρ̄i

With the help of these definitions one can rewrite these as:

yl ,l+1(t ) = 1l<N−1θ
(
dl+1,l+2 +el+1,l+2eα1tα1λ+ gl+1,l+2eᾱt

)
+ 1l=(N−1)θ

(
dN ,0 +eN ,0eα1tα1λ

)
+ rl

(
d̄mx1 + ēmx1eα1tα1λ+ ḡmx1eᾱt ᾱλ+ ēex,1eα1tα1λ

)
Simplifying we obtain:

yl ,l+1(t ) = (
d̄mx1 + ēmx1eα1tα1λ+ ḡmx1eᾱt ᾱλ+ ēex,1eα1tα1λ

)N−l−1∑
i=0

θi rl+i +
(
dN ,0 +α1λeN ,0eα1t )θN−l (33)

One can write down similar equations for (l +1, l ) types

yl+1,l (t ) = 1l<N−1θ
(
dl+2,l+1 +el+2,l+1eα1tα1λ+ gl+2,l+1eᾱt ᾱλ

)
+(1−θ)δrl mη1η2

(
1+ ∑

i<N
ρ̄i

(
(1−p)

(
di+1,i +ei+1,i eα1tα1λ+ gi+1,i eᾱt ᾱλ

)
+p

(
di ,i+1 +ei ,i+1eα1tα1λ+ gi ,i+1eᾱt ᾱλ

)))

+(1−θ)δrl mη1(1−η2)

(
1+ ∑

i<N
ρ̄i

(
di ,0 +ei ,0eα1tα1λ

))
.



Again with

d̄mx2 := c1δ

(
1+

N−1∑
i=1

(
(1−η2)di ,0 +η2pdi ,i+1 +η2(1−p)di+1,i

)
ρ̄i

)
= c1δ+ c1δ(1−η2)dex + cmx

(
pdmx1 + (1−p)dmx2

)
ēmx2 := c1δ

N−1∑
i=1

(
η2pei ,i+1 +η2(1−p)ei+1,i

)
ρ̄i

= cmx
(
pemx1 + (1−p)emx2

)
ḡmx2 = cmx

(
pgmx1 + (1−p)gmx2

)
ēex,2 = c1δ(1−η2)eex

one can rewrite the above set of equations, after simplifying as below:

yl+1,l (t ) = (
d̄mx2 + ēmx2eα1tα1λ+ ḡmx2ᾱλeᾱt + ēex,2eα1tα1λ

)N−l−1∑
i=0

θi rl+i (34)

Multiply equation (34) with ρ̄l and summing up we obtain (see (46) for definition of Omx ):∑
l
ρ̄l yl+1,l (t ) = dmx2 +emx2eα1t + gmx2eᾱt = (

d̄mx2 + ēmx2eα1tα1λ+ ḡmx2ᾱλeᾱt + ēex,2eα1tα1λ
)

Omx

And multiply equation (33) with ρ̄l and summing up we get:∑
l
ρ̄l yl ,l+1(t ) = dmx1 +emx1eα1t + gmx1eᾱt

=
(
d̄mx1 + ēmx1eα1tα1λ+ ḡmx1eᾱt ᾱλ+ ēex,1eα1tα1λ

)
Omx + (

dN ,0 +α1λeN ,0eα1t )∑
l
ρ̄lθ

N−l .

Summing up the above two equations we obtain:

dmx1 +dmx2 + (emx1 +emx2)eα1t + (gmx1 + gmx2)eᾱt (35)

=
(
d̄mx1 + d̄mx2 + (ēmx1 + ēmx2)α1λeα1t + (ḡmx1 + ḡmx2)ᾱλeᾱt + (ēex,1 + ēex,2)eα1tα1λ

)
Omx + (

dN ,0 +α1λeN ,0eα1t )∑
l
ρ̄lθ

N−l .

The above FP equation is valid for all t . Thus FP solution can be obtained by equating the co-efficient of eᾱt terms
on either side of the above equation, and co-efficient of eα1t terms on either side of the above equation separately and
then equating the left over terms on either side. On comparing the above mentioned coefficients/terms on both sides
and simplifying we obtain the following:

dmx1 +dmx2 =
(
cmx (dmx1 +dmx2)+ c1 + c1δ+ c1

(
2δ(1−η2)+ (1−δ)

)
dex

)
Omx +dN ,0

∑
l
ρ̄lθ

N−l ,

which implies

dmx1 +dmx2 =

(
c1 + c1δ+ c1

(
2δ(1−η2)+ (1−δ)

)
dex

)
Omx +dN ,0

∑
l ρ̄lθ

N−l

1− cmxOmx
;

in a similar way

emx1 +emx2 =α1λ

(
cmx (emx1 +emx2)+ c1eex

(
2δ(1−η2)+1−δ))

Omx +α1λeN ,0
∑

l
ρ̄lθ

N−l , (36)

implying,

emx1 +emx2 =α1λ

c1eex
(
2δ(1−η2)+1−δ))

Omx +α1λeN ,0
∑

l ρ̄lθ
N−l

1−α1λcmxOmx
;

and finally:

gmx1 + gmx2 = (ḡmx1 + ḡmx2)ᾱλOmx = cmx (gmx1 + gmx2)ᾱλOmx

Note that

gmx1 + gmx2 = cmx (gmx1 + gmx2)ᾱλOmx (37)

can have a solution only when ᾱλOmx cmx = 1. In other words it is possible only when cmxOmx > 1 (from (32) that
ᾱλ < 1). Also it is easy to note that without eα1t term (in yl ,t (t )) we could not have solved the fixed point equation, i.e.,
emx2 +emx1 can not be zero, as seen from (36).



Conclusions:
1) When cmxOmx < 1 there is no solution to the above one-dimensional FP equation (37). However in this case
α1λcmxOmx < 1 which uniquely determines emx1 + emx2 and hence all other {el ,k } constants as before. In other words,
the only possible fixed point wave form equals:

yl ,k (t ) = dl ,k +el ,k eα1t .

2) In the limit N →∞ and with special structure rl = d1d l
2, αmx /(λ+ν) ≈ cmx r.ρ̄−1+θd2 Further for this special case

we have

Omx = d1
∑

l
ρ̄l

N−l−1∑
i=0

θi d l+i
2 =∑

l
ρ̄l rl

N−l−1∑
i=0

θi d i
2 ≤

∑
l
ρ̄l rl

1− (θd2)N−l

1−θd2
≤ r.ρ̄

1

1−θd2
for any N .

In fact as N →∞
Omx → r.ρ̄

1

1−θd2
.

(i) In this case when αmx < 0, i.e., if mixed gets extinct w.p.1 then αmx ≈ cmx r.ρ̄−1+θd2 ≤ 0, i.e., cmx r.ρ̄ ≤ (1−θd2)
and thus cmxOmx ≤ cmx r.ρ̄/(1−θd2) < 1. Thus there is no solution for one-dimensional FP equation (37) and hence

yl ,k (t ) = dl ,k +el ,k eα1t .

(ii) If αmx > 0, mixed types can survive. In this case (for large N )

αmx /(λ+ν) ≈ cmx r.ρ̄−1+θd2 > 0 which implies cmxOmx ≈ cmx
r.ρ̄

1−θd2
> 1.

Therefore, with

ᾱ=α∗ :=
(
cmxOmx −1

)
(λ+ν)

we have:

yl ,k (t ) = dl ,k +el ,k eα1t + gl ,k eα
∗t .

Here gl ,k = 1−dl ,k − el ,k to satisfy the initial condition that yl ,k (0) = 1, while closed form expressions for dl ,k and
el ,k are already derived.
3) Point (2).(ii) is true for any general case that satisfies cmxOmx > 1.
4) We are yet to understand the form of explosion for other cases, e.g., when cmxOmx > 1 as well as cmxOmxα1λ > 1.

Once we have solutions for dmx1+dmx2, emx1+emx2 and gmx1+gmx2 one can derive the other co-efficients as before.
■

APPENDIX D

Expected number of shares: With m < 1, any post gets extinct w.p. 1. Basically we have a moderately active network.
We obtain the total expected shares (before extinction) when started with one TL of various types, {y j

l ,k } with y j
l ,k :=

E [limt→∞ Y j (t )|X(0) = el ,k ]. These can again be obtained by solving appropriate FP equations These FP equations are
obtained by conditioning on the events of first transition, as before. Here we have some additional events depending
upon the starting TL. Like when a mixed type TL is subjected to the ‘share transition’, then we can have shares exclusively
of post of one of the CPs, and or shares of both the posts. Whereas when an exclusive CP-type TL is subjected to a
‘share transition’, only exclusive types are engendered, as in single CP. With ‘shift’ transition we have similar changes as
in single CP case.

Below we obtain the expected shares for CP-1 without loss of generality and hence suppress the superscript j for
remaining discussions.

Let Yl ,k = limt→∞ Yl ,k (t ) be the total number of shares of CP1-post, before extinction, when started with one TL of
(l ,k) type (with k = l +1 or l −1). Let yl ,k := E

[
Yl ,k

]
be its expected value. The total number of shares of any CP post

is finite on extinction paths. Thus by conditioning on the events of first transition epoch, one can write the following
recursive equations for any l < N :

yl ,l+1 = θ
(
1{l<N−1} yl+1,l+2 + 1{l=N−1} yN ,0

)
(38)

+(1−θ)rl (1−δ)mη1(1+yex1.ρ̄)

+ (1−θ)rlδmη1

[
(1−η2)(1+yex1.ρ̄)

+η2(1+pymx1.ρ̄+ (1−p)ymx2.ρ̄)

]
where yex1 = {y1

1,0, y1
2,0, · · · , yN−1,0}. And again for any l < N ,



yl+1,l = 1{l<N−1}θyl+2,l+1 (39)

+ (1−θ)rlδmη1

[
(1−η2)(1+yex1.ρ̄)

+ η2
(
1+ (1−p)ymx1.ρ̄+pymx2.ρ̄

)]
.

One can easily solve the above set of linear equations to obtain the fixed point solution, by first obtaining the solutions
for

ymx1·ρ̄+ymx2·ρ̄ with

ymx1 := {y1
1,2, y1

2,3, · · · , y1
N−1,N } and

ymx2 := {y1
2,1, y1

3,2, · · · , y1
N ,N−1}.

Below we carry out the same for the special case with view probabilities given by: ri = d1d i
2. Recall c j = (1−θ)mη j and

define the following which will be used only in this subsection:

Bex1,δ = c1δ(1−η2)
(
1+yex1.ρ̄

)
,

Bex1,1−δ = c1(1−δ)(1+yex1.ρ̄),

C̄mx1 = cmx
(
1+ (

pymx1 + (1−p)ymx2

)
.ρ̄

)
and

C̄mx2 = cmx
(
1+ (

(1−p)ymx1 +pymx2

)
.ρ̄

)
(40)

The first three quantities can be computed from exclusive CP expected number of shares given by equations (13)-(15),
while the remaining are obtained by solving the above FP equations. Then we can rewrite the equations (38)-(39) in the
following manner for the special case10 with ri = d1d i

2

yl ,l+1 = θyl+1,l+2 +
(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)
d1d l

2

for l < N −1 and

yN−1,N = θyN ,0 +
(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)
d1d N−1

2 .

Solving these equations using backward recursion:

yN−2,N−1 = θ2 yN ,0 +
(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)(
θd1d N−1

2 +d1d N−2
2

)
.

and then continuing in a similar way

yN−l ,N−l+1 = θl yN ,0 +
(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)
d1d N−l

2

[
l−1∑
i=0

(θd2)i

]
.

One can rewrite it as the following for any l < N :

yl ,l+1 = θN−l yN ,0 +
(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)
d1d l

2

[∑N−l−1
i=0 (θd2)i

]
= θN−l yN ,0 +

(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)
d1d l

2
1−(θd2)N−l

1−θd2
. (41)

In exactly similar lines for any l < N :

yl+1,l = θyl+2,l+1 +
(
C̄mx1 +Bex1,δ

)
d1d l

2.

This simplifies to the following for any l < N :

yl+1,l = θN−l + (
C̄mx1 +Bex1,δ

)
d1d l

2
1− (θd2)N−l

1−θd2
. (42)

Multiplying the left hand sides of the equations (41) and (42) with ρ̄l and summing it up we obtain ymx1.ρ̄ and ymx2.ρ̄
respectively:

ymx1.ρ̄ = ∑
l<N

ρ̄lθ
N−l yN ,0 +

(
Bex1,1−δ+ C̄mx2 +Bex1,δ

)
Omx (43)

ymx2.ρ̄ = ∑
l<N

ρ̄lθ
N−l + (

C̄mx1 +Bex1,δ
)

Omx (44)

Omx := d1
∑
l

(
d l

2ρ̄l
)− (θd2)N

(
ρ̄l /θl

)
(1−θd2)

. (45)

10One can easily write down the equations for general case, but are avoid to simplify the notations.



Note that for general rl which need not be d1d l
2 we will have

Omx := ∑
l<N

ρ̄l

N−l−1∑
i=0

θi rl+i . (46)

On adding equations (43) and (45)

ymx1.ρ̄+ymx2.ρ̄ = ∑
l<N

ρ̄lθ
N−l (1+ yN ,0)

+(
Bex1,1−δ+ C̄mx1 + C̄mx2 +2Bex1,δ

)
Omx .

This implies using (40)

ymx1.ρ̄+ymx2.ρ̄ = ∑
l<N

ρ̄lθ
N−l (1+ yN ,0)

+(
Bex1,1−δ+ cmx

(
2+ymx1.ρ̄+ymx2.ρ̄

)+2Bex1,δ
)

Omx .

Thus we have unique fixed point solution (when cmxOmx < 1) for y1
mx ·ρ̄ := ymx1.ρ̄+ymx2.ρ̄, which equals

y1
mx ·ρ̄=

∑
l<N ρ̄lθ

N−l (1+ yN ,0)+
(
2
(
Bex j ,δ+ cmx

)
+Bex j ,1−δ

)
Omx

1− cmxOmx

.

In the above yN ,0 and yex1 of equation (40) can be obtained using single CP expressions (15) and (14).
We obtain further simpler expressions for the special case, when ρ̄l = ˜̄ρρ̄l (with ρ̄ < 1) with

˜̄ρ = 1∑N−1
i=1 ρ̄i

= (1− ρ̄)

ρ̄(1− ρ̄N−1)

and when N →∞. Observe that

Omx = d1 ˜̄ρ
N−1∑
i=1

(
d2ρ̄

)i − (d2θ)N
(
ρ̄
θ

)i

1−θd2
→ d1d2(1− ρ̄)(

1−d2ρ̄
)

(1−θd2)
,

as N →∞ because

˜̄ρ
N−1∑
i=0

(d2θ)N
(
ρ̄

θ

)i

= (d2θ)N (1− ρ̄N )

(1− ρ̄)

θN − ρ̄N

θ−ρ θ−N+1 → 0.

In a similar way

˜̄ρθN
∑

l<N
(ρ̄/θ)l = ˜̄ρθ

θN − ρ̄N

θ− ρ̄ → 0.

And yN ,0 can be bounded as N →∞, because of (14) and (16). Thus as N →∞ for any j = 1,2:

y j
mx ·ρ̄ →

(
2c jδ

[
(1+y j

ex j .ρ̄)(1−η− j )+η− j

]
+ c j (1−δ)(1+y j

ex j .ρ̄)
)
Omx

1− cmxOmx

with Omx → d1d2(1− ρ̄)(
1−d2ρ̄

)
(1−θd2)

and where − j := 21{ j=1} +11{ j=2}.

Here y j
ex j is given by (13)-(15), and {y j

l ,k } with k = l +1 or l −1 can be computed uniquely using y j
mx .


