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Abstract—In this work, we propose novel recommendation poli-
cies, which are based on user-generated responses. These can be
applied in variety of recommendation systems (RS), in particular
are very useful in the context of anonymous users. These are users
without any history and those who are not comfortable in leaving
behind any information. Our objective is to satisfy the users
requirement at the earliest, using the responses given by the later
to the previous recommendations of the same session. The earlier
the user is satisfied, the more is the profit to the content provider
(CP). The proposed approach is different from the traditional
recommendation schemes, as the recommendations are neither
based on the history of the usage of the items nor on the history
of the user(s) that used the item previously.
We first derived optimal policies in the continuous Euclidean
space and translated the same to the space of discrete items. In
the optimal policy, the recommendations at the same time step
are at 180 degrees from each other, while are at 90 degrees with
respect to the ones at the previous time step. In the context of
discrete items, notion of distance based on similarity measure is
well known, however notion of angle is not known. We proposed
the notion of local angle in the space of discrete items and
then translated the optimal policies. Using simulation results,
we demonstrated that the notion of local angle improved the
average hitting time performance. The proposed recommendation
policies can be used in discrete as well as continuous space based
applications. For example, these policies can be used by video
item providers, online shopping portals etc. They can also be
applied in context of service and rescue robot navigation.

I. INTRODUCTION

Recommendation systems (RS) became an active research
area after the research on collaborative filtering in mid-1990s,
[5]-[8]. Over the past decade recommendation engines have
become quietly ubiquitous, and used for various purposes,
e.g. e-commerce, social and professional networks, such as
YouTube, Pandora, Amazon etc., [6]. Even after plenty of work
done by the industry and academia to develop new methods
for recommender systems in the last decade, this research area
still has lots of scope to explore practical applications ([9]).
In this work, we propose novel recommendation policies,
which are based on user-generated responses. The objective is
to satisfy the users requirement at earliest using the responses
of the same user to the previous recommendations of the
same session. The proposed recommendation policies are
well suited to both, discrete as well as continuous space
based applications, e.g. video item providers, online shopping
portals, service and rescue robot navigation (here the radar
signals take the role of user responses), etc.
Our approach can also help cold start problems ([4], [3], [2]),
in particular a new user problem. Most of these problems
utilize the history of items ([4]). In [3] authors consider
demographic approach to classify new users. In [1], [2] authors

consider prompting the new users for the purpose of learning
them and for subsequent improved person based recommen-
dations. They discuss the set of items which are optimal in
certain information theoretic approach to learn the user. This
is the nearest work related to our approach. However our work
differs majorly in the following sense. We learn the user, with
respect to the item of the current interest, and along the way
maximize the hitting probability in the current session itself.
One can explore the proposed approach even in the existence
of history and we would consider this in future. A hybrid
scheme may perform better. The users interest can vary
drastically from one session to another. For example, a user
might visit an online portal to buy a book at one time, while the
same user might be interested in mobile phones the next time.
Users demanding similar items can have drastically different
preferences. But the interest of the user during the same
session would be consistent and the partial information about
the same is available via the user responses. This method
utilizes this information to construct optimal policies.

II. SYSTEM DYNAMICS

We consider a large (finite) database S, each item of which is
specified by F number of defining features. For example, for
a music video, the singer, composer, instruments etc. are some
of the describing features. The similarities/dis-similarities be-
tween the items are obtained by comparing these features. A
new user without any history is interested in one of the items
referred by vref , which is unknown to the Content Provider
(CP). We assume that the vref is equally likely to be any
one of items available with CP. The user specifies its interest
by initial search query and the system generates a series of
recommendations based on this search query. User is satisfied
if any one of the suggested recommendations is close to vref ,
i.e., with at least F number of matching features and then the
CP derives benefit. The user starts a session with CP using
an item X0 (obtained after a search query), only if it has at
least more than F similar features with 0 ≤ F ≤ F . The case
wherein user always starts the session is obtained when F = 0.
The CP displays a list of M recommendations (call a1 =
(a1,1 · · · , a1,M ), a vector of length M ) while displaying the
item X0. The user, if not satisfied with X0, explores one
of the suggestions (call it X1) from among a1. CP while
displaying item X1 also suggests new recommendation list
a2. The user, if not satisfied with X1, chooses one among
a2 and this continues. That is, the user navigates through
the recommendations of the CP and this the user does for
maximum T number of steps. At every step, the user chooses



one of the items recommended by the CP with maximum
number of features in common with vref . That is,

Xk = arg max
m

d(vref , ak,m), (1)

where d(vref , ak,m) is the similarity measure based distance
between items vref and ak,m, proportional to the number of
matching features between them.
In case the item recommended via initial search/subsequent
recommendations is interesting to the user (matching features
more than F ), the CP benefits and we assume the benefit is
proportional to the search time. The faster the user is satisfied,
the more is the benefit to the CP. For example in case of video
content, the user can spend the remaining time (leftover time
till T ) watching the video and CP’s profit is proportional to the
watched time. Alternatively, if the user does not come across a
satisfactory item in the T steps, then the user quits the session
without any benefit/profit to the CP. Our aim is to maximize
the profit of the CP or equivalently minimize the time taken
to suggest a satisfactory item.

III. MODELLING

We denote the space of all possible items by S and vref
is one among S. Our analysis is also applicable to the case
when S is an Euclidean subset. We also consider the spaces
with L1 metric (where the distance between two points/items
is d(v1, v2) :=

∑
i |v1i , v2i |). We could handle this gener-

alization without extra effort and this is useful in various
other contexts. More importantly, we derive recommendation
policies for discrete content space by translating appropriate
optimal policies of a continuous space.
The user’s interest vref is uniformly distributed among the
items of S. That is the probability that vref lies in a subset
Λ ⊂ S is given by:

P (vref ∈ Λ) =
µ(Λ)

µ(S)
,

where µ is the Lebesgue measure (length, area respectively in
one and two dimensional spaces) in the continuous case and
is the cardinality (the number of elements in a set) when S
is discrete. The subsets Λ are Borel sets in continuous case
while are any subset of S (which is finite) in the discrete case.
We only consider finite sets when S is discrete.
We use similarity measure to represent the approximate notion
of distance in discrete content space. We consider binary
features, i.e., each feature can be either 1 or 0. Most of the
results can be extended to other cases. The distance between
two items v1 = (v1i)i≤F and v2 = (v2i)i≤F is defined as

d(v1, v2) =
# of mismatching features

F
=

∑F
i=1 |v1i − v2i |

F
.

In continuous spaces, d is either Euclidean or L1 distance.
One can now define the balls around an item/point v by:

B(v, r) := {x ∈ S : d(x, v) < r}.

Thus the user’s interest lies in any item inside the ball
B(vref , r) where r := 1 - (F/F ) while the initial search X0

lies inside B(vref , R) where R = 1 - (F/F ). Recall that vref
is unknown to CP, however, it knows that vref ∈ B(X0, R).
Let τ represent the first time a recommendation hits the inner
circle r circle B(vref , r) , i.e. (using (1)),

τ := inf
k≥1
{ak,i ∈ B(vref , r), for some i ≤M}

= inf
k≥1
{Xk ∈ B(vref , r)}.

Our aim is to minimize the expected value of the hitting time,
E[τ ], or maximizing the time spent in the system, i.e. E[T−τ ],

min
π
E[τ ]≡max

π
E[T − τ ] (2)

We are presenting our results with M = 2. Some of the results
can easily be extended for M > 2 and we briefly discuss the
same at later stages.

IV. ANALYSIS AND OPTIMAL POLICIES

This problem is a fixed horizon problem, and the time step is
represented by the time epoch at which the user has chosen
a new item to explore. The recommendations depend upon
the user response to the previously recommended items. We
describe the precise problem formulation below. The policy
would be a pair of recommendations (actions), one for each
time step k as below.

π = {(a1,1, a1,2), (a2,1, a2,2), · · · , (aT,1, aT,2)} (3)

These policies depend upon appropriate state of the system.
The state of the system at time k is given by (Xk, vref ),
where Xk defined in equation (1) is the choice of user at
time k and vref is the interest of the user. Since, vref is
not directly available to the CP, we consider the alternate
state Zk = (Xk, Bk), inspired by Partially Observable MDP
(POMDP) framework. Here belief random variable Bk is the
conditional distribution of vref given history Hk, defined by:

Hk = {(X0, B0), (X1, B1), ...(Xk−1, Bk−1), Xk,a1, ...ak}.

The belief only improves with time, in the sense for all k,
Bk is concentrated on certain sets Ak ⊆ A0, in the following
manner. The proof is provided in Appendix.
Lemma 1: The belief random variable Bk at any time step
k depends only upon the previous belief Bk−1, current rec-
ommendation ak and current user choice Xk. For each k,
Bk ∼ U(Ak), which implies that Bk is uniformly distributed
over a subset Ak ⊂ S. Also the subsets {Ak}k≤T are nested:

S = A0 ⊃ A1 · · · ⊃ AT−1 ⊃ AT . �

Thus the sequence of states (Xk, Bk) is a controlled
Markov Chain, controlled by sequence of state dependent
actions/policy, π. The required cost E[T − τ ] with any policy



π and initial state X0 = x equals (details in Appendix)1

J(x, π) =

T∑
k=0

P (T − τ > k)

=

T−1∑
k=0

P (vref ∈ ∪kl=0B(Xl, r)), (4)

and we are interested in maximizing the above cost.
Nested notations: Before we proceed further we digress little
to introduce nested notations which are important to state the
results. Let A0

1 := A0 = S, be the area of the first belief.
Given a policy π, the recommendations of step k = 1 are
given by a1,i, i = 1, 2. We denote them by a1i (i = 1, 2) and
the corresponding (split) belief areas by A1

i , where

A1
1 = A1,1(A0) = {vref ∈ A0 : d(vref , a1,1) ≤ d(vref , a1,2)},
A1

2 = A1,2(A0) = {vref ∈ A0 : d(vref , a1,2) ≤ d(vref , a1,1)}.

Note here that A1 =
∑
iA1

i 1{X1=a1i }. At time step k = 2,
the two recommendations depend upon the choice X1 of
the user and there are in total 4 (2 pairs) recommendations
available (see Fig. 1). Let a2i with i = 1, 2, 3, 4 represent these
recommendations and let A2

i represent the corresponding split
belief areas in the following order:

a21 = a2,1(A1
1), a22 = a2,2(A1

1),

a23 = a2,1(A1
2), and a24 = a2,2(A1

2).

In the above a2,1(A1
1) implies the first recommendation at

step k = 2, when X1 = a11. Continuing this way we define
2k recommendations {akj }1≤j≤2k and the corresponding belief
areas {Akj }1≤j≤2k for time step k. Define Bki := B(aki , r) to
represent the desired ball around the recommendation aki .
The areas and the recommendations so defined depend upon
the policy π, but given a policy π one can determine all of
them. We have a set of points Qπ = {aki }k≤T,i≤2k , for any
π, such that recommendation at any time k and for any state
(Xk, Bk) belongs to Qπ .
Using the above notations we state the first result, Theorem
1. The proof is provided in Appendix.
Theorem 1: For any policy π, and for any k, the sets
{Akj }j≤2k form a 2k- partition of S. Further 2k partition is a
finer division of 2k−1 partition, i.e., Ak−1i = Ak2i−1 ∪Ak2i for
each i, k. We then have:

E[T − τ ](π)
b
≤

T−1∑
k=0

(T − k)

2k∑
j=1

µ(Bkj ∩ Akj )

µ(A0)
. � (5)

It is easy to see that each and every term of the summation
representing the upper bound of equation (5) can be further
upper bounded by min{1, |B|} where |B| := µ(B(0, r)).
Further the upper bound b can be satisfied with equality if
all the balls {Bkj }k,j≤2k are disjoint (see Appendix). Using
this, one can obtain optimal policies, if we show that a

1Some of these details (including the statements of Theorem 1 and the
Corollaries) in the first version submitted to GI 2015 have errors and we
corrected the same in this technical report.

particular policy simultaneously achieves all the upper bounds
of equation (5).
In case the initial area S is large enough to contain at least
(2T − 2) disjoint r radius balls, there is a possibility that one
can obtain the optimal policy. This is exactly achieved in the
corollary given below (which is easy to verify):
Corrollary 1: For any policy π,

E[T − τ ](π) ≤
∑T−1
k=0 (T − k)

∑2k

j=1 µ(Bkj )

µ(A0)

=
(2T+1 − T − 2)|B|

µ(A0)
.

If A0 contains at least (2T − 2) disjoint2 r radius balls and
if there exists a π∗ which ensures Bki ⊂ Aki for each and
every (k, i), and if further the inequality (b) in equation (5) is
satisfied with equality, then π∗ is an optimal policy:

E[T − τ ](π∗) ≥ E[T − τ ](π) for any π. �

For example, consider a one dimensional finite sorted set
with cardinality based distance and we are interested in one
particular item (r is small so that, B(vref , r) = {vref}). One
can show that the well known binary search method achieves
the upper bound of Corollary 1, and hence is an optimal policy.
On the other hand if A0 is small and is itself contained in one
ball B(a, r) for some a, then E[T − τ ] can be upper bounded
by T :
Corrollary 2: For any policy π, equation (4) can directly be
upper bounded as P (A) ≤ 1 for any A and hence we get,

E[T − τ ](π) ≤ T.

If A0 ⊂ B(a, r) for some a then π∗ with π∗k,i = a for all k, i
becomes optimal policy achieving the upper bound T . �
The theorem, corollaries are applicable even if we consider
the cost from k > 1 and replace A0 with Ak−1. The upper
bound of Corollary 1 would be (2k+1−k−2)|B|

µ(Ak−1)
. While that in

Corollary 2 would be (T − k).

A. Optimal policies in Continuous space

L1 metric : We first consider the case with L1 metric. In
this case any ball B(a, r) is a rhombus, by rotating becomes
a square. So, user interest vref is uniformly distributed in a
square of dimension,

√
2R, with centre as the initial recom-

mendation X0. The user is satisfied with any item which lies
inside a square of dimension

√
2r with vref as the centre. If

(2T −2) ≤ R
2

r2 , we have sufficient disjoint balls and Corollary
1 is applicable. With R :=

√
2R/2 = R/

√
2, one can easily

verify that an optimal policy π∗ (which provides the required
disjoint balls) is given by:

2We need 2 balls at step 1, 4 at step 2 and 2k at step k and so on up to
time k = T − 1 (Figure 1) and thus we need a total of

∑T−1
k=1 2k = 2T − 2

disjoint balls.



Fig. 1. Nested Notations Fig. 2. Notion of ‘Local’ Angle.

a∗1,1 = (R2 , 0), a∗1,2 = (−R2 , 0),

a∗2,1 = X1 + (0, R2 ), a∗2,2 = X1 + (0,−R2 )

a∗3,1 = X2 + (R4 , 0), a∗3,2 = X2 + (−R4 , 0),
...
a∗2k−1,1 = X2k−1 + (0, R

22k−2 ),

a∗2k−1,2 = X2k−1 + (0,− R
22k−2 ).

a∗2k,1 = X2k + ( R
22k−2 , 0),

a∗2k,2 = X2k + (− R
22k−2 , 0) for all k,

(6)

where user choice at any time step k ≥ 1 is given by:

Xk = a∗k,11{d(a∗k,1,vref )<d(a
∗
k,2,vref )}

+a∗k,21{d(a∗k,1,vref )>d(a
∗
k,2,vref )}. (7)

L1 metric with (2T − 2) > R
2
/r2: Basic idea is to obtain

the optimal policy using Corollary 1 till k∗ where

k∗ = arg max
k

{
(2k − 2) ≤ R

2

r2

}
and then using Corollary 2 for the time steps from k∗ + 1 till
T . The exact details are as below for the case when R/r is
an appropriate power of 2 such that 2k

∗ − 2 = R
2
/r2. One

can give similar construction even otherwise. But some minor
details need to be considered.
Note that we exactly have (2k

∗ − 2) disjoint balls and hence
one can upper bound all the terms till k∗ by |B| as in Corollary
1. Let a∗k,i be as defined in equation (6) for all i and for all
k < k∗. At k∗ all the remaining areas

{
Ak∗i

}
i≤2k∗ are already

of size r. As in Corollary 2, define for any k > k∗ and i

a∗k,i = Xk−1 = Xk∗ .

One can easily verify that for this policy,

E[T − τ ] =
(2k
∗+1 − k∗ − 2)|B|

µ(A0)
+ (T − k∗).

This E[T −τ ] is obtained by summing upper bounds as in the
two corollaries and hence the policy defined is optimal. From
the above,

E[τ ] = k∗ − (2k
∗+1 − k∗ − 2)|B|

µ(A0)
.

Note that E[τ ] is strictly less than k∗, which implies that the
user satisfies in an average time, less than k∗.
L1 metric with 4 recommendations, i.e., with M = 4 :
The above analysis can easily be extended. We will have 4k

partitions in Theorem 1 and the optimal policy for L1 metric
is (r∠θ is representation in polar coordinates):

a∗k−1,i = Xk−1 +
R

2k−2
∠((i− 1)90◦ + 45◦) for all i ≤ 4, k.

L2 metric Here user interest vref is uniformly distributed in a
circle of radius R, with centre as X0 while the user is satisfied
with any item inside a circle of radius r with vref as the centre.
The largest square contained in the bigger circle is of size√

2R while the smallest square containing the smaller circle is
of size 2r. Let R := 2k

∗
2r with k∗ := maxk{2k2r ≤

√
2R}.

If 2T − 2 < R2/r2 then again we have sufficient number
of disjoint balls to use Corollary 1 and the optimal policy is
exactly similar to that described in (6).

B. Implementation of continuous optimal policies

We refer optimal policy of equation (6) by π∗90, to indicate
that 90◦ plays major role as explained below.
Policy π∗90: From (6) at any time step k, CP recommends
two items (ak,1, ak,2), equidistant (R/2k/2) from Xk−1 while
maintaining the following angular separations:

∠{
−−−−→
Xkak,1,

−−−−→
Xkak,2} = 180◦ while ∠{

−−−−→
Xkak,1,

−−−−−→
Xk−1Xk} = 90◦

where −→xy implies the line joining points x,y and
∠{line1, line2} represents the angle between the two lines.



One can obtain the estimate of E[τ ], using the iterative pro-
cedure described in Algorithm 1. Repeat it for many samples
and compute the same mean of τ to obtain an estimate Ê[τ ].

Algorithm 1: Policy π∗90 Algorithm (for each sample)
Initialize: Generate vref , X0 randomly (uniformly)
Step k.i:, CP provides two recommendation a∗k,i, i = 1, 2
as given by (6).
Step k.ii: User choses the best recommendation
according to (7) and returns Xk.
If k > T or Xk ∈ B(vref , r) Then Exit with τ = k
Else return to Step k.i with k = k + 1

These results in continuous space are of independent interest.
For example, they can be used in robotics: in rescue robot,
robot navigation systems etc. In future we would like to
explore this angle further.
Policy π180: The policy π∗90 needs 90 degrees, and we will
notice that the implementation of 90 degrees (after transla-
tion to discrete space) requires complicated logic. Hence we
propose another policy π180 which only ensures 180 degree
separation between the two recommendations (ak,1 and ak,2),
but the angular separation with respect to the previous user
choice Xk−1 is chosen randomly, i.e, now

∠{
−−−−→
Xkak,1,

−−−−−→
Xk−1Xk} = random.

Below, we study the loss of performance with this policy and
one needs to chose an appropriate policy based on their own
tradeoff of complexity versus performance.
Simulation results on Continuous space
We would like to recall that maximizing E[T−τ ] is equivalent
to minimizing E[τ ]. However we are interested in E[τ ] and
hence are plotting the estimate of E[τ ] in all the simulations.
We compare the E[τ ] performance of policy π180 in compari-
son with that of π∗90, using both L1 as well as L2 metrics. With
large values of r, the loss of performance is negligible with
L2 distance while it is significant with L1 distance (see Tables
I and II). But with smaller values of r, the losses are more
even with L2 case. However the losses are significant with
L1 metic for all cases. In this case, again, the losses increase
with the decreases in r. This implies: a) in continuous space
with Euclidean distance one may use less complicated π180 in
place of π∗90, when r is not very small; a) in all other spaces,
it may be important to ensure 90 degrees separation.

V. DISCRETE DATABASE AND NOTION OF LOCAL ANGLE

We consider binary database with F features, similarity based
distance and cardinality based measure. A ball B(v, r) here
includes all those items which match in more than F (1 − r)
features with v, e.g., B((10), 0.5) = {(10)}, B((10), 1) = S.

A. Optimal policies in Discrete space

We again use Corollary 1 to obtain optimal policies in some
example scenarios. One can easily verify the following.

r E[τ ](π90) E[τ ](π180)
10 6.88 36.8
15 5.6 26.85
20 4.78 20.0
30 3.41 11.56
50 2.18 4.68
60 1.8 3.18
70 1.65 2.30
80 1.46 1.82

TABLE I
E[τ ] IN CONTINUOUS L1 SPACE WITH R = 100

r E[τ ](π90) E[τ ](π180)
10 6.25 28.15
15 4.86 19.25
20 4.08 13.37
30 2.72 7.15
50 1.73 2.74
60 1.52 1.90
70 1.41 1.54
80 1.26 1.30

TABLE II
E[τ ] IN CONTINUOUS L2 SPACE WITH R = 100

Case I: F = 7, T = 2 and r = 2/7: Optimal Qπ∗ is

a11 = 1111111, a12 = 0000000, a21 = 0011111,
a22 = 1111100, a23 = 1100000 and a24 = 0000011.

Case II: F = 7, T = 2 and r = 3/7: Optimal Qπ∗ is

a11 = 1111111, a12 = 0000000, a21 = 0001111,
a22 = 111100, a23 = 1110000 and a24 = 0000111.

Case III: F = 9, T = 2 and r = 4/9: Optimal Qπ∗ is

a11 = 111111000, a12 = 000000111, a21 = 001111001,
a22 = 110001110, a23 = 110000110 and a24 = 001110001.

One can continue this way, however we obtain optimal policies
in a restrictive manner. Our aim is to obtain policies for
discrete data base which are applicable for general scenarios.
Further we would like iterative algorithms, which can easily
handle large data sets and tracking (vref can be drifting too).
The idea is to translate the continuous policies to the discrete
space, by introducing a notion of local angle.
In this section, we also introduce/describe another policy
referred to as πR and show that the corresponding recommen-
dations converge towards the satisfactory item with probability
one. We compare the translated π90 with πR and also study a
hybrid policy. We verify the functionality using simulations.
Approximate notion of distance using similarity measure is
already discussed in section III. We begin with the notion of
angle and followed by the translation of the policies.

B. Notion of Local Angle

Distance between items defined via similarity measure is
drastically different from that in continuous space. Consider a
centre in a continuous space and points on a given circumfer-
ence. There are uncountable such points. The points might be
at equidistant from the centre, but their inter distances can vary
significantly based on their angular separations. It is difficult to



achieve such a notion in discrete space in a consistent manner,
especially when the number of equidistant points is large. The
number of points at equidistance from a reference point is
finite in discrete space, nevertheless grows with the distance
from the centre. Hence we define a notion of local angle, which
is applicable for small radius balls.
We begin with three items (v1, v2 and v3) and define the
notion of angle using their inter distances, d12, d23 and d13.
Fix the position of item v1, then v2 can be anywhere on the
circumference of B(v1, d12) (see Fig. 2). Fix one of these
points as v2 and now draw two circles, with respective centres
as v1 and v2 and radii as d13 and d23. Then item v3 can be
at one of the two intersecting points as shown (see Fig. 2).
Choose any one of the two points as v3 and form a triangle to
obtain the required angle. For example, θ in Fig. 2 represents
the ’local’ angle between lines joining items v1-v2 and v1-v3.
Note that, this angle is independent of the chosen points and
depends only upon their inter distances, d12, d23 and d13.
180-degrees: An angular separation close to 180 degrees is
achieved if the inter distances between the pair of points
(equidistant from a reference point) is maximized. Given n
items which are at the same distance from a fixed point, chose
two among those points whose inter distance is maximum, i.e.,
a pair with maximum number of mis-match features.
90-degrees: An angular separation close to 90 degrees is
achieved if the inter distances between the points satisfy the
Pythagorus theorem (to the best extent possible). We achieve
this by performing a mini optimization (8) at every step.

C. Policy π90, obtained by translation:

This is obtained by translating the continuous π∗90 policy. From
(6), subsequent recommendation are given at diminishing
distances {ν1, ν2, ν3 · · · } = {R/2, R/2, R/4 · · · } while the
two recommendations at the same time step are maintained
at 180 degrees with respect to each other. Distances in term
of corresponding similarity measures are given by: φk =
min {1, bνkc}, where we set R = F/2. We also attempted
simulations with other possible sequences of step sizes {νk}
and found these to be the best.
We also require that the lines

−−−−→
Xkak,1 and

−−−−−→
Xk−1Xk are at 90

degrees. We achieve this by ensuring that the inter distances
satisfy Pythagorus theorem, i.e., we minimize(√

d(Xk, ak,1)2 + d(Xk−1, Xk)2 − d(ak,i, Xk−1)

)2

or equivalently minimize

(~k − d(ak,i, Xk−1))
2 where hypotenuse ~k :=

√
φ2k + φ2k−1.

We also need to ensure d(Xk, ak,1) is close to φk. Let Kk
represent the set of indices where Xk matches with Xk−1:

Kk = {j : Xkj = Xk−1j} and note that |Kk| = F − φk.

In the above |.| (when the argument is a set) implies cardinal-
ity. Our aim is to chose a pair of numbers (n,m) optimally,
where n represents the number of matching features between
ak,i and Xk−1 in the Kk positions and m represents the

same among Kck positions. With such a choice of (n,m), ak,i
matches with Xk in n among Kk positions and in |Kck| −m
among Kck positions . Thus given (n,m) we have

d(ak,i, Xk−1) = F − (n+m) := g1(n,m) and
d(ak,i, Xk) = F − (n+ |Kck| −m) := g2(n,m).

Let lk := F−φk. Now we propose to chose n∗ and m∗ which
minimize the following joint cost (one term for 90 degrees and
another for φk distance):

min(n,m):m ≤ φk−1
& n ≤ lk−1


(φk − g1(n,m))2 + w(~k − g2(n,m))2. (8)

In the above w is introduced to consider the tradeoff between
the two costs. To ensure 180 degree separation between the
two (i = 1, 2) recommendations, n∗ indices corresponding to
the two recommendations are chosen from two disjoint sets
of Kk. In case 2n∗ > lk−1, we consider lk−1−n∗ and repeat
similar construction, but now with inverted bits. A similar
procedure is followed with m∗ and Kck. This construction
ensures maximum possible distance between ak,1 and ak,2,
which implies an angular separation close to 180 degrees. In
policy π90 at any time step k, CP recommends two items to
the user, which are generated by the Algorithm 2.

D. Random Policy πR:

Policy: At any time k, one random index L among F features
is chosen. First recommendation ak,1 is same as Xk but at
index L, it is set to 0. The second recommendation ak,2 is
similar except that at L it is set 1 and user selects the best
match.
Analysis: Let αk represent the number of mis-matching fea-
tures between user choice Xk and vref . If the position L is
one among the αk mis-matching indices, then it improves the
number of matching features, i.e., αk+1 = αk − 1. If it is one
among F − αk (already matching features) then there is no
improvement in αk+1. Thus the sequence αk follows a random
walk, with correlated drift sequence Wk ∈ {0,−1}

αk+1 = αk +Wk+1,

with the distribution given by:

P (Wk+1 = 0) = 1− αk
F

and P (Wk+1 = −1) =
αk
F

When αk > 0, average drift E[Wk+1] < 0, one can show
the random walk αk converges to 0, i.e., the policy reaches
satisfaction with probability one.

E. Policy π180 :

Policy: The step sizes remain same as is in the previous policy.
At any time k, lk indices are chosen randomly. In the first lk
indices, ak,1 equals inverted value of the corresponding indices
in Xk while it matches with the later in all other positions.
Second recommendation ak,2 is constructed similarly but using
another set of lk random indices, excluding the first lk indices.
This exclusion ensures that the distance between ak,1 and ak,2



Algorithm 2: Policy π90 Algorithm (Discrete)
Input: Xk−1, Xk, Kk and (n∗,m∗) from (8)
Step k.i: I: permuted array of indices of Kk
Step k.ii: If n∗ < |Kk|/2 Then
Define I1 and I2 as 1:n∗ & n∗+1:2n∗ indices of I;

Do ak,1(i) = Xk,1(i)∀i ∈ I1 and
ak,1(i) 6= Xk,1(i)∀i ∈ I − I1.

Do ak,2(i) = Xk,1(i)∀i ∈ I2 and
ak,2(i) 6= Xk,1(i)∀i ∈ I − I2.

Else
Define Ic1 and Ic2 as 1:(|Kk| − n∗) &

(|Kk| − n∗)+1:2(|Kk| − n∗) indices of I;
Do ak,1(i) 6= Xk,1(i)∀i ∈ Ic1 and

ak,1(i) = Xk,1(i)∀i ∈ I − Ic1 . Similarly,
Do ak,2(i) 6= Xk,1(i)∀i ∈ Ic2 and

ak,2i = Xk,1i∀i ∈ I − I
c
2 .

Step k.iii: J : permuted array of indices of Kck
Step k.iv: If m∗ < |Kck|/2 Then
Define J1 and J2 as 1:m∗ & m∗+1:2m∗ indices of J ;

Do ak,1(j) = Xk−1,1(j)∀j ∈ J1 and
ak,1(j) 6= Xk−1,1(j)∀j ∈ J − J1.

Do ak,2(j) = Xk−1,1(j)∀j ∈ J2 and
ak,2(j) 6= Xk−1,1(j)∀j ∈ J − J2.

Else
Define J c1 and J c2 as 1:(|Jk| −m∗) &

(|Jk| −m∗)+1:2(|Jk| −m∗) indices of J ;
Do ak,1(j) 6= Xk−1,1(j)∀j ∈ J c1 and

ak,1(j) = Xk−1,1(j)∀j ∈ J − J1. Similarly,
Do ak,2(j) 6= Xk−1,1(j)∀j ∈ J c2 and

ak,2j = Xk−1,1j∀j ∈ J − J
c
2 .

End

is maximum possible (2lk mismatches) one which implies a
degree close to 180 degrees. In case lk > F/2, we consider
F − lk and repeat similar construction, but now with inverted
bits.
Analysis: Once again we write the evolution of number of
mis-matching features as a random walk:

αk+1 = αk +Wk+1,

One can analyze this policy in a similar way as done with
πP . When lk = 1, drift Wk+1 takes value +1, if both the
positions (in both the recommendations) are from among
F −αk matching positions. Then the matchings (with respect
to vref ) of both recommendations would be one less than
corresponding value with Xk. On the other hand, if one of
the two positions is from αk positions then the matchings
of the corresponding recommendation improves by one, i.e.,
Wk+1 = −1. So,

P (Wk+1 = 1) =
F − αk
F

F − αk − 1

F − 1

=
(

1− αk
F

)(
1− αk

F − 1

)
,

P (Wk+1 = −1) = 1− P (Wk+1 = 1) when lk = 1.

E[τ ] for different policies
F E[τ ](π90) E[τ ](πR) E[τ ](πhybrid)

60 (120) 9.8 (24.47) 14.43 (33.43) 10.22 (24.53)
65 (130) 23.37 (51.99) 27.8 (59.57) 23.25 (52.33)
70 (140) 39.89 (84.95) 42.89 (90.66) 39.06 (82.38)
75 (150) 60.7 (130.13) 60.53 (126.66) 57.06 (118.82)
80 (160) 91.57 (190.82) 82.68 (170.07) 79.68 (163.16)
85 (170) 134.67 (284.15) 110.79 (228.29) 107.27 (219.89)
90 (180) 214.35 (456.76) 149.42 (308.13) 146.22 (298.73)

TABLE III
DISCRETE POLICIES WITH F = 100 (200)

When lk = 2 for some k the drift Wk can take either one
of the 5 values {−2,−1, 0, 1, 2}. Drift Wk = 2 if all the
four positions are from the previous matching positions and
then the matching of the best also reduces by 2. If two of
the positions are matching and two are not then we lose one
matching in each recommendation and hence the best also
looses one matching. For example with lk = 2,

P (Wk+1 = 2) =
(F − αk)!(F − 4)!

(F − α− 4)!F !

P (Wk+1 = −2)

= P ( In one of the recommendations both the
positions are from mis-matching positions).

One can continue this way and show that αk → 0, i.e.,
that Xk converges to vref with probability 1. We need to
use dominating technique to complete the proof and we are
currently working towards that.

F. Simulation results: Discrete space

We now study the various discrete policies via simulations
with F = 100 and 200. The results are tabulated in Tables III
and IV.

E[τ ] for Policy π180
F Policy π180 Policy π180hybrid

60 (120) 10.21 (97.23) 10.16 (39.91)
65 (130) 31.68 (491.66) 27.02 (434.46)
70 (140) 71.91 (690.55) 65.79 (685.11)
75 (150) 266.33 (2571.72) 257.96 (2652.58)
80(160) 3385.59 (T) 3304.24 (T)
85 (170) T (T) 7423.06 (T)
90 (180) T (T) T (T)

TABLE IV
POLICY π180 WITH F = 100 (200)

We notice from the Table III that π∗90 performs superior to
that of πR for F almost up to 70 (140). However there is a
degradation in the performance with larger values of F . This is
anticipated as with smaller distances the optimization (8) may
not be effective because of fewer choices in the feasibility
region. Hence we also consider a hybrid policy which used
π90 in the beginning of the session and πR during the later
part. The performance of this policy is presented in the last
column of the table, and it out performs all other policies.



In Table IV we study π180. Simulation results show that
the performance of Policy π180 is significantly inferior as
compared to Policy π90, πR, and πhybrid. Moreover, it fails
when higher number of features are required to match (see
Table IV). This again reinforces that without 90 degree logic,
the performance is inferior. The degradation/losses increase
significantly as larger levels of satisfaction (smaller r or larger
F ) are demanded. Compare Tables IV and III to see the
degradation of π180. The losses are more even with a hybrid
policy, consisting of π90 in the beginning and π180hybrid in the
later stages, whose performance is given in the last column of
Table IV.

VI. CONCLUSIONS
We presented and demonstrated novel recommendation poli-
cies, which are based on user-generated responses. Unlike the
traditional recommendation schemes, the recommendations are
neither based on the history of the usage of the items nor on
the history of the user(s). These can be applied in variety of
recommendation systems (RS), in particular are very useful
in the context of anonymous users (cold start problems). But
their bigger advantage is that they exploit the responses of the
same user in the same session.
We proposed a notion of local angle in the context of discrete
data base. Simulation based results clearly show that the notion
of local angle improved the average hitting time performance.
The proposed recommendation policies can be used in discrete
as well as continuous space based applications, e.g. video item
providers, online shopping portals, service and rescue robot
navigation, etc. These are preliminary results and we would
like to obtain theoretical performance of proposed policies.
When users with similar interests are sufficiently different
from each other and if the same user is interested in drastically
different items in different sessions the traditional history
based methods may not perform well, while this approach can
perform better. In future, we would like to test our policies
against the other well known approaches in such scenarios
and propose hybrid methods, if required.
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APPENDIX: PROOFS

The proofs are given in the next page.



Proof of Lemma 1: Given that B0 = U(A0) is the initial belief. If a1 = (a1,1, a1,2) are the recommended items at time step
k=1, user choses an item closer to the desired item, vref (recall it is unknown to the system) and hence

X1 = a1,11{vref∈A11} + a1,21{vref∈A12
}, where

A11 = {vref ∈ A0 | d(vref , X11) < d(vref , X12)} and
A12 = {vref ∈ A0 | d(vref , X12) < d(vref , X11)}.

By definition B1 is the conditional distribution of vref given H1 i.e. vref /H1. For any subset Λ (Borel if continuous case)

P (B1 ∈ Λ) = P (vref ∈ Λ/vref ∈ A0, B0,a1)

=
µ(Λ ∩ A11)

µ(A11)
1{X1=a1,1} +

µ(Λ ∩ A12)

µ(A12)
1{X1=a1,2}.

The equality in the above equation is because, vref lies in A11 when X1 = a1,1. Similar is the case when X1 = a1,2. Thus
belief B1 will be concentrated either on A11 or on A12 based only on Xk, a1 and B0. And from equation (9) it is a uniform
random variable:

B1 ∼ U(A1) where A1 = A111{X1=a1,1} +A121{X1=a1,2}.

Following similar logic, at any time step k we will have

Bk ∼ U(Ak), with, Ak = Ak,11{Xk=ak,1}+Ak,21{Xk=ak,2}. �

Proof of Theorem 1: We have

E[T − τ ] =

T∑
k=0

P (T − τ > k) =

T∑
k=0

P (τ < T − k)

=

T∑
k=0

P (τ < k) =

T∑
k=1

P (τ < k) because P (τ < 0) = 0

=

T−1∑
k=0

P (τ ≤ k) =

T−1∑
k=0

P (vref ∈ ∪kl=0B(Xl, r))

≤
T−1∑
k=0

k∑
l=0

E
[
µ(B(Xl, r))

]
=

T−1∑
k=0

[
(T − k)E

[
µ(B(Xk, r))

]]
≤
T−1∑
k=0

[
(T − k)E

[
µ(B(Xk, r))

]]
.

It is easy to see that E
[
µ(B(Xk, r))

]
= E

[
vref ∈ B(Xk, r)

]
and hence

E[T − τ ] ≤
T−1∑
k=0

(T − k)E
[
vref ∈ B(Xk, r)

]
. (9)

For any set C, point a and any time k, it is easy to verify (Bk ∼ U(Ak) implies vref ∈ Ak) the following

P (vref ∈ B(a, r)|Bk) = P (vref ∈ B(a, r)|vref ∈ Ak) =
µ(B(a, r ∩ Ak)

µ(Ak)
.

We will use this logic repeatedly in the following. In addition if we condition on Xk we have,

P (vref ∈ B(Xk, r)) = E[P (vref ∈ B(Xk, r)/Xk, Bk)]

= E

[
µ(B(Xk, r) ∩ Ak)

µ(Ak)

]
. (10)



Further when Xk = ak−1,i, i.e., when user choses i-th recommendation at step k, it implies the new belief is concentrated on
Ak−1,i, i.e., that Ak = Ak−1,i. So, for any k > 1

E[vref ∈ B(Xk, R)] = E

[
E

[
µ(B(Xk, R) ∩ Ak)

µ(Ak)

(
1Xk=ak−1,1

+ 1Xk=ak−1,2

)∣∣∣∣Bk−1]]
= E

[
E

[
1Xk=ak−1,1

µ(B(ak−1,1, r) ∩ Ak−1,1)

µ(Ak−1,1)
+ 1Xk=ak−1,2

µ(B(ak−1,2, r) ∩ Ak−1,2)

µ(Ak−1,2)

∣∣∣∣Bk−1]]
= E

[
P (Xk = ak−1,1|Bk−1)

µ(B(ak−1,1, r) ∩ Ak−1,1)

µ(Ak−1,1)
+ P (Xk = ak−1,2|Bk−1)

µ(B(ak−1,2, r) ∩ Ak−1,2)

µ(Ak−1,2)

]
= EAk−1

[
µ(B(ak−1,1, r) ∩ Ak−1,1) + µ(B(ak−1,2, r) ∩ Ak−1,2)

µ(Ak−1)

]
(11)

Note in the above that the recommendations ak−1,i, i = 1, 2 depend upon previous belief Bk−1, but is a constant given the
later as we are considering only pure policies (see Figure 1). Continuing in a similar way we get that:

E[vref ∈ B(Xk, r)] =

2k∑
j=1

E

[
µ(B(akj , r) ∩ Akj )

µ(A0)

]

=

2k∑
j=1

µ(B(akj , r) ∩ Akj )

µ(A0)
.

(12)

Now from equations (9) and (12), we get

E[T − τ ] ≤
T−1∑
k=0

(T − k)

2k∑
j=1

µ(B(akj , r) ∩ Akj )

µ(A0)
. �


